AERO III/IV Mathematics Tutorial Sheet 5: Conformal Mapping

(1) Sketch the image of the quarter circle $|z| < 1, 0 < \arg z < \pi/2$ under each of the following transformations:

(i)
$$w = z^2$$
 (ii) $w = iz$ (iii) $w = 1/z$ (iv) $w = \ln z$.

(2) Sketch the region

$$|xy| < \pi/4, \qquad |y| < x$$

in the x-y plane, and its image under the transformation $w = u + iv = (x + iy)^2 = z^2$.

The function $\phi(x,y)$ is bounded and harmonic throughout this region. Find ϕ in terms of x and y with boundary condition:

$$\phi = 0$$
 on $xy = \pm \pi/4, x > |y|;$ $\phi = \cos 2xy$ on $x = \pm y, |xy| < \pi/4.$

(3) Show that the function

$$w = \frac{z - i}{z + i}$$

maps the upper half-plane y > 0 onto the interior of the circle |w| < 1. Solve

$$\phi_{xx} + \phi_{yy} = 0 \quad (y > 0)$$

subject tot the boundary conditions

$$\phi(x,0) = (x^2 - 1)/(x^2 + 1);$$
 ϕ bounded at infinity,

by transforming to the u-v plane, where w = u + iv.

(4) Solve the Laplace equation

$$\frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 h}{\partial y^2} = 0$$

on the shaded region in Figure 1 by the conformal map $w = \frac{z-1}{z+1}$.

- (a) Determine the region \tilde{D} on the w-plane where the shaded region is transformed to and the specify the boundary condition for H(u, v) on this region.
- (b) Solve the Laplace equation for H(u, v) on \tilde{D}

Figure 1: Solving the Laplace equation for h on shaded region, with h(x,0) = 0 for |x| > 1 and h(x,y) = 1 on the upper unit circle.

- (c) Write u, v as functions of x, y.
- (d) Get the solution on the original shaded region by h(x,y) = H(u(x,y),v(x,y)).