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1 Introduction

1.1 Problems modelled with differential or difference equations

Applied mathematicians create mathematical models to describe the world. These may in-
volve physics (mechanics), chemistry (reaction kinetics), economics (stock movements, sup-
ply and demand), social sciences (voter preferences, opinion formation) or any number of
different disciplines and problems. The common thread though is that the model is only use-
ful if it can be used to obtain more insights into the problem being addressed. The methods
that can be brought to bear depend on the nature of the model.

Models used to simulate and predict weather or climate could be very complicated, be-
cause various processes like heat transfer (both vertically and horizontally) are coupled to-
gether on the surfaces of land, ocean and ice. For the fantastically detailed climate models
used to assess the probability of climate change the techniques are essentially computa-
tional, but mathematics is important in the design of the schemes and the analysis of the
data. Climate scientists will also use much cruder models to provide insights into the relative
importance of different effects. These models are designed so that more detailed mathemat-
ical analysis is possible, and longer, more varied computer simulation as well because the
time spent on the computation is so much smaller.
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F = −kx

Figure 1.1: A harmonic oscillator only under the spring force F = −kx.

The aim of this course is to describe some of the mathematical techniques that can be used
to analyse differential or difference equations that arise frequently in models. Differential
equations are used to describe how quantities vary in time (or space). If there is only one
independent variable then the model is an ordinary differential equation (ODE) such as

d2x

dt2
+ ω2x = 0 (1.1)

with solutions x(t) that is a function of the continuous, independent variable t and the
initial conditions (if they are specified). This equation describes the motion of an object
under the sole force of spring force (see Figure 1.1), governed by the Newton’s equation
mẍ = F = −kx. It is sometimes useful to consider time as a discrete variable, leading to
difference equations such as the logistic equation

xn+1 = µxn(1− xn) with µ ∈ [0, 4]. (1.2)

This generates a sequence {x0, x1, x2, . . . } rather than a function of a continuous variable.
We assume you are familiar with basic linear differential equations and difference equations.
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1.2 What is this course about?

There are two features that may be new to you (and will be our focus later) in this course:
nonlinearity and parameter variation.

Nonlinearity refers to the existence of terms like x2 in the equation – terms that are
not linear in the dependent variable you are seeking — for example, the logistic equation
(1.2) is nonlinear whilst equations (1.1) and are linear in x and u respectively. In general,
nonlinear equations cannot be solved in terms of simple functions, and new techniques are
needed to obtain information about solution.

In many models these are parameters — quantities which are constant in any single
realisation of the experiment, but which can be changed (like the interest rate set by Bank
of England to regulate the economy). In fluid mechanics an example is the Reynolds number
of a flow, in chemistry reaction rates depend on ambient temperatures, in social sciences
behaviour may be influenced by the average number of friends a person has (and in epidemi-
ology the average number of contacts). Often these parameters are not known accurately and
so it is important to know how sensitive any conclusions are to parameter variation. This is
described by bifurcation theory : the study of how quantitative changes occur as parameters
are varied. The quantity µ in the logistic equation is an example of a parameter. ‘Tipping
points’ are another.

Finally, nonlinearity can lead to behaviour that is more complicated than the obvious
static and periodic solutions (or more general quasi-periodic solutions). This is called chaos,
and one of the interesting features of chaos is that it has its own version of bifurcation
theory — there are a number of common routes to chaos describing how chaotic solutions
are created as parameters change. We will discuss some of these too.

1.2 What is this course about?

In this course, we will be focus on qualitative properties of continuous and discrete dynam-
ical systems, complementing other common methods, like explicit solutions and numerical
approximations. Explicit solutions, even available in certain cases, may not be useful. For
example, the general solution of the system

dx

dt
= xy,

dy

dt
=

1− x2 + y2

2

with initial condition x(0) = x0, y(0) = y0 is

x(t) =
2x0

1 + x20 + y20 + (1− x20 − y20) cos t− 2y0 sin t
,

y(t) =
2y0 cos t+ (1− x20 − y20) sin t

1 + x20 + y20 + (1− x20 − y20) cos t− 2y0 sin t
.

Can you get any information from this explicit solution, without plotting any sample trajec-
tories? Numerical approximations may also not be so effective for high dimensional systems
or long time behaviours.

Before considering complicated nonlinear systems, we start with a few basic notations
and concepts in the next section.
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2 Notation and basic concepts

2.1 Ordinary differential equations (ODEs)

We only consider coupled first order equations: autonomous(time-independent) equations

ẋ = f(x), x ∈ R
n, f : Rn 7→ R

n,

or occasionally non-autonomous (time-dependent) ones

ẋ = f(x, t), x ∈ R
n, f : Rn × R 7→ R

n.

Here the n-dimensional Euclidean space R
n is called the phase space of the system.

Remark (Conventions about notations).

(a) In the rest of the course, we use variables like x for both vector and scalar, and there is

usually no confusion. For instance, x in the system ẋ =

(
1 −1
−1 1

)
x is a column vector

of length two, but x in the system

ẋ = x− y, ẏ = −x+ y

is a scalar.

(b) Explicit time dependence is also omitted, that is, we write x instead of x(t), and similarly
ẋ, ẍ for the time derivatives d

dt
x(t) and d2

dt2
x(t).

(c) The solution to the system ẋ = f(x) is usually written as x or x(t), and sometime x(x0, t)
or ϕt(x0), if the dependence on the initial condition x0 is emphasized.

There is no need to consider higher order equations, because they can always be converted
into first order systems by introducing new variables for the derivatives, as in the following
example.

Example 2.1 (Coupled first order equations). Take the simple harmonic oscillator (1.1),

ẍ+ ω2x = 0. (2.1)

This is a second order equation, and can be recast in the form of (2.1) by setting y = ẋ
(hence ẏ = ẍ = −ω2x). That is, we get the coupled first order equations

ẋ = y, ẏ = −ω2x or
d

dt

(
x
y

)
=

(
0 1

−ω2 0

)(
x
y

)
.

Note that this is an example of a linear system of differential equations, the general form of
which is

v̇ = Av. v ∈ R
n

where A is a n× n matrix (possibly time dependent).
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2.1 Ordinary differential equations (ODEs)

Exercise. Change the fourth order equation d4

dt4
x − ω4x = 0 describing the vibration of a

beam into a system of first order equations, by introducing y = ẋ, z = ẍ, w =
...
x . What does

the coefficient matrix look like? How about the equivalent first order system for the n-th
order autonomous ODE

x(n) = F
(
x, x′, · · · , x(n−1)

)
,

by introducing the variables xk = x(k), k = 0, 1, 2, · · · , n− 1 for the k-th order derivatives.

We can always consider autonomous equations (with no explicit dependence on “time”),
because non-autonomous system like ẋ = f(x, t) can be converted into autonomous system
by introducing a new independent variable τ as ”time”, while taking t as dependent variable.
That is, ẋ = f(x, t) is equivalent to

d

dτ
x = f(x, t),

d

dτ
t = 1,

which is an autonomous system for x̃ = (x, t) that depends on τ .

Example 2.2 (The simplest scalar linear equation). The differential equation ẋ = ax for
x ∈ R and with initial condition x(0) = x0 is simple but illustrates features of stability and
instability to which we will return. If x0 = 0 then ẋ = 0 and so x(t) = 0 for all time (it is a
stationary point). If x0 6= 0, it can be solved using separation of variables, that is,

∫ x

x0

dx

x
=

∫ t

0

adt,

which gives x = x0e
at. Alternatively, we can use the integrating factor e−at. Taking the

derivative of e−atx, we get

d

dt
(e−atx) = −ae−atx+ e−atẋ = e−at(ẋ− ax) = 0.

Therefore, e−atx is a constant and equal its value at t = 0. That is e−atx = x0, or x = eatx0.
The behaviour of solutions depends on the sign of a (the real part of a if it is complex):

if a < 0 then |x(t)| → 0; if a > 0 then |x(t)| → ∞.

A radioactive material contains unstable nuclei whose atomic nucleus loses energy and decays
into another nuclide. Let NA be the number 1 of atoms in a sample, then NA is usually
governed by the ODE

d

dt
NA = −λANA

where λA is the decay constant. The solution is NA(t) = NA(0)e
−λAt. The time T1/2 =

ln 2
λA

is
called half-life, is the time taken for the radioactive substance to decay to half of the initial
value, i.e., NA(T1/2) = NA(0)/2.

1This number is so large in practice that it can be treated as a continuous quantity to be differentiated.
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2.1 Ordinary differential equations (ODEs)

Example 2.3 (Chain of two radioactive decays). If one nuclide A decays into B by one
process, and then B decays into C by a second process, then the amounts of A and B are
governed by

d

dt
NA = −λANA,

d

dt
NB = −λBNB + λANA,

with the initial condition NB(0) = 0 (no B at the very beginning). From the solution
NA(t) = NA(0)e

−λAt, the second equation becomes

d

dt
NB(t) = −λBNB(t) + λANA(0)e

−λAt.

If λB 6= λA, then this ODE can be integrated with the integrating factor eλBt to give

λB(t) =
NA(0)λA
λB − λA

(
e−λAt − e−λBt

)
.

Exercise. (1) Find the time T when NB(t) reaches its maximum; (2) Find the solution when
λB = λA.

Example 2.4 (Linear matrix equations). The previous system can be written as

ẋ = Ax (2.2)

with x ∈ R
n, and where A is an n× n constant matrix. Solutions can be written as

x(t) = etA x0 (2.3)

where the exponential matrix is defined by (exactly the same as in the scalar case)

eB = I +B +
1

2!
B2 +

1

3!
B3 + · · · =

∞∑

n=0

1

n!
Bn,

where I is the identity matrix. With this definition of matrix exponential, the expression
(2.3) is a solution to the linear matrix equation (2.2) can be proved by differentiating term by
term. In practice, the matrix exponential eB is not calculated from above series expansion,
but by transforming B into Jordan blocks, using eigenvectors of B. If B = SΛS−1, where
the columns of S are the (generalised) eigenvalues of B, and Λ consists of Jordan blocks:

Λ =




Λ1

Λ2

. . .

Λm


 , Λk =




λk 1
λk 1

. . .

λk


 .

Then eB = SeΛS−1, while eΛ can be computed easily. In general to find eB, it is easier to
find the eigenvectors and eigenvalues (or equivalently the decomposition B = SΛS−1) than
to calculate the series with powers Bn (but there are exceptions as in the following example).

Example 2.5. If A =

(
0 −1
1 0

)
, using the fact that A4n = I, A4n+1 = A,A4n+2 =

−I, A4n+3 = −A (n is an integer) and the above definition for matrix exponential, we get

exp(tA) =

(
cos t − sin t
sin t cos t

)
.

7



2.1 Ordinary differential equations (ODEs)

Exercise. What is exp(tA) for A =

(
0 1
1 0

)
?

Review on different ways to solve differential equations:

(i) Linear ODEs with constant coefficients:

dn

dtn
x(t) + an−1

dn−1

dtn−1
x(t) + · · ·+ a1

d

dt
x(t) + a0x(t) = 0.

Looking for solution of the form x(t) = eωt, where ω are the roots of the n-th
degree polynomial

ωn + an−1ω
n−1 + a1ω + a0 = 0.

(ii) Linear first order scalar equation ẋ = a(t)x + b(t): Multiply both sides by

the integrating factor exp
(
−
∫ t
a(τ)dτ

)
to get

d

dt

[
x exp

(
−
∫ t

a(τ)dτ

)]
= [ẋ− a(t)x] exp

(
−
∫ t

a(τ)dτ

)
= b(t) exp

(
−
∫ t

a(τ)dτ

)
.

followed by integrating on both sides,

x(t) exp

(
−
∫ t

a(τ)dτ

)
= C +

∫
b(t) exp

(
−
∫ t

a(τ)dτ

)
dt.

(iii) Separable first order equation ẋ = f(x)g(t): Integrate
dx

f(x)
= g(t)dt to get

∫ x dx

f(x)
=

∫ t

g(t)dt,

where the integration constant is determined by the initial condition (if it is given).

(iv) First order homogeneous ODEs ẋ = f(t, x), where f(λx, λt) = f(x, t) for
any λ: The trick is to introduce z = x/t. Since

d

dt
x =

d

dt
(zt) = z + t

dz

dt

and f(x, t) = f(zt, t) = f(z, 1), the original ODE becomes z + tż = f(z, 1), which
is separable, and the solution is given by

∫
dt

t
=

∫
dz

f(z, 1)− z
.

System of equations, especially nonlinear ones, are much more difficult to solve ana-
lytically, if not impossible. Nevertheless, we can still have a good understanding of the
qualitative properties, using different techniques that will be developed in the rest of the
course.

8



2.2 Trajectories, phase portrait and flow on the phase space

2.2 Trajectories, phase portrait and flow on the phase space

In many situations, although explicit solutions of the underlying equations may not be
available, qualitative properties and long time behaviours can still be obtained using various
techniques. For example, we can understand solutions of the logistic ODE

ẋ = x(1− x)

with different initial conditions x(0). If x(0) < 0, then x(t) decreases, and x(t) → −∞ as
t → ∞. If x(0) ∈ (0, 1), then x(t) increases to 1 and finally if x(0) > 1, x(t) decreases to 1.
In general, for the one dimension equation ẋ = f(x), although we can get the solution from

∫ x(t)

x(0)

dx

f(x)
= t,

the qualitative properties can be understood better using a phase portrait as Figure 2.1: x
increases on regions where f(x) > 0 and decreases where f(x) < 0.

f

x0

x∗

Figure 2.1: Phase portrait of the one dimensional autonomous equation ẋ = f(x).

This picture can be extended to higher dimensions. Consider the equation ẋ = f(x) with
x ∈ R

n and f : Rn 7→ R
n. If we plot the trajectory {x(t) | t1 ≤ t ≤ t2} in R

n for some
time t1 and t2, then f(x(t)) is exactly the tangent vector of x(t) (the definition of the ODE
ẋ = f(x)!). In other words, once we have the vector field f(x) at any points x, then we can
“integrate” along the vector field to get the solution trajectory, as in Figure 2.2. A sketch
of the different trajectories in phase space is called a phase portrait. Indicate the direction
of time on phase portraits by an arrow denoting the direction of increasing time along the
trajectory. In some cases, some trajectories can be obtained explicitly by solving ODEs with
time t eliminated; otherwise, general behaviour of the underlying system can be inferred by
”connecting” the vector field given by f(x).

Example 2.6 (Equations governed by trajectories). Consider the system

ẋ = −y, ẏ = x.

The trajectory is governed by the different equation

dy

dx
=
ẏ

ẋ
= −x

y
,

9



2.2 Trajectories, phase portrait and flow on the phase space

Figure 2.2: Vector fields and phase portrait for the system ẋ = y, ẏ = −x+ x3.

which is separable. Rewriting this ODE as ydy+xdx = 0 and integrating both sides, we get

x2 + y2 = C

for some constant C > 0.

Example 2.7 (Newtonian dynamics in one dimension). Consider the Newtonian dynamics
mẍ = −U ′(x) in one dimension (so x is a scalar, m is the mass and U is called the poten-
tial). By introducing the momentum p = mẋ, then the original second order scalar ODE is
equivalent to the first order system

ẋ =
p

m
, ṗ = −U ′(x).

The trajectory, governed by the ODE dp
dx

= −mU ′(x)
p

is separable, is

p2

2m
+ U(x) = E

for some constant E, called the total energy.

Example 2.8. For the ODE ẋ = y, ẏ = −x+ x3, the ODE governing the trajectory is

dy

dx
=

−x+ x3

y
.

Therefore the trajectories are x2 + y2 − x4/2 = C for some constant C (not necessarily
positive).

Remark. For two dimensional system ẋ = f(x, y), ẏ = g(x, y), the differential equation
dy
dx

= g(x,y)
f(x,y)

can not always be solved explicitly. For instance, if the system in the previous

example is changed to ẋ = y + x, ẏ = −x + x3, there seems no expressions for general
trajectories. But whenever there is a solution that written in the form F (x, y) = C, the
function F (x, y) is called a conserved quantity (because the time derivative d

dt
F (x, y) is

zero), containing important information about the underlying system.

Remark. In most cases, it is easier to write the trajectories implicitly as x2 + y2 = C or
x2 + y2 − x4/2 = C in previous two examples. There is no need to write y as a function of
x or x as a function of y.
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2.2 Trajectories, phase portrait and flow on the phase space

Semi-group property for autonomous ODEs

Another way of representing solutions is via the flow : x(t) = ϕt(x0) represents the solution
to ẋ = f(x) at time t with initial condition x0 at t = 0, i.e. ϕ0(x0) = x0 and

d

dt
ϕt2(x0) = f(ϕt(x0)).

For example, the solution to the system of ODEs

ẋ = −x+ y, ẏ = −y

with initial condition (x0, y0) is given by

ϕt(x0, y0) = (x0e
−t + te−ty0, e

−ty0).

For autonomous equations ẋ = f(x), where f has no explicit dependence on t, the solution
ϕt(x) satisfies the semi-group property,

ϕt+s(x) = ϕt(ϕs(x)) = ϕs(ϕt(x)).

This fact can be verified by the uniqueness of the solution to the system ẋ = f(x), by defining
two functions ψ1(t) = ϕt+s(x), ψ2(t) = ϕt(ϕs(x)). Then ψ1(t) is a solution to ẋ = f(x) with
initial condition ψ1(0) = ϕs(x) and ψ2(t) is also a solution to ẋ = f(x) with initial condition
ψ2(0) = ϕ0(ϕs(x)) = ϕs(x). Since ψ1(0) = ψ2(0), by the uniqueness of solutions to ODEs,
ψ1(t) = ψ2(t), or ϕt+s(x) = ϕt(ϕs(x)). Similarly, we can show ϕt+s(x) = ϕs(ϕt(x)).

Example 2.9. The solution to the ODE ẋ = x2, x(0) = x0 satisfies the semi-group property.
In fact, this is an separable ODE. Integrating both sides of x−2dx = dt, we get

t =

∫ t

0

dt =

∫ x(t)

x0

dx

x2
=

1

x0
− 1

x(t)
.

That is ϕt(x0) =
x0

1−tx0
and ϕs(ϕt(x0)) = ϕs

(
x0

1−tx0

)
=

x0
1−tx0

1−s
x0

1−tx0

= x0

1−(t+s)x0
= ϕt+s(x0).

Remark. The reason we use semi-group instead of group here is that some dynamical systems
can not be defined backward in time, or lose the uniqueness of solution when solving backward
in time (common for infinite dimensional systems, like partial differential equations).

Remark. The solution of any autonomous system always satisfies the semi-group property
(the law of dynamics does not dependent on ”time”); on the other hand, if a function ϕt(x0)
satisfies the semi-group property, then it is the solution to the first order autonomous system
ẋ = f(x), x(0) = x0. The function f , or the ”law of dynamics” can be actually determined
by writing d

dt
ϕt(x0) as a function f(ϕt(x0)). For instant, if ϕt(x0) = x0/(1 − tx0), then

d
dt
ϕt(x0) = x20/(1−tx0)2 = (ϕt(x0))

2 = f(ϕt(x0)) with f(x) = x2, the same as in Example 2.9
(there is no explicit t dependence). Alternatively, f(x) can be determined at the initial time
(the law can be inferred from any instance of time). That is, f(x) = d

dt
ϕt(x)

∣∣
t=0

.
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2.3 Special solutions: fixed points and periodic orbits

2.3 Special solutions: fixed points and periodic orbits

Special solutions, if they exists, usually give a lot of information about the general behaviour
of the underlying system. There are two obvious special solutions for ẋ = f(x) arising in
practice:

Stationary (or fixed) points: A stationary point x∗ satisfies

x(t) ≡ x∗, (2.4)

i.e. the trajectory is a single point and the solution does not change in time. Thus

0 =
d

dt
x(t) = f

(
x(t)

)
= f(x∗),

and stationary points can be found by solving the algebraic equation f(x∗) = 0.

Periodic Orbits: if there exists T > 0 such that

x(t+ T ) = x(t) for all t ∈ R.

then the trajectory is called a periodic orbit and T is called the period of the periodic orbit.
Note that kT is also a period for any positive integer k because x(t + kT ) = x(t), and
sometimes T is referred as the minimal period). A periodic orbit with T = 0, which is not
allowed in the definition, would be a stationary point. Periodic orbits are much harder to
find, and they form closed curves in phase space.

Example 2.10 (Fixed points of linear constant coefficient ODEs). If A is a non-singular
n × n matrix, then the only fixed point is the origin. In other words, the only solution to
Ax = 0 is x = 0.

Exercise. What if the coefficient matrix A is singular as in
(
ẋ
ẏ

)
=

(
1 0
0 0

)(
x
y

)
.

Find the solution starting from (x0, y0). What are the fixed points?

Example 2.11 (Fixed points of potential dynamics). Consider the Newton’s equation
mẍ = −∇U(x) in n-dimensional space (the force is derived from the potential U), which is
equivalent to the first order system of 2n equations (p = mẋ is the linear momentum):

ẋ =
p

m
, ṗ = −∇U(x).

Then any fixed point takes the form (x∗, p∗ = 0), where ∇U(x∗) = 0. For those who took
courses in mechanics, the fixed point is stable if x∗ at the local minimum (bottom of the
potential well), and unstable if x∗ is at a saddle point.

Example 2.12 (Harmonic oscillation). The simplest example of periodic phenomenon is
the motion of a harmonic oscillator, ẍ+ ω2x = 0, or the equivalent first order system

ẋ = y, ẏ = −ω2x.

The only fixed point is the origin, but there are many periodic orbits around the origin. In
fact, the solution can be written as

x(t) = A cosωt+B sinωt.

12
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θ

0 2π−2π θ

y

Figure 2.3: The simple pendulum and associated phase portrait.

Example 2.13 (Simple Pendulum). Consider the pendulum in Figure 2.3. By taking com-
ponents of the force in the radial direction, the equation of motion is

θ̈ +
g

ℓ
sin θ = 0

or the first order system (by introducing y = θ̇)

θ̇ = y, ẏ = −g
ℓ
sin θ.

So phase space is R2, or more precisely the cylinder T× R with θ ∈ [0, 2π) (here θ is taken
modulo 2π). The solution can not be represented using elementary functions, but can be
given in terms of more special ones called elliptic functions.

Stationary points are given by solving θ̇ = ẏ = 0, i.e. y = 0 and sin θ = 0, so the
stationary points are (see Figure 2.3)

(kπ, 0) k ∈ Z.

The only fixed point is the origin, but there are many periodic orbits around the origin.

The simple pendulum equation has special properties that make it easier to sketch the
phase portrait than for more general systems: the energy (also called Hamiltonian)

E =
1

2
y2 − g

ℓ
cos θ

is constant on solutions, which is determined from the initial condition (θ0, y0 = θ̇(0)). This
can be seen by differentiating both sides with respect to time (using the chain rule on the
right hand side):

dE

dt
= y ẏ + θ̇

g

ℓ
sin θ =

g

ℓ
(−y sin θ + y sin θ) = 0.

Example 2.14 (Prey-predator system). Let x and y be the population number of prey (for
example, rabbits) and predator (for example, foxes), then the simplest system of ODEs is

ẋ = (A−By)x, ẏ = (Cx−D)y, (2.5)

where A,B,C,D are all positive constants. The fixed points are

(0, 0),

(
D

C
,
A

B

)
.
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2.4 Invariant sets

2.4 Invariant sets

For the ODE ẋ = f(x), a set S ⊆ R
n is called invariant, if x0 ∈ S implies the solution

x(t) = ϕt(x0) ∈ S with initial condition x(0) = ϕ0(x0) = x0 for all t ≥ 0. The basic idea
behind invariant sets is: if you start in the set, you stay in the set. Common invariant sets
include:

(1) Single/multiple stationary points

(2) Periodic orbits

(3) Trajectory passing one or more specific points

S+(x0) = {ϕt(x0) | t ≥ 0} or S(x0) = {ϕt(x0) | t ∈ R}.
Example 2.15. The unit circle x2 + y2 = 1 is invariant for the system

ẋ = −x+ y + x(x2 + y2), ẏ = −x− y + y(x2 + y2).

In other words, if (x0, y0) is on the unit circle, then the solution is also on the unit circle for
any time t > 0. Therefore, we only need to show that x2+ y2 does not change (always unit),
for all time. Taking the time derivative of x2 + y2,

d

dt
(x2 + y2) = 2xẋ+ 2yẏ = 2x

(
− x+ y + x(x2 + y2)

)

+ 2y
(
− x− y + y(x2 + y2)

)
= 2(x2 + y2)(x2 + y2 − 1) = 0.

That is, x2+y2 does not change in time if (x, y) is on the circle, and x2+y2 = 1 for all time.

Figure 2.4: Invariant circle for Example 2.15 and invariant straight line for Example 2.17.

This example shows an important fact: a set S = {x | G(x) = 0} is invariant iff

dG

dt
= f · ∇G = 0 on G(x) = 0.

Geometrically, ∇G is the normal to the curve S, and f ·∇G = 0 means that the vector field
defining the ODE is orthogonal to the normal.

14
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Example 2.16 (Prey-predator system). The two coordinate axis Sx = {(x, 0)},Sy = {(0, y)}
are two invariant sets of the system

ẋ = (A−By)x, ẏ = (Cx−D)y.

If the initial condition (x0, y0) is on the x-axis, then y0 = 0, then the solution (x(t), y(t))
stays on the x-axis, or y(t) ≡ 0, because ẏ ≡ 0. Alternatively, from the second ODE
ẏ(t) = (Cx(t)−D)y(t), we can “solve” y(t) (assuming x(t) is known, this is a linear ODE)

y(t) = y0 exp

[∫ t

0

(Cx(τ)−D)dτ

]
= 0.

Therefore, the x-axis is invariant. Similarly, we can show y-axis is invariant.

Example 2.17. We can show that the line y = 2x is invariant under the system

ẋ =
5

2
x− 1

2
y + 2x2 +

1

2
y2, ẏ = −x+ 2y + 4xy.

Geometrically, the line y = 2x is a trajectory on the phase portrait.

Define G(x, y) = y − 2x, so the line is S = {(x, y) | G(x, y) = 0}. We can look at the
evolution of the function G under the system,

Ġ(x, y) = ẏ − 2ẋ

= (−x+ 2y + 4xy)− (5x− y + 4x2 + y2)

= −6x+ 3y − 4x2 + 4xy − y2

If (x, y) ∈ S, G = 0 and y = 2x, which implies that

Ġ|G=0 = −6x+ 6x− 4x2 + 8x2 − 4x2 = 0.

In physics, the invariance of a set is generally related to the conservation of some quan-
tities, as shown in the following three examples.

Example 2.18 (Conservation of energy for Newtonian potential dynamics). If the force F
of an particle with mass m is derived from a potential (gravitational potential or electric
potential), that is F (x) = ∇U(x) for some U , then the Newton’s equation becomes ẍ =
F (x) = −∇U(x). Introduce the (linear) momentum p = mẋ, then the dynamics is governed
by the equivalent first order system

ẋ = p/m, ṗ = −∇U(x).

Then the total energy (also call Hamiltonian) E(x, p) =
p2

2m
+ U(x) is conserved, and the

dynamics is on the constant energy surface.

Example 2.19. We can show that the (open) unit disk {(x, y) | x2 + y2 < 1} is invariant
for the system

ẋ = −x+ y, ẏ = −x− y.2
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By the definition, we need to show that if the initial condition (x0, y0) is on the unit disk
(i.e. x20 + y20 < 1), then x(t)2 + y(t)2 < 1. Since

d

dt

(
x2 + y2

)
= 2xẋ+ 2yẏ = 2x(−x+ y) + 2y(−x− y) = −2(x2 + y2) ≤ 0,

the quantity x(t)2 + y(t)2 is non-increasing. In other words, x(t)2 + y(t)2 ≤ x20 + y20 < 1.
Therefore, the point (x(t), y(t)) stays22 on the unit disk.

Example 2.20 (Bounding functions). The previous example can be generalised into the
concept of bounding functions. Let V (x) = c be a set of nested regions with c increasing
outwards, that is {x ∈ R

n | V (x) ≤ c1} ⊂ {x ∈ R
n | V (x) ≤ c2} for c1 ≤ c2. If

f · ∇V < 0 on V (x) = c

for some c, then the set {x ∈ R
n|V (x) ≤ c} is invariant. The idea of the proof is very simple

(we will cover it in more detail later): if f · ∇V < 0 then f must point inwards along the
surface and so no solutions can leave the region V < c across the surface.

2.5 Existence and uniqueness

We have been assuming the existence of solutions of dynamical systems without comment.
However this is not necessarily straightforward and needs to be examined in more depth. As
the next set of examples show, solutions for ODEs may be difficult to pin down!

Different phenomena in ODEs: We will give a sequence of examples showing how
complications can arise in ODEs.

Example 2.21 (Non-uniqueness with continuous right hand side). Consider the ODE ẋ =√
|x|, x0 = 0. By observation x(t) = 0 is a solution (a stationary point). On the other

hand, using separation of variables, we get
∫ x dx√

|x|
=

∫ t

dt.

If x ≥ 0, both sides of above equation become 2(
√
x − √

x0) = t. Therefore x(t) = t2/4 is
a different solution other than the trivial one x(t) ≡ 0! Even worse, we have a family of
functions xτ (t) for τ ≥ 0, defined by

xτ (t) =

{
0, if 0 ≤ t ≤ τ,

(t− τ)2/4, if t > τ,

as can be verified by direct substitution (check it!). The main issue responsible for the
non-uniqueness here is that f(x) =

√
|x| is not Liptchitz continuous.

Example 2.22 (Finite time blow up). Consider the differential equation

ẋ = x2

with solutions
∫

dx
x2 = t or x = x0

1−x0t
. Thus if x0 > 0 then solutions tend to infinity as

t→ x−1
0 .
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These examples show that we need a better understanding of existence of solutions. To
show the existence, we first convert the ODE ẋ = f(x, t), x(0) = x0 into an integral equation

x(x0, t) = x0 +

∫ t

0

f(x(s), s)ds, (2.6)

which can be verified by differentiating and using the Fundamental Theorem of Calculus.
Of course, if we do not know x(s), 0 ≤ s < t, then this does not help as we cannot evaluate
the integral. Instead we consider the iteration

x(n+1)(t) = T [x(n)](t), where T [x](t) = x0 +

∫ t

0

f(x(s), s)ds (2.7)

with the initial condition x(0)(t) = x0. If the sequence of functions {x(n)(t)} converges to
some function x̄(t), then taking the limit of both sides of (2.7), we get x̄(T ) = T [x̄](t), or x̄
is a fixed point of the operator T . Taking derivative of both sides of x̄(T ) = T [x̄](t), we can
show that x̄ is a solution of the ODE ẋ = f(x, t) with initial condition x̄(0) = x0. This is
called Picard Iteration, and so if we can show that T defined in (2.7) is a contraction mapping
then we have an existence theorem. On the assumption that this can be done Picard iteration
also provides a way of constructing approximate solutions locally (See Figure 2.5).

x(t)

x(0)(t)

x(1)(t)

x(2)(t)

x(3)(t)

x(4)(t)

t

Figure 2.5: The sequence of function x(n)(t) converges to the exact solution x(t).

Example 2.23. For the ODE ẋ = ax with initial condition x(0) = 1. The Picard iteration
is

x(n+1)(t) = 1 +

∫ t

0

ax(n)(s)ds

with x(0)(t) = x0 = 1. Therefore,

x(1)(t) = x0 +

∫ t

0

ax(0)(s)ds = 1 +

∫ t

0

ads = 1 + at,

x(2)(t) = x0 +

∫ t

0

ax(1)(s)ds = 1 +

∫ t

0

a(1 + as)ds = 1 + at +
a2

2
t2,

x(3)(t) = x0 +

∫ t

0

ax(2)(s)ds = 1 +

∫ t

0

a

(
1 + as+

a2

2
s2
)
ds = 1 + at +

a2

2
t2 +

a3

3!
t3.
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In fact, we can show that

x(n)(t) = 1 + at+ · · ·+ an

n!
tn

which converges to the exact solution x(t) = eat. The n-th iteration is exactly the n-th
Taylor series expansion at the start time t = 0. In general, higher order (greater than n)
terms may appear in x(n)(t), which may not agree with the Taylor expansion with more than
n terms, as shown in the following example.

Example 2.24. Find a power series expansion for solutions to

ẋ = x− x2, x0 = 2

correct up to and including cubic terms. Set x(0)(t) = 2. Then

x(1)(t) = 2 +

∫ t

0

(2− 22)ds = 2− 2t.

Continuing

x(2)(t) = 2 +

∫ t

0

[
(2− 2s)− (2− 2s)2

]
ds = 2 +

∫ t

0

(−2 + 6s− 4s2)ds = 2− 2t+ 3t2 − 4
3
t3.

Although the cubic term appears in x(2)(t), its coefficient is not that in the Taylor series,
and will be correct in the next iteration. That is,

x(3)(t) = 2 +

∫ t

0

(2− 2s− 3s2 + . . . )− (2− 2s− 3s2 + . . . )2ds

= 2 +

∫ t

0

(
−2 + 6s− 13s2 + 16s3 − 43

3
s4 + 8s5 − 16

9
s6
)
ds

= 2− 2t+ 3t2 − 13
3
t3 + 4t4 + · · · ,

which is correct to the cubic term. This ODE can be integrated explicitly (a separable ODE)
to give

x(t) =
2

2− e−t
= 2− 2t− 13

3
t3 +

25

4
t4 − 541

60
t5 +O(t6).

Remark. After some technical work, the existence of solution can be established using the
above Picard Iteration scheme x(n+1)(t) = T [x(n)](t) by taking the limit as n goes to infinity.
We will focus on qualitative properties in the rest of the course2, and the interested readers
may consult Chapter 3 in Meiss’s book differential dynamical systems.

2You can safely ignore related questions about the existence and uniqueness of ODEs in the past papers.
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