
Aero III/IV Conformal Mapping

1 View complex function as a mapping

Unlike a real function, a complex function w = f(z) cannot be represented by a curve.
Instead it is useful to view it as a mapping. Write w = f(z) as u + iv = f(x + iy), which
maps any point (x, y) in the z-plane to a corresponding point (u, v) in the w-plane. In this
case, we have u(x, y), v(x, y) where u, v are functions of x, y.

x

y

0 0

v

u

z = x + iy

w = u + iv

w = f (z)

Figure 1: Complex function w = f(z) as a mapping.

In general, we prefer the mapping is a one-to-one mapping: each point (u, v) in the w-
plane, there corresponds one and only one point (x, y) in the z-plane. One useful criteria to
make sure the mapping (x, y)→ (u, v) one-to-one is that the Jacobian does not vanish, i.e.,

det

(∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
=
∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x
6= 0.

2 The basic concepts conformal mapping

A conformal mapping is a mapping that preserves angle. More precisely, if w = f(z) is a
conformal mapping, γ1(t) and γ2(t) are two curves on the z-plane intersect at t0, then the
angle (measured in terms of the tangent direction) between f(γ1(t)) and f(γ2(t)) is the same
as that between γ1(t) and γ2(t).

Example 2.1 (A conformal mapping from the �rst quadrant to the upper-half plane). Let
w = f(z) = z2, then f is a conformal mapping. We show this fact by by two curves

γ1(t) = 1 + t+ i, γ2(t) = 1 + (1 + t)i,
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which are two straight lines on the z-plane, and intersect with each other with right angle.

γ2(t) = 1 + (1 + t)i

γ1(t) = 1 + t + i

f (γ2(t)) f (γ1(t))

w = f (z) = z2

1

1

1

−2 −1

2

21

π/2 π

Figure 2: Two curves under the mapping w = f(z) = z2. It is conformal except at the origin,
where the angle is from π/2 to π.

These two curves are transformed into

f(γ1(t)) = t2 + 2t+ 2(1 + t)i, f(γ2(t)) = −t2 − 2t+ 2(1 + t)i,

and intersect at 2i. The tangents of both curves are

d

dt
f(γ1(t))

∣∣∣∣
t=0

= 2 + 2i,
d

dt
f(γ2(t))

∣∣∣∣
t=0

= −2 + 2i.

The angle between the two tangents are the argument of their ratio, i.e. π/2, the same as
the angle between those of the original two curves.

In general, if f is analytic and γ1, γ2 are two curves on z-plane intersect at z0 = γ1(t0) =
γ2(t0), then f(γ1(t)) and f(γ2(t)) intersect at w0 = f(z0) = f(γ1(t0)) = f(γ2(t0)).

We can calculate the tangents on the w-plane by chain rule,

d

dt
f(γ1(t))

∣∣∣∣
t=t0

= f ′(z0)γ
′
1(t0),

d

dt
f(γ2(t))

∣∣∣∣
t=t0

= f ′(z0)γ
′
2(t0).

Therefore, when f ′(z0) 6= 0,

Arg
f ′(z0)γ

′
1(t0)

f ′(z0)γ′2(t0)
= Arg

γ′1(t0)

γ′2(t0)
,

and the angle between the curves are preserved. In fact, we have

Theorem 2.1. If w = f(z) is analytic and f ′(z0) 6= 0, then f is a conformal mapping.
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z = x + iy

(0, 0, 1)

(ξ, η, τ )

Figure 3: The stereographic projection on the complex plane to the sphere ξ2 + η2 + (τ −
1/2)2 = 1.

x

y

u

v

z = 1+w
1−wi

w = z−i
z+i

Figure 4: The transformation between the upper half plane and the unit disk by w =
(z − i)/(z + i) and z = (1 + w)i/(1− w).
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The condition f ′(z0) 6= 0 is needed. For example, when f(z) = z2, this condition f ′(z0) 6=
0 is not satis�ed at the origin. In fact, the angle is doubled at this point . Two common
conformal transformation are given in Figure 3 and Figure 4.

If f is a conformal mapping near z0, then

|f ′(z0)| =
∣∣∣∣ limz→z0

f(z)− f(z0)

z − z0

∣∣∣∣ = lim
z→z0

|f(z)− f(z0)|
|z − z0| ,

or |f ′(z0)| is the scale factor (of the length). The scale factor of the area of the transformation
(x, y)→ (u, v) is given by the Jacobian matrix

∂(u, v)

∂(x, y)
=
∂u

∂x

∂v

∂y
− ∂v

∂x

∂u

∂y
=

(
∂u

∂x

)2

+

(
∂u

∂y

)2

= |f ′(z0)|2.

3 Invariance of the Laplace equation (or harmonic func-

tions) under conformal transformation

First, we can show that the transformation by a conformal mapping actually transform
harmonic functions (whose Laplacian is zero) to harmonic functions.

De�nition 3.1. A function h(x, y) is said to be harmonic if its Laplacian is zero, i.e.,
∂2h
∂x2 + ∂2h

∂y2
= 0.

Theorem 3.1. If the harmonic function h(x, y) is transformed to H(u, v) by the conformal

mapping w = f(z) where z = x+ iy and w = u+ iv and f ′(z) 6= 0, then H(u, v) is harmonic

too.

Proof. Using the change rule,

∂h

∂x
=

∂

∂x
H(u(x, y), v(x, y)) =

∂H

∂u

∂u

∂x
+
∂H

∂v

∂v

∂x
,

∂2h

∂x2
=

(
∂2H

∂u2

∂u

∂x
+
∂2H

∂u∂v

∂v

∂x

)
∂u

∂x
+
∂H

∂u

∂2u

∂x2

+

(
∂2H

∂u∂v

∂u

∂x
+
∂2H

∂v2

∂v

∂x

)
∂v

∂x
+
∂H

∂v

∂2v

∂x2
.

Similarly,

∂2h

∂y2
=

(
∂2H

∂u2

∂u

∂y
+
∂2H

∂u∂v

∂v

∂y

)
∂u

∂y
+
∂H

∂u

∂2u

∂y2

+

(
∂2H

∂u∂v

∂u

∂y
+
∂2H

∂v2

∂v

∂y

)
∂v

∂y
+
∂H

∂v

∂2v

∂y2
.
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Therefore,

0 =
∂2h

∂x2
+
∂2h

∂y2
=
∂2H

∂u2

[(
∂u

∂x

)2

+

(
∂u

∂y

)2
]

+
∂2H

∂v2

[(
∂v

∂x

)2

+

(
∂v

∂y

)2
]

+ 2
∂2H

∂u∂v

(
∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y

)
+
∂H

∂u

(
∂2u

∂x2
+
∂2u

∂y2

)
+
∂H

∂v

(
∂2v

∂x2
+
∂2v

∂y2

)
.

Since u and v are the real and imaginary parts of the analytic function f , we have the
Cauchy-Riemann condition ux = vy, uy = −vx and(
∂u

∂x

)2

+

(
∂u

∂y

)2

=

(
∂v

∂x

)2

+

(
∂v

∂y

)2

= |f ′(z)|2, ∂
2u

∂x2
+
∂2u

∂y2
= 0,

∂2u

∂x2
+
∂2u

∂y2
=
∂2v

∂x2
+
∂2v

∂y2
= 0,

Therefore 0 = ∂2h
∂x2 + ∂2h

∂y2
= (∂

2H
∂u2 + ∂2H

∂v2
)|f ′(z)|2. Since f ′(z) 6= 0, H is harmonic too.

4 Solution of the Laplace equation on some simple do-

mains

Solution of the Laplace equation on the unit disk: To use the conformal mapping
to �nd the solutions of Laplace equation, we need the solution on a simple geometry, which
is either the unit disk or upper half plane. The solution of the Laplace equation on the unit
disk can be obtained in di�erent ways. One way is to use the expansion,

h(reiφ) =
∞∑

n=−∞

cnr
|n|einφ,

where the coe�cient cn is obtained by the boundary condition on the unit circle r = 1, i.e.,

U(eiθ) =
∞∑

n=−∞

cne
inθ,

or

cn =
1

2π

∫ 2π

0

U(eiθ)e−inθdθ.

then

h(reiφ) =
∞∑

n=−∞

cnr
|n|einφ =

1

2π

∫ 2π

0

(
∞∑

n=−∞

r|n|ein(φ−θ)

)
U(eiθ)dθ

The in�nite series inside the brackets can be evaluated explicitly, when decomposed into two
geometric series,

1

2π

∞∑
n=−∞

r|n|ein(φ−θ) =
1

2π

(
1 +

∞∑
n=1

(
rnein(φ−θ) + rne−in(φ−θ))) =

1

2π

1− r2

1− 2r cos(θ − φ) + r2
.
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This gives the celebrated Poisson integral formula

h(reiφ) =
1

2π

∫ 2π

0

1− r2

1− 2r cos(θ − φ) + r2
U(eiθ)dθ. (1)

Alternatively, we can derive the same formula using Cauchy integral formula, by assuming
the solution is analytic on the unit disk. For any z inside the unit disk, we have

h(z) =
1

2πi

∫
C

h(ξ)

ξ − zdξ, 0 =
1

2πi

∫
C

h(ξ)

ξ − 1/z
dξ,

where C is the unit disk and the second expression is zero because 1/z is outside the unit
disk (h(ξ)/(ξ − 1/z) is analytic on the unit disk). Therefore, we put these two expression,
and using the parametrization ξ = eiθ on the unit circle,

h(z) =
1

2πi

∫
C
h(ξ)

(
1

ξ − z +
1

ξ − 1/z

)
dξ =

1

2π

∫ 2π

0

U(eiθ)

(
1

eiθ − z +
1

eiθ − 1/z

)
eiθdθ.

Let z = reiφ then we get the same Poisson integral formula (1).

Solve the Laplace equation on a wedge: The domain is de�ned to be the wedge
{z : θ1 < arg z < θ2}, on which ∆φ = 0. The boundary condition is φ = 0 on arg z = θ0 and
φ = 1 on arg z = θ1.

φ = 1
θ0 < arg z < θ1

φ = 0

Figure 5: The Laplace equation on the wedge {z : θ1 < arg z < θ2}, with φ = 0 on arg z = θ0

and φ = 1 on arg z = θ1.

By the symmetry of the domain and the boundary condition, φ is a constant on the line
arg z = θ for θ1 ≤ θ ≤ θ2, or the solution is given by φ(x, y) = h(arg z) = h(arctan y

x
).

Therefore,

∇φ(x, y) = h′
(

arctan
y

x

)(−y/(x2 + y2)
x/(x2 + y2)

)
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and

∆φ(x, y) = − ∂

∂x

[
h′
(

arctan
y

x

) y

x2 + y2

]
+

∂

∂y

[
h′
(

arctan
y

x

) x

x2 + y2

]
= h′′

(
arctan

y

x

) [ y2

(x2 + y2)2
+

x2

(x2 + y2)2

]
+ h′

(
arctan

y

x

) [ 2xy

(x2 + y2)2
− 2xy

(x2 + y2)2

]
= h′′

(
arctan

y

x

) 1

x2 + y2
.

This implies that h′′ ≡ 0 or h is a linear function. Using the boundary condition h(θ0) = 0
and h(θ1) = 1, we get

h(θ) =
θ − θ0

θ1 − θ0

and the solution of the Laplace equation is

φ(x, y) = h(arctan
y

x
) =

arctan y
x
− θ0

θ1 − θ0

.

5 Solving Laplace equation on complex domains by con-

formal mapping

One of the applications of conformal mapping is to �nd the solutions H(u, v) of the Laplace
equations on complex domains from the solutions h(x, y) on simple domains, by identifying
H(u, v) = h(x, y) and the points (u, v) is related to (x, y) by the conformal mapping f by
u+ iv = f(x+ iy) or w = f(z).

Example 5.1 (Solution of the Laplace equation on the upper half plane). If h(x, y) satis�es
the Laplace equation on the upper half plane and h(x, 0) = H(x), �nd h(x, y).

The general conformal mapping to transform the upper half plane to the unit circle is
w = (z − z0)/(z − z0). It is clear that the point z0 is transformed into the origin, and the
real axis is transformed into the unit disk. To show the latter, when z = τ is real,

|w| =
∣∣∣∣τ − z0

τ − z0

∣∣∣∣ =
|τ − z0|
|τ − z0| =

|τ − z0|
|τ − z0| = 1,

or w on the unit circle.
If we want to �nd the solution at x+iy, we can choose the arbitrary point z0 = x+iy, such

that the solution on the transformed w-plane is evaluated at the origin has the simple form
1
2π

∫ 2π

0
U(eiθ)dθ, the average on the unit circle. We still have to �nd transform this integral in

terms of the boundary conditionH(τ) = U(eiθ), by the transformation eiθ = (τ−z0)/(τ−z0).
Then

eiθidθ =
z0 − z0

(τ − z0)2
dτ, or dθ =

1

i

z0 − z0

(τ − z0)(τ − z0)
dτ.

Finally,

h(x, y) =
1

2π

∫ 2π

0

U(eiθ)dθ =
1

2πi

∫ ∞
−∞

(z0 − z0)H(τ)

(τ − z0)(τ − z0)
dτ =

1

π

∫ ∞
−∞

yH(τ)

(x− τ)2 + y2
dτ.
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z0 = x + iy
w = z−z0

z−z0

Figure 6: The upper half plane is mapped to the unit disk by w = (z − z0)/(z − z0). Here
the real axis is mapped to the unit circle and the point z0 is mapped to the origin in the
w-plane.

Example 5.2 (Transformation of the �ow pattern). For a uniform idea �ow on the upper
half plane whose velocity is given by (u1, u2) = (U, 0). The upper half plane can be mapped
to the �rst quadrant by w = z1/2. To see the resulting �ow on the �rst quadrant on
the w-plane using conformal mapping, we must introduce the velocity complex function
Ω(z) = φ(x, y) + iψ(x, y), where φ is the velocity potential and ψ is the stream function, i.e.,

u1 =
∂φ

∂x
=
∂ψ

∂y
, u2 =

∂φ

∂y
= −∂ψ

∂x
.

w = z1/2

U

For the uniform idea �ow, Ω(z) = Uz and is analytic. To �nd the complex velocity
potential Ω̃(w) on the �rst quadrant on the w-plane, we have

Ω̃(w) = Ω(z) = Uz = Uw2 = U(u2 − v2 + 2uvi),
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with φ̃(u, v) = u2 − v2 and ψ̃(u, v) = 2uv. Therefore, the velocity on the �rst quadrant is

ũ1 =
∂φ̃

∂u
= 2Uu, ũ2 =

∂φ̃

∂v
= −2Uv.

Remark. The key point to apply the transformation is that, if (x, y) is transformed to the
point (u, v), then

h(x, y) = H(u, v).

6 Bilinear Transformation

A bilinear transformation (or Mobius transformation) w = f(z) is a mapping with

f(z) =
az + b

cz + d
, ad− bc 6= 0.

The condition ad− bc 6= 0 is needed here, otherwise, f(z) is a constant (independent of z).
We have the following three basic Mobius Transformations:

i) Translation: f(z) = z + b

ii) Dilation (or multiplication): f(z) = az

iii) Inversion: f(z) = 1/z

Any general Mobius transformations can be written as a composition of the above three
building blocks.

Exercise. Find the bilinear transformation that carries the points −1,∞, i on the z-plane
to the following points on the w-plane:

(a)i, 1, 1 + i; (b)∞, i, 1.

The transformation between di�erent regions are characterized by the fact that their
boundaries are transformed from one to another. Therefore, we are going to focus on the
transformations of the boundaries (curves on the complex plane), the corresponding domains
reside on either side of the domain. In general, there are two ways to �nd the resulting
curves, either by writing the transformation in terms of the real and imaginary parts (pure
real variables) in the whole process or manipulating using the complex numbers and then
transforming back to u, v, as in the following examples.

Example 6.1. Find the curve x2 − y2 = 1 under the inversion.
(pure real variables). We have to �nd the change of variable x, y in terms of u, v, using the
de�nition of inversion.

x+ iy = z = 1/w =
1

u+ iv
=

u− iv
u2 + v2

or x = u/(u2 + v2), y = −v/(u2 + v2). Substituting it into the equation for the curve in
z-plane,

1 = x2 − y2 =
u2 − v2

(u2 + v2)2
.
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(complex variables method). The equation x2 − y2 = 1 is equivalent to

1 = (Rez)2 − (Imz)2 =

(
z + z̄

2

)2

−
(
z − z̄

2i

)2

=
z2 + z̄2

2
.

The mapping w = 1/z can be written as z = 1/w, z̄ = 1/w̄. Substituting them into the
equation, we have

1 =
1

2

(
1

w2
+

1

w̄2

)
.

Finally, put w = u + iv, w̄ = u − iv into this equation, we get the same equation for the
curve on the w-plane.

Exercise. Consider the following bilinear transformation

w = f(z) =
2iz − 2

2z − i .

(a) Determine the invariant points of the transformation (those points such that z = f(z)).

(b) Find the point ξ for which the equation f(z) = ξ has no solution for z in the �nite
complex plane.

(c) Show that the imaginary axis is mapped onto itself.

(d) Determine the image of the disc |z| < 1.

Example 6.2 (Laplace equation between two circles). Let D be the regime between the two
circles |z| = 1 and |z−2/5| = 2/5. If f satis�es the Laplace equation on D, f = 0 on |z| = 1
and f = 1 on |z−2/5| = 2/5, �nd f using the Mobius transformations w = (z−2)/(2z−1).

2/5 1 21

w = z−2
2z−1

Figure 7: Laplace equation between two circles.

10



The transformation w = (z − 2)/(2z − 1) can be written as z = (w − 2)/(2w − 1).
Therefore the circle |z| = 1 is transformed to |(w − 2)/(2w − 1)| = 1. Write the equation in
terms of w = u + iv, (u + iv − 2)/(2u + 2iv − 1)| = 1 or u2 + v2 = 1. Therefore, the unit
disk |z| = 1 is mapped to the unit disk |w| = 1.

Similarly, the circle |z − 2/5| = 2/5 is mapped to

2

5
=

∣∣∣∣ w − 2

2w − 1
− 2

5

∣∣∣∣ =

∣∣∣∣ w − 8

5(2w − 1)

∣∣∣∣ =

∣∣∣∣ u− 8 + iv

5(2u− 1 + 2iv)

∣∣∣∣ ,
or u2 + v2 = 4. Therefore, the circle |z − 2/5| = 2/5 is mapped to |w| = 2. On the w-plane,
let the solution of the Laplace equation with value zero on |w| = 1 and one on |w| = 2 be
F (u, v), then F depends only on R =

√
u2 + v2 and in this radial coordinate

0 =
∂2F

∂u2
+
∂2F

∂v2
=

1

R

d

dR
R
dF

dR
.

The general solution is F = c1 + c2 lnR. Using the boundary condition F = 0 when R = 1
and F = 1 when R = 2, we get F = 1

ln 2
lnR = 1

2 ln 2
ln(u2 + v2).

To �nd the solution on the z-plane, we have to transform (u, v) using (x, y). From the
de�nition of the mapping,

u+ iv = w =
z − 2

2z − 1
=

x− 2 + iy

2x− 1 + 2iy
=

(x− 2 + iy)(2x− 1− 2iy)

(2x− 1)2 + 4y2
.

Taking the real and imaginary parts of both sides,

u =
2x2 + 2y2 − 5x+ 2

(2x− 1)2 + 4y2
, v =

3y

(2x− 1)2 + 4y2
.

Finally, the solution of the Laplace equation is

f(x, y) =
1

2 ln 2
ln(u2 + v2) =

1

2 ln 2
ln

(2x2 + 2y2 − 5x+ 2)2 + 9y2

((2x− 1)2 + 4y2)2
.

Remark. The transformation w = (z − 2)/(2z − 1) is not unique. In fact there are in�nitely
many mapping the two non-concentric circles to concentric circles. Another confusing fact
is that even though the circle is mapped to a circle, their centres are NOT mapped to each
other.

Remark. Early we know that the equation |z − z1|/|z − z2| = λ is a circle (called the Circle
of Appollonius), which is equivalent to∣∣∣∣z − λ2z2 − z1

λ2 − 1

∣∣∣∣ =
λ

|λ2 − 1| |z2 − z1|.

Use this fact to verify the transformations between circles in this section.
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7 Joukowski transformation

Another important transformation with applications in airfoil design is the Joukowski

transformation

w = f(z) = z +
1

z
.

Sometimes, it is also written as f(z) = 1
2

(
z + 1/z

)
or f(z) = z + c2/z for some positive

constant c. This transformation usually maps the circle (not centred at the origin) to some
domain resembling the shape of an airfoil.

Exercise. Show that the circle |z| = a( 6= 1) in the z-plane is mapped into the ellipse in the
w-plane:

u2

A2
+
v2

B2
= 1, A = a+ 1/a, B = a− 1/a.

Show also that the circle |z| = 1 is mapped to the line segment from −2 to 2.

|z| = a

w = z + 1/z

a 6= 1

−2 2

a = 1
x

y

u

v

−B

A

B

−A

Figure 8: The circle |z| = a is mapped to an ellipse or a line segment by w = z + 1/z.

Remark. The Joukowski transformation is a conformal mapping when z 6= 0 and z 6= ±1.

The goal is to choose the right center z0 and the radius r0, such the circle |z − z0| = r0
is mapped to an aerofoil (see Figure 9). The extra conditions are:

1. The point z = 1 (where w = z + 1/z is NOT conformal) is always on the circle
|z − z0| = r0, and is mapped to w = 2. This makes sure that the �ow from the upper
and lower edge (the trailing edge) near w = 2 can join smoothly.

2. The other two point z = 0 and z = −1 (where w = z + 1/z is NOT conformal too) is
always INSIDE the circle |z − z0| = r0.
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w = f (z) = z + 1/z

1 20−1

z0

r0

x

y
u

v

Figure 9: The Joukowski transformation maps the circle to an aerofoil.

Figure 10: The aerofoil generated from the circle |z − z0| = r0 by the Joukowski mapping
w = z + 1/z. Here z0 = −0.1 + 0.1i and r0 = |1− z0|.

Attack angle
z = 1

2(w +
√

w2 − 1)α

C

α

|z| = a

1−1

w(z) = z + 1/z

Figure 11: Ideal �ow past an elliptic cylinder
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Example 7.1 (Application to ideal �ows with non-zero attach angle). If we can solve the
problem of �ow past a circular cylinder, then we can solve the problem of the �ow past an
elliptic cylinder (or more general aerofoil, but you may need computer to do the calculation).

Consider the �ow past a circular cylinder of radius a > 1. In the z-plane, the complex
potential U = φ+ iψ is

U(z) = ze−iα +
a2

z
eiα,

where α is the attack angle.
The physical problem is de�ned in the w-plane. Suppose the complex potential isW (w) =

U(z), then (ρ is the density of the �uid)

1. Force exerted on the body:

Fu − iFv =
iρ

2

∮
C

(
dW

dw

)2

dw

2. Moments:

M = −ρ
2
Re

{∮
C
w

(
dW

dw

)2

dw

}

We can �nd both the force and the moment, using the Joukowski transformation and the
known complex potential U . Can you show the force is zero by some simple argument?

From U(z) = W (w) with w = z + 1/z, we get

dW

dw
=
dU

dz

dz

dw
=

(
e−iα−a

2

z2
eiα
)(

dw

dz

)−1

=

(
e−iα−a

2

z2
eiα
)

(1− 1/z2)−1.

Therefore,

M = −ρ
2
Re

∫
|z|=a

(
z +

1

z

)
︸ ︷︷ ︸

w

(
e−iα−a

2

z2
eiα
)2

(1− 1/z2)−2︸ ︷︷ ︸
( dW

dw )
2

(
1− 1

z2

)
︸ ︷︷ ︸

dw
dz

dz

= −ρ
2
Re

∫
|z|=a

z(z2 + 1)

z2 − 1

(
e−iα−a

2

z2
eiα
)2

dz

The integrand has two simple poles at z = 1 and z = −1 (remember here a > 1) and one
triple pole at z = 0. Using residual calculus (a complicated calculation), we get

M = −ρ
2

4π sin 2α = −2πρ sin 2α.

Remark. You can �nd many applets online to tune the parameters, and in general you have
to use a computer to �nd the optimal set of parameters (like the position of the circle to be
mapped from, the amount of circulation, the attack angle...)
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