(1) By writing f(z) = u(x, y) + iv(x, y) where z = x + iy, find the real function u(x, y), v(x, y) in each of the following cases:

(i)
$$z^2 + 2z$$
 (ii) $1/z$ ($z \neq 0$)
(iii) $\sin z$ (iv) $z/(e^z - 1)$ ($z \neq 0$)

(2) By using the Cauchy-Riemann equations show that the function

$$f(z) = \left(1 + \frac{i}{4\pi}\right)\log z$$

is analytic in any region that does not encircle the origin. Show that the equation of the contours on which u(x, y) is constant may be written in the form

$$r = A e^{\theta/4\pi}$$

where A is a constant and (r, θ) are polar coordinates. Sketch these contours and also those which v(x, y) is constant. Which physical situation does these contours describe? (3) Determine all the possible values of

(i)
$$\log(1-i)$$
; (ii) $\arctan(2i)$; (iii) $(1+i)^{2i}$; (v) $(1+i)^{1/2}$; (iv) 2^{3+2i} .

(4) Evaluate the following using Cauchy's integral formula:

(i)

$$\int_{\mathcal{C}} \frac{e^z}{z + i\pi/2} dz$$

where C is the boundary of the square defined by the lines $x = \pm 2, y = \pm 2;$

(ii)

$$\int_{\mathcal{C}} \frac{e^z}{z(z+1)} dz$$

where C is the boundary of the circle |z - 1| = 3.

٠

(5) Evaluate the following integrals, where C is the boundary of the circle |z| = 2:

(i)

$$\int_{\mathcal{C}} \frac{z^3 + 5}{z - i} dz$$

(ii)

$$\int_{\mathcal{C}} \frac{\cos z}{z^n} dz, \qquad n = 1, 2, \cdots$$

(iii)

$$\int_{\mathcal{C}} z^n (1-z)^m dz, \quad m = 0, 1, \cdots; \ n = 0, \pm 1, \pm 2, \cdots.$$

(6) By completing the contour on the complex plane, find the following integrals:(i)

(ii)

$$\int_{-\infty}^{\infty} e^{-x^2 - 2ix} dx,$$
where you are given that $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}.$

$$\int_{-\infty}^{\infty} e^{ix^2} dx.$$

Answers:

(1) (i) $u = x^2 - y^2 + 2x, v = 2y(1+x);$ (ii) $u = x/(x^2 + y^2), v = -y/(x^2 + y^2);$ (iii) $u = \sin x \cosh y, v = \cos x \sinh y;$ (iv) $u = (xe^x \cos y - x + ye^x \sin y)/(e^{2x} + 1 - 2e^x \cos y), v = (ye^x \cos y - xe^x \sin y - y)/(e^{2x} + 1 - 2e^x \cos y);$ (2) contours on which v is constant are $r = Be^{-4\pi\theta}$, B arbitrary constant; (3) (i) $\frac{1}{2}\ln 2 - i(\frac{\pi}{4} + 2n\pi);$ (ii) $\frac{\pi}{2} + n\pi + \frac{i}{2}\ln 3;$ (iii) $e^{-\frac{\pi}{2} - 4n\pi}(\cos \ln 2 + i \sin \ln 2);$ (iv) $2^{\frac{1}{4}}e^{i\pi/8}, 2^{\frac{1}{4}}e^{i9\pi/8};$ (v) $8(\cos 2\ln 2 + i \sin 2\ln 2);$ (4) (i) $2\pi;$ (ii) $2\pi i(1 - e^{-1})$ (5) (i) $2\pi(1 + 5i);$ (ii) 0 when n even; $(-1)^{\frac{n-1}{2}}\frac{2\pi i}{(n-1)!}$ when n odd; (iii) $\begin{cases} (-1)^{-n-1}\frac{2\pi i m!}{(m+n-1)!(-n-1)!}, & n \ge -m-1, n < 0; \\ 0, & \text{otherwise.} \end{cases}$

(6) (i) $\sqrt{\pi}/e$; (ii) $\sqrt{\pi}e^{i\pi/4}$