AERO III/IV Mathematics Tutorial Sheet 1

(1) Solve the Euler-Lagrange equation which makes the integral

$$
I[y]=\int_{0}^{\pi / 2}\left(2 x y y^{\prime}+\left(y^{\prime}\right)^{2}\right) d x
$$

stationary, given $y=0$ when $x=0$ and $y=1$ when $x=\pi / 2$.
(2) Find the minimizing curves of the integral

$$
I[\theta]=\int r^{2}\left[1+r^{2}\left(\frac{d \theta}{d r}\right)^{2}\right]^{1 / 2} d r
$$

(3) Show that the extremal curves of the integral

$$
I=\int\left[1+\left(\frac{d \phi}{d \theta}\right)^{2} \sin ^{2} \theta\right]^{1 / 2} d \theta
$$

can be written in the form $\sin (\alpha-\phi)=\beta \cot \theta$ where α and β are constants.
(4) Find the stationary value of the integral $I=\int_{0}^{1}\left(y^{\prime}\right)^{2} d x$ subject to the constraint $J=\int_{0}^{1} y=1$ and the end conditions $y(0)=0$ and $y(1)=0$.
(5) Prove that the extremal curve $y=y(x)$ integral

$$
I=\int_{1}^{2}\left[x^{2}\left(\frac{d y}{d x}\right)^{2}+2 y^{2}\right] d x
$$

which passes through the points $(1,0)$ and $(2,1)$ in the x - y plane is given by

$$
y=\frac{4}{7}\left(x-\frac{1}{x^{2}}\right) .
$$

If the constraint $\int_{1}^{2} y / x d x=1 / 4$ is added to the problem, find the new exremal curve of I.
(6) (a) Prove that the extremal curve $y=y(x)$ of the integral

$$
I=\int_{0}^{2 \pi}\left[m^{2} y^{2}-\left(\frac{d y}{d x}\right)^{2}\right] d x
$$

(m an integer) satisfying the conditions

$$
\begin{gathered}
y=1 \text { on } x=0, \quad d y / d x=\pi / 2 \text { on } x=2 \pi, \\
\int_{0}^{2 \pi} y(x) \cos n x d x=\pi / 2 \quad(n \text { an integer })
\end{gathered}
$$

is given by

$$
y=\frac{1}{2}\left(\cos m x+\frac{\pi}{m} \sin m x+\cos n x\right) \quad \text { provided } m \neq n
$$

(b) Find the form of the extremal curve of I subject to the same conditions for the special case of $m=n$. (Note that this is not just a case of putting $m=n$ in the agove expression for $y(x)!!$)
(7) (Isoperimetric problem) Show that the plane closed curve of given length which encloses the greatest area is a circle. In polar coordinates (as in the Figure), this is equivalent to find the extremal curve $r(\theta)$ of

$$
\min \int_{0}^{\pi} \frac{1}{2} r^{2} d \theta
$$

subject to the total length constraint

$$
\int_{0}^{\pi}\left(r^{2}+r^{2}\right)^{1 / 2} d \theta=\ell
$$

Here the boundary condition, suggested by the fact that the horizontal axis is tangent to the curve, is given by the overdetermined boundary conditions

$$
r(0)=r(\pi)=0, r^{\prime}(0)=r^{\prime}(\pi)=0
$$

Figure 1: The isoperimetric problem in polar coordinates.

Answers: (1) $y=\sin x$; (2) $r^{3}=c_{1} \sec \left(3 \theta-c_{2}\right)$; (4) $12 ;(5) y=2 / x^{2}+x-3 / x$; (6) $y=$ $\cos m x+\frac{\pi}{2 m}\left(1-4 m^{2}\right) \sin m x+m x \sin m x ;(7) r=\frac{\ell}{\pi} \sin \theta$

