
Aero III/IV Laplace Transform

1 Revision on Laplace Transform and its basic properties

De�nition 1.1. The Laplace transform of a function f on [0,∞) is de�ned as

F (s) = L[f(t)](s) =

∫ ∞
0

f(t)e−stdt.

Remark. Notice the notation, since t is a dummy variable in L[f(t)](s), we just write it as
F (s) = L[f ](s).

Example 1.1. Show that the Laplace transform of e−at.

L[e−at](s) =

∫ ∞
0

e−at−stdt = −e
−(a+s)t

a+ s

∣∣∣∣∞
t=0

=
1

a+ s
.

We have the same formula even if a is complex, and it is valid in fact for for s > −Rea.
In fact, we can �nd the transforms for other simple functions and have the �building blocks�

for many other functions.

f(t) L[f ](s) valid for
1 1/s Re s > 0
tn, n = 1, 2, · · · n!/sn+1 Re s > 0
e−at 1/(s+ a) Re s > 0
cosωt s/(s2 + ω2) Re s > |Imω|
sinωt ω/(s2 + ω2) Re s > |Imω|

H(t− T ) =

{
0, t < T

1, t > T
e−sT/s Re s > 0

Table 1: Laplace Transforms for elementary functions

Here H(t) is the Heaviside function

H(t) =

{
0, t < 0,

1, t ≥ 0.
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Basic properties of Laplace transforms

a) Linearity. L[af + bg] = aL[f ] + bL[g]

b) Scaling. L[f(t/a)] = aL[f ](as)

c) Translation. L[e−atf(t)] = L[f ](s+ a)

d) L(f(t− a)H(t− a)](s) = e−asL[f ](s)

e) Transformation of derivatives:

L[f (n)(t)](s) = snL[f ](s)− sn−1f(0)− sn−2f ′(0)− · · · − f (n−1)(0). (1)

f) Transformation with the factor tn:

L[tnf(t)](s) = (−1)n
dn

dsn
L[f ](s). (2)

We can show (e) using integration by parts,

L[f (n)](s) =

∫ ∞
0

f (n)(t)e−stdt

=

∫ ∞
0

e−stdf (n−1)(t)

= e−stf (n−1)(t)
∣∣∞
t=0
−
∫ ∞

0

f (n−1)(t)de−st

= −f (n−1)(0) + s

∫ ∞
0

f (n−1)(t)e−stdt. (3)

Continuing this process, then we can get the previous formula (1).
For (f), taking derivative w.r.t s n-times in the de�nition of Laplace transform, we get

(−1)n
dn

dsn
L[f ](s) = (−1)n

dn

dsn

∫ ∞
0

f(t)e−stdt

= (−1)n
∫ ∞

0

f(t)
dn

dsn
e−stdt =

∫ ∞
0

tnf(t)e−stdt = L[tnf(t)](s). (4)

One �nal useful formula is the convolution theorem, which convert convolution into multi-
plication.

Theorem 1.1. If the Laplace transforms of f and g are F and G, respectively, then the Laplace

transform of the convolution integral
∫ t

0
f(t− τ)g(τ)dτ is F (s)G(s).
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We can show this by de�nition∫ ∞
0

e−st
(∫ t

0

f(t− τ)g(τ)dτ
)
dt =

∫ ∞
0

∫ ∞
τ

f(t− τ)g(τ)e−stdtdτ

=

∫ ∞
0

(∫ ∞
τ

f(t− τ)e−(t−τ)sdt

)
g(τ)e−τsdτ

=

∫ ∞
0

(∫ ∞
0

f(t)e−tsdt

)
g(τ)e−τsdτ

=

(∫ ∞
0

f(t)e−tsdt

)(∫ ∞
0

g(τ)e−τsdτ

)
= F (s)G(s).

Exercise Find the Laplace transform of tf ′(t) and tf ′′(t).

Remark. You can see the following corresponence between a function and its Laplace transform:
derivation to f(t) becomes multiplication of s to L[f ](s), and multiplication (of t) to f(t)
becomes derivation (with respect to s) of L[f ](s). But you have to take care of the signs and
�boundary terms�.

Example 1.2. Find the inverse Laplace transform of (1) F (s) = 5
s
+ 12
s2

+ 8
s+3

(2) F (s) = 8s+4
s2+6s+13

.
(1) Using the linearity of the Laplace transform and the table,

L−1

[
5

s
+

12

s2
+

8

s+ 3

]
(t) = L−1

[
5

s

]
(t) + L−1

[
12

s2

]
(t) + L−1

[
8

s+ 3

]
(t)

= 5 + 12t+ 8e−3t.

(2) First the denominator can be written as (completing the square)

s2 + 6s+ 13 = (s+ 3)2 + 22,

therefore,

F (s) =
8s+ 4

s2 + 6s+ 13
=

8(s+ 3)− 20

(s+ 3)2 + 22
,

and the inverse Laplace transform is

f(t) = L−1[F (s)](t) = L−1

[
8(s+ 3)

(s+ 3)2 + 22

]
(t)−L−1

[
20

(s+ 3)2 + 22

]
(t) = e−3t

(
8 cos 2t−10 sin 2t

)
.

2 Inverse Laplace Transform: Reduction to Residue Cal-

culus

If F (s) is the Laplace transform of f(t), then there is a formal expression for the inverse
transform.

Theorem 2.1 (Inverse Laplace Transform). If F (s) is the Laplace transform of f(t), then we

have the inverse transform for t > 0,

f(t) = L−1[F ](t) =
1

2πi

∫ γ+i∞

γ−i∞
F (s)estds,

where the γ is greater than the real part of any singularity of F .
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Before giving a brief derivation of the inversion formula, we point out two technical points:

(1) The parameter s is allowed to be complex.

(2) If f(t) is reasonably behaved (bounded or with at most exponential growth like eat), then
the transform F (s) exists for s = γ + iω, as long as γ is large enough. Therefore we don't
expect any singularity for F (s) for large γ.

Proof. (The inversion formula) The basic idea is to write F (s) as a contour integration, with
with a simple dependence on s, such that the s-dependent part can be easily inverted.

If all singular points of F (s) have real part less than γ, then we can construct a semicircle
|z − γ| = R as in Figure 1.

R

γ + iR

γ − iR

C1
C2

a1

a2

aN

s z

Figure 1: The contour in the proof of the inversion formula.

Then by Cauchy integral formula,

F (s) =
1

2πi

∫
C1+C2

F (z)

z − sdz =
1

2πi

∫
C1

F (z)

z − sdz +
1

2πi

∫
C2

F (z)

z − sdz.

In the limit R goes to in�nity, the integral on C2 vanishes, and we have (we can justify this
rigorous by assuming that |F (s)| is bounded when Re ≥ γ)

F (s) = lim
R→∞

(
1

2πi

∫
C1

F (z)

z − sdz +
1

2πi

∫
C2

F (z)

z − sdz
)

=
1

2πi

∫ γ−i∞

γ+i∞

F (z)

z − sdz =
1

2πi

∫ γ+i∞

γ−i∞

F (z)

s− zdz.

Using the inversion formula for 1
s−z , we get

f(t) = L−1[F (s)](t) = L−1

[
1

2πi

∫ γ+i∞

γ−i∞

F (z)

s− zdz
]

(t)

=
1

2πi

∫ γ+i∞

γ−i∞
F (z)L−1

[
1

s− z
]

(t)dz

=
1

2πi

∫ γ+i∞

γ−i∞
F (z)etzdz.
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σ + i∞

σ

σ − i∞

a1

a2

aN

a1

aN

a2

Figure 2: The complete contour depending on t > 0 or t < 0.

If F (s) has only poles at a1, a2, · · · , aN , then we can use residue calculus to �nd the inverse
Laplace transform:

f(t) =
1

2πi

∫ σ+i∞

σ−i∞
F (s)estds =

N∑
n=1

Res
(
F (s)est; s = an

)
Remark. Here the condition t > 0 is necessary. Otherwise, if t < 0, we can complete the contour,
by drawing a semicircle to the right of the straight line σ + is (right contour in Figure 2). The
contribution of the integral on the semicircle vanishes (the fact t < 0 is decisive), and there is
no singularity inside the closed contour. Therefore we have

1

2πi

∫ σ+i∞

σ−i∞
F (s)estds = 0,

if t < 0.

Exercise. Verify the inverse transform of n!/sn+1, 1/(s+ a), s/(s2 +ω2), ω/(s2 +ω2), e−sT/s in
the table of transforms.

3 E�cient calculation of the inverse Laplace transform

Basic methods of inversion:

a) Using partial fractions and table of transforms

b) The inversion formula with residue theorem
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Other (less common) methods of inversion and tricks:

a) Convolution theorem when F (s) = G(s)H(s) is a product, then

L−1[F ](t) =

∫ t

0

g(τ)h(t− τ)dτ.

b) The derivative of a Laplace transform: If F (s) = dn

dsnG(s) for some simple function G(s),
then

L−1[F ](t) = L−1

[
dn

dsn
G(s)

]
(t) = (−1)ntng(t).

c) F (s) = G(s+ a) is a shift of common functions G(s), for example F (s) = 1
(s+a)2+b2

:

L−1[F (s)](t) = L−1[G(s+ a)](t) = e−atg(t).

d) F (s) = e−asG(s):

L−1[F (s)](t) = L−1[e−asG(s)](t) = H(t− a)g(t− a).

Remark. In the last case (d), the inverse Laplace transform of e−asG(s) is just a shift of g(t),
then take the part on t > 0 (see Figure 3). Notice the di�erences between a > 0 and a < 0.

t t t

L−1[F ](t) L−1[e−asF (s)](t), a > 0L−1[e−asF (s)](t), a < 0

f (t) H(t− a)f (t− a) H(t− a)f (t− a)

Figure 3: The inverse Laplace transform with the factor e−as.

Example 3.1. Find the inverse Laplace transform of F (s) = s+1
s2(s−1)

using partial fractions

(and tables of integrals) and using the Residue calculus.
Solution: (a) Using Partial fraction. We have

F (s) =
s+ 1

s2(s− 1)
=

2

s− 1
− 1

s2
− 2

s
.

Then using the table, we have

L−1

[
2

s− 1

]
(t) = 2et, L−1

[
1

s2

]
(t) = t, L−1

[
2

s

]
(t) = 2.
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Therefore,
f(t) = L−1[F (s)](t) = 2et − t− 2.

(b) Using Residue Calculus. The only singularity, which are poles are a1 = 0 and a1 = 1.
Therefore

f(t) = Res(F (s)est, 0) + Res(F (s)est, 1)

= lim
s→0

d

ds

(
s2F (s)est

)
+ lim

s→1
(s− 1)F (s)est

= lim
s→0

d

ds

(
s+ 1

s− 1
est
)

+ lim
s→1

s+ 1

s2
est

= 2et − t− 2.

Example 3.2. Show that the inverse Laplace transform of F (s) = s
(1+s2)2

is t
2
sin t using all

four methods above.
Solution:
(a) Partial fraction. Since

F (s) =
i

4

[
1

(s+ i)2
− 1

(s− i)2

]
,

and the inverse Laplace transform of (s± i)−2 is te∓it,

f(t) = L−1[F ](t) =
i

4

(
te−it − teit) =

it

4
(−2i) sin t =

t

2
sin t.

(b) Residue Calculus. Since s = i and s = −i are double poles for F (s),

f(t) = Res
(
F (s)est, s = i

)
+ Res

(
F (s)est, s = −i)

= lim
s→i

d

ds

[
(s− i)2F (s)est

]
+ lim

s→−i

d

ds

[
(s+ i)2F (s)est

]
= lim

s→i

d

ds

[
s

(s+ i)2
est
]

+ lim
s→−i

d

ds

[
s

(s− i)2
est
]

=
t

2
sin t.

(c) The convolution theorem. Since F (s) = s
1+s2
· 1

1+s2
,

f(t) =

∫ t

0

cos τ sin(t− τ)dτ

=

∫ t

0

sin t+ sin(t− 2τ)

2
dτ

=
1

2

∫ t

0

sin tdτ +
1

2

∫ t

0

sin(t− 2τ)dτ

=
t

2
sin t. (5)

7



(d) The derivation theorem. Since

F (s) =
s

(1 + s2)2
= −1

2

d

ds

(
1

1 + s2

)
= −1

2

d

ds
G(s),

with G(s) = 1/(1 + s2). Then

L−1[F ](t) = −1

2
(−1)tL−1[G](t) =

t

2
sin t.

Example 3.3. Using the fact that the inverse Laplace transform of F ′(p) is −tf(t), to �nd the
inverse Laplace transform of the following functions.

(i)
1

2
ln
p+ a

p− a, a > 0; (ii) ln

(
p2 + b2

p2 + a2

)
, a > 0, b > 0.

Solution: (i) For F (p) = 1
2
ln p+a

p−a , we can get

F ′(p) =
1

2

(
1

p+ a
− 1

p− a
)

whose inverse Laplace transform is (e−at − eat)/2 = − sinh at. Therefore, the inverse Laplace
transform of F (p) is f(t) = sinh at

t
.

(ii) For F (p) = ln
(
p2+b2

p2+a2

)
,

F ′(p) =
2p

p2 + b2
− 2p

p2 + a2

whose inverse Laplace transform is 2 cos bt− 2 cos at. Therefore, the inverse Laplace transform
of F (p) is

f(t) =
2 cos bt− 2 cos at

−t =
2(cos at− cos bt)

t
.

4 Applications of Laplace transforms

The Laplace transforms can be used to solve ordinary di�erential equations, partial di�erential
equations, integral di�erential equation, di�erence and delay di�erential equations.

The basic idea is to transform the original equation using Laplace transform, and the re-
sulting equations is usually algebraic (easier to solve). The equation is transformed back using
inverse Laplace transform (using table of inverse Laplace transform or Residue calculus or other
means).

Example 4.1 (Ordinary di�erential equations). Find the solution of the following ordinary
di�erential equation using Laplace transform:

dy

dt
+ 2y = 12, y(0) = 10.
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Solution: Taking the Laplace transform of both sides of the equation,

sY (s)− y(0) + 2Y (s) =
12

s
,

or

Y (s) =
10s+ 12

s(s+ 2)
=

6

s
+

4

s+ 2
.

Therefore,
y(t) = L−1[Y ](t) = 6 + 4e−2t.

Example 4.2 (Ordinary di�erential equation with force). Find the solution of the following
equation

f ′′(t) + f(t) =

{
cos t, 0 ≤ t ≤ π,

0, t > π,

with the initial value f(0) = f ′(0) = 0.
Solution: Taking the Laplace transform of both sides of the equation,

s2F (s) + F (s) =

∫ π

0

e−st cos tdt = Re

∫ π

0

e(i−s)tdt =
e(i−s)t

i− s
∣∣∣∣π
t=0

=
s(1 + e−πs)

1 + s2
.

(You can also use integrating by parts to �nd the integral). Therefore,

F (s) =
s(1 + e−πs)

(1 + s2)2
=

s(1 + e−πs)

(s+ i)2(s− i)2
.

The inverse Laplace transform, can be found either by residue calculus or derivation formula
is

f(t) = Res
(
F (s)est, s = i

)
+ Res

(
F (s)est, s = −i)

= lim
s→i

d

ds

[
(s− i)2F (s)est

]
+ lim

s→−i

d

ds

[
(s+ i)2F (s)est

]
= lim

s→i

d

ds

s(1 + e−πs)est

(s+ i)2
+ lim

s→−i

d

ds

s(1 + e−πs)est

(s− i)2

=

{
1
2
t sin t, 0 ≤ t ≤ π,

1
2
π sin t, t > π.

Alternatively, we can write

s

(1 + s2)2
=

1

1 + s2
· s

1 + s2

and use the convolution theorem to get

L−1

[
s

(1 + s2)2

]
(t) =

∫ t

0

cos τ sin(t− τ)dτ =
t

2
sin t.

Using the shift theorem,

f(t) = L−1[F ](t) =
t

2
sin t+H(t− π)

t− π
2

sin(t− π),

which is exactly the same result as above.
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Example 4.3 (Variable coe�cient ODEs). Find the solution of the ODE

y′′ + ty′ − 2y = 4, y(0) = −1, y′(0) = 0.

Solution: Taking the Laplace transform of both sides,

s2Y (s)− sy(0)− y′(0)− (sY ′(s) + Y (s))− 2Y (s) =
4

s
,

or

Y ′(s) +

(
3

s
− s
)
Y (s) = 1− 4

s2
. (6)

Here the Laplace transform of ty′(t) is −sY ′(s)− Y (s). First if we take the derivative of both
sides of the de�nition Y (s) =

∫∞
0
y(t)e−stdt, we get

Y ′(s) = −
∫ ∞

0

ty(t)e−stdt.

Therefore,∫ ∞
0

ty′(t)e−stdt =

∫ ∞
0

te−stdy(t) = te−sty(t)
∣∣∞
0
−
∫ ∞

0

y(t)d(te−st) = −
∫ ∞

0

y(t)(1− ts)e−stdt.

The last term can be separated as

−
∫ ∞

0

y(t)e−stdt+ s

∫ ∞
0

y(t)te−stdt = −Y (s)− sY ′(s).

To �nd the solution of the governing equation (6) for Y (s), we need to use the observation
that (6) is linear, which can be solved using an integrating factor. First �rst order ODEs
like (6), the integrating factor I(s) = 1/Y0(x), the inverse of the solution to the homogeneous
equation Y ′0(s) +

(
3
s
− s)Y0(s) = 0. Since Y0(s) = 1

s3
es

2/2 can be solved from separation of
variable (by dividing both sides by Y0(s) and then integrating w.r.t s), the integrating factor
I(s) = s3e−s

2/2 and

d

ds

[
Y (s)s3e−s

2/2
]

=

[
Y ′(s) +

(
3

s
− s
)
Y (s)

]
s3e−s

2/2 =

(
1− 4

s2

)
s3e−s

2/2 = (s3 − 4s)e−s
2/2.

The general solution is obtained by integrating both sides, and is given by

Y (s) =
2

s3
− 1

s
+

c

s3
es

2/2,

with some unknown constant c. Since when s goes to in�nity, Y (s) is a well-behaved function,
we must have c = 0. Therefore, the solution, given by the inverse Laplace transform is

y(t) = t2 − 1.
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Remark. Laplace transform does not go well with variable coe�cients. For example, it is
impossible to write the Laplace transform of cos(t)y′ in a simple form. Even for terms like ty′

or t2y′, these algebraic terms is related to (undesired) derivatives in the transformed equation.
Remember that the power of Laplace transform is to reduce di�erentiation into simple powers,
not vice verse.

Remark. Be careful how we eliminate the coe�cient c in the above example using the behaviour
of the function.

Example 4.4 (Integral equation with convolution). Find the solution m(t) to the integral
equation

m(t) = 1− e−λt + λ

∫ t

0

m(t− τ)e−λτdτ, (7)

where λ is a given constant.
Solution: Taking the Laplace transform of both sides of the equation, we get

M(s) =
1

s
− 1

λ+ s
+
λM(s)

λ+ s
,

whereM(s) = L[m](s) is the Laplace transform ofm(t). The above algebraic equation forM(s)
can be obtained in explicit form, i.e., M(s) = λ/s2. Taking the inverse Laplace transform,

m(t) = L−1

[
λ

s2

]
(t) = λt.

We can verify that m(t) = λt is a solution to the integral equation.

Exercise. Show that the solution of the integral equation

g(x) = 1−
∫ x

0

(x− y)g(y)dy

is g(x) = cos x using Laplace transform.

Example 4.5 (Wave equation on half space). Find the solution of the wave equation ∂2u
∂t2

= ∂2u
∂x2

on x > 0, t > 0 with the initial and boundary condition

u(x, 0) = 0, ut(x, 0) = 0, u(0, t) = f(t)

and lim
x→∞

u(x, t) = 0.

Solution: De�ne the Laplace of u(x, t) w.r.t t,

U(x, s) =

∫ ∞
0

e−stu(x, t)dt.

The the original wave equation is transformed into s2U(x, s) = ∂2

∂x2U(x, s). The general solution
is

U(x, s) = c1(s)e
sx + c2(s)e

−sx.
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The initial and boundary conditions imply that U(x, s) → 0 as c1(s) ≡ 0 and c2(s) = F (s),
where F (s) is the Laplace transform of f(t). Therefore, U(x, s) = F (s)e−xs and the inverse
Laplace transform is

u(x, t) =

{
f(t− x), 0 < x < t,

0, x > t.

Example 4.6 (First order partial di�erential equation). Find the solution of

x
∂u

∂x
+
∂u

∂t
+ u = x2

on x > 0, t > 0 with the initial and boundary condition u(0, t) = 0, u(x, 0) = 0.
Solution: De�ne the Laplace of u(x, t) w.r.t t,

U(x, s) =

∫ ∞
0

e−stu(x, t)dt.

Taking the Laplace transform of the partial di�erential equation, we have

x
∂U(x, s)

∂x
+ sU(x, s)− u(x, 0) + U(x, s) =

x2

s
,

or
∂U

∂x
+
s+ 1

x
U =

x

s
.

Since the solution U0(x, s) to the homogeneous equation ∂U0

∂x
+ s+1

x
U0 = 0 is U0(x, s) = x−s−1,

the integrating factor is I0(x, s) = 1
U0(x,s)

= xs+1. Therefore,

d

dx

(
xs+1U(x, s)

)
= xs+1

[
∂U

∂x
+
s+ 1

x
U

]
=
xs+2

s
.

Therefore,

xs+1U(x, s) = c̃+

∫ x τ s+2

s
dτ = c+

xs+3

s(s+ 3)
.

Therefore, the general solution is

U(x, s) =
x2

s(s+ 3)
+ cx−s−1.

From the initial condition u(0, t) = 0, we must have c = 0, therefore U(x, s) = x2

s(s+3)
or

u(x, t) =
x2

3
(1− e−3t).
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