
AERO III/IV Complementary notes for exam review
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1 Recommended references

The best strategy to get additional references is to get yourself familiar with the keywords in the
syllabus, check the table of contents of some books in the library and read the relevant chapters.
These books usually has the keywords “(advanced) engineering mathematics” or “mathematical
methods (for Engineers)” in the title. For calculus of variations, you find it more likely in
books about mathematical methods for “physicists”. Here are a few more references:

• Mathematical methods in the physical sciences by Mary L Boas (2nd Edition or 3rd Edition):
Chap 9 (Calculus of variations), Chap 14 (Complex variables and conformal mapping) and
Chap 15 (Laplace transforms).

• Advanced modern engineering mathematics by Glyn James: Chap 8 (Complex variables and
conformal mapping) and Chap 9 (Laplace transforms).

There are also books that you only need the relevant chapters:

• Introduction to complex analysis by H. A Priestley. The materials about complex variables
are explained in greater details in this book (you can skip Chap 2,3,9,15 16 and 22)
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2 Suggestions on preparing for the final exam

• The final exam has a similar style and difficulty as the past exams. You also choose four
questions out of five.

• There are three types intense computations that you need more practice to succeed: (1)
Solving the resulting second order ODEs from calculus of variation (2) Finding the residue (
in contour integration and inverse Laplace transform (3) Transforming back and forth using
conformal mapping and solving the Laplace equation on simple domains.

• Understand the essential steps and give sufficient details. The penalty on numerical mistakes
will be minimized.

• To simplify your life, the parts related to branches and branch points is NOT required. There-
fore, you will not see complicated contours because of the multivalued functions like z1/2 or
log z.

• You will be given various hints, like the contours to evaluate integrals, the conformal mapping
to solve Laplace equations, and other formulas if needed (beside the standard formula sheet).

3 Additional Comments on the course material

3.1 Calculus of variations

i) You should think of Calculus of variations as a framework to get differential equations from a
scalar quantity. In this course, we focus on solving the resulting equation, which in general has
to be solved numerically.

ii) There are mainly two types problems arising in calculus of variations:

(1) Steady state that minimize the energy, for example the catenary minimizes the total grav-
itational energy or the soap bubble minimizes the total surface area. You get a boundary
value problem.

(2) Mechanic or time-dependent systems corresponds to an action A, where the action is the
integral (w.r.t time) of the Lagrangian L defined to be the difference of kinetic energy
and potential energy. For example, the trajectory of a particle x(t) with mass m under
the force −∇V (x), then the equation can be obtained from

∫ t1
t0

(
m
2 |ẋ|

2 − V (x)
)
dt, or the

Newton’s equation of the second law. You get a initial value problem. In this case, the
total energy m

2 |ẋ|
2 + V (x) ( the sum of kinetic and potential energy) is conserved.

iii) Refresh your memory about the different ways to solve second order linear ODEs, and the two
new ways for nonlinear ODE for

∫
f(x, y, y′)dx, when either x or y is missing from f .

3.2 Complex variables

i) Get used to working with complex numbers or functions directly, instead of always resorting to
real and imaginary part. For example, it is very easy to see whether an expression is analytic
or not (there should be no dependence on z̄ and no singular points), but more difficult to tell
with real and imaginary parts represented in x and y (you have to check the Cauchy-Riemann
conditions). This is one reason we never check explicitly a function is analytic or not in the
second half of the course.
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ii) You are free to “deform” the contour in any line integral (the end points should be fixed for open
contours), as long as the integrand is analytic withe respect to the integration variable,
and on the swept region.

iii) Besides returning the function value and the derivatives

f(z) =
1

2πi

∫
C

f(ξ)

ξ − z
dξ, f (n)(z) =

n!

2πi

∫
C

f(ξ)

(ξ − z)n+1
dξ,

the Cauchy integral formula has some unexpected use, because of the dependence on z is now
only on the simple function 1

ξ−z :

(1) The series expansion of 1
ξ−z near z0 can be easily obtained by geometric series, leading to

Taylor expansion and Laurent expansion.
(2) The inverse Laplace transform of 1

ξ−s is just −eξt, from which you can get the inversion
formula.

Read the relavent section in the notes for more details.

iv) To evaluate an integral by reducing it to residue calculus, you may have to complete a closed
contour and to the appropriate limit. The contour is intimated related to the certain compo-
nents in the integrand.

(1) You have to choose the upper semi-circle for eix or lower semi-circle for e−ix, because eiz

vanishes exponentially fast as Imz goes to +∞. For example, you can find∫ ∞
−∞

eix

1 + x2
=

∫ ∞
−∞

cosx

1 + x2
= πe.

(2) From the inversion formula of Laplace transform

f(t) =
1

2πi

∫ γ−i∞

γ−i∞
F (z)eztdz,

we have to choose the left semi-circle if t > 0 and right semi-circle if t < 0 (eventually give
f(t) = 0 in this case). The semi-circles are chosen because est vanishes exponentially fast
on these semi-circles.

These integrals on the semicircles vanish in the limit R → ∞, and you are not required to
justify this.

v) For integrals of the type
∮
C P (z)/Q(z)dz with polynomial P (z) and Q(z), you can reduce it to

residue by “shrinking” the contour C. You can also try to make the contour goes to infinity. For
example you get

∫
|z|=2

1
z2+1

dz = 2πi
(
Res( 1

z2+1
, z = −i)+Res( 1

z2+1
, z = i)

)
= 0 or alternatively

by expanding the contour to infinity,∫
|z|=2

1

z2 + 1
dz = lim

R→∞

∫
|z|=R

1

z2 + 1
dz = lim

R→∞

∫ 2π

0

iReiθ

R2e2iθ + 1
dθ = 0.

For the more complicated example (given that the zeros of z6 +z+1 = 0 are all inside |z| < 2),
you can not find the residue because you can not find the zeros of z6 + z+ 1 = 0 explicitly, but
you can still find the answer by expanding the contour to infinity,∫

|z|=2

1

z6 + z + 1
dz = lim

R→∞

∫
|z|=R

1

z6 + z + 1
dz = 0.
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vi) There is no wrong contours or wrong ways of deforming contours, but you can get the answer
explicitly with the right contours. Moreover, if you can the answers from different contours,
the answers should be identical. This principle works for

∫
|z|=2

1
z2+1

dz in the previous example,
and also for integrals like

∫∞
0

1
1+x4

dx in Example 6.2 in Complex Variables (III).

vii) There are two basic methods to calculate the residue of a function f(z) at z0: (1) series
expansion (2) the formula

Res(f ; z = z0) =
1

(m− 1)!

dm−1

dzm−1

[
(z − z0)mf(z)

]∣∣∣∣
z=z0

,

if z0 is a pole of order m. The derivative and the calculation in the second approach may be
complicated if m is larger than 2, for example the residue of f(z) = 1

sin3 z
at the origin.

3.3 Laplace transform

i) The functions f(t) should be identically zero if t is negative, or equivalently f is a causal
function. As a result, the inverse Laplace transforms in the table should be multiplied by the
Heaviside function H(t). This is also consistent with the result from inversion formula.

ii) The Laplace transform F (s) of some function f(t) can be extended to the whole complex, but
should be interpreted carefully. For example, F (s) = 1/(s2 + 1) is the Laplace transform of
sin t when s > 0, and we get F (−1) = 1/2. But the integral

∫∞
0 e−(−1)t cos tdt is divergent.

iii) The two basic methods for inverse Laplace transform (partial fraction or residue calculus) should
work for most of the problems, but recognizing some special structures of F (s) can reduce the
amount of calculation.

iv) Not all functions have a valid Laplace transform, even for s large enough. This happens usually
if f(t) increases too fast as t→∞, like f(t) = et

2 . As a result, you can not solve the ODE

y′′−ty′ − y = 0, y(0) = 1, y′(0) = 0

using Laplace transform (you can verify the solution y(t) = et
2/2). Compare this ODE to

Example 4.3 in the lecture notes.

v) You have to solve another ODE in x, if the original equation is a PDE in x and t. You can treat
s as a constant (or let s = 1 or other constants) to find the solution procedure. See Example
4.5 and 4.6 how this is handled (additional details in the updated online version).

vi) It is common that you may have to use some physical intuition (like F (s) is bounded as s→∞)
to determine the coefficient in the transformed equation.

3.4 Conformal Mapping

Conformal Mapping in general: The definition of a conformal mapping w = f(z) (f is analytic
and f ′ 6= 0 on the domain D) is in general not checked for every case. The conditions are only
required on the interior of D, and may be violated on the boundary for some desired properties
(mapping the point to infinity or changing the boundary behaviour drastically).
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a) It is common for f to become singular on the boundary, because the corresponding point is
transformed to infinity. For example, the unit interior disk |z| < 1 is transformed to the upper
half plane by w = f(z) = i1+z1−z (check this!). Here f(z) is singular at z = 1, which is transformed
to w =∞.

b) It is also common that f ′ = 0 on the boundary, for instance the Joukowski transformation
w = f(z) = z+ 1/z. Here f ′(z) = 1−1/z2 and f ′(1) = 0. This is desired because the streamline
at the trailing edge can now join smoothly .

Conformal Mapping in solving Laplace equations: The main focus of this chapter is on using
conformal mapping w = u+iv = f(z) = f(x+iy) to transform the Laplace equation ∂2

∂x2
h+ ∂2

∂y2
h = 0

on complicated domain D to the Laplace equation ∂2

∂u2
H + ∂2

∂v2
H = 0 on a simple domain D̃, using

the crucial fact h(x, y) = H(u, v).

Conformal mapping in linking different ideal flows: The basic idea is: if U(z) is the complex
potential of a flow on D, and f is a conformal mapping on D, then Ω(w) = U(z) = U(z(w)) is the
complex potential on the transformed domain D̃.

a) You can get the flow just using velocity potential or stream function by φ̃(u, v) = φ(x, y) or
ψ̃(u, v) = ψ(x, y), but you can not simply equating the corresponding velocity fields.

b) Example 4.2 in the lecture notes (transforming uniform flow on the upper half plane to a
quarter plane) can be generalized to a flow in a corner of angle α (see Figure 1). Since the
complex potential is Ω(z) = Uz and the conformal mapping is w = f(z) = z

α
π (or equivalently

z = w
π
α , the complex potential for the corner flow is

Ω̃(w) = Ω(z) = Uz = Uw
π
α .

Using this result, you may generate more realistic flows around a wedge, where the stream
function is given by ψ(r, θ) = Ar

1
1−β sin π−θ

1−β .

U

w = z
α
π

α

x

y

2βπ

Figure 1: Transformation of a uniform flow to a corner flow by conformal mapping, which can be
used to find the flow around a wedge.

c) Joukowski transformation is popular because it is the simplest conformal mapping that preserves
the far-field flow pattern. If the far-field flow is preserved, the corresponding mapping must be
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an identity, i.e., f(z) = z + g(z) with g(z)→ 0 as z →∞, while the simplest function g(z) that
vanishes at infinity is g(z) = 1/z.

d) The aerofoil is usually generated from the circle |z − z0| = r0 with arg z0 ∈ (π/2, π) and r0 =
|1−z0| > 1 to make sure that the point z = 1 (where the mapping w = z+z/1 is NOT conformal)
is on the boundary of the circle. In this way, the point z = 1 is mapped to the trailing edge,
where the stream lines join smoothly (see Figure 2).

Figure 2: The aerofoil generated from the circle |z−z0| = r0 by the Joukowski mapping w = z+1/z.
Here z0 = −0.1 + 0.1i and r0 = |1− z0|.

4 Solutions to selected exercises and additional details on the ex-
amples

4.1 Calculus of variations

Exercise (Which method to choose?) Find the extremal curve of the integral
∫

(y2 − y′2)dx (a) by
solving the linear Euler-Lagrange equation (b) by realizing the fact that f = y2−y′2 is independent
of x. Which way is easier and faster?
Solutions: (a) Since ∂f

∂y = 2y and ∂f
∂y′ = −2y′, the Euler-Lagrange equation is

0 =
∂f

∂y
− d

dx

∂f

∂y′
= 2(y + y′′).

this is a linear equation, whose general solution is y(x) = c1 cosx+ c2 sinx.
(b) Since f is independent of x, we have

c1 = f − y′ ∂f
∂y′

= y2 + y′2

a constant. This equation is equivalent to

y′ = ±(c1 − y2)1/2

or
x =

∫
dy

(c1 − y2)1/2
= arcsin

y
√
c1

+ c2.

The solution can be written as
y =
√
c1 sin(x+ c2),
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which is equivalent to the one in (a). In general, it is more complicated in this approach, because
of the integration involved.

4.2 Complex Variables

Exercise. Find the modulus of 3+i
1+i .

Solution: ∣∣∣∣3 + i

1 + i

∣∣∣∣ =
|3 + i|
|1 + i|

=

√
10√
2

=
√

5.

Exercise.[The Circles of Apollonius] The equation |z − z1|/|z − z2| = λ(> 0) for λ 6= 1 is a circle,
called the Circles of Apollonius.

(i) What is the curve corresponding to λ = 1?

(ii) If λ 6= 1, substituting z1 = x1 + iy1 and z2 = x2 + iy2 into the equation |z − z1|/|z − z2| = λ,
we get (with z = x+ iy)

λ =
|z − z1|
|z − z2|

=
|(x− x1) + i(y − y1)|
|(x− x2) + i(y − y2)|

=

√
(x− x1)2 + (y − y1)2√
(x− x2)2 + (y − y2)2

. (1)

Confirm that this is a circle (the expressions for the center and the radius are very complicated).

(iii) Once we are sure it is circle, we can find the center and the radius in other alternative ways,
using the geometry.

z1

z3

z2

z4

Figure 3: The circle of Apollonius of all the points |z − z1|/|z − z2| = λ > 1, which intersects the
straight line (connecting z1 and z2) at z3 and z4.

Let z3 and z4 be the intersection points of the circle with the straight line connecting z1 and
z2. Without loss of generality, we can take λ > 1 (the case 0 < λ < 1 works similarly), which
looks like in Figure 3. The advantage using this geometric information is that we can get rid
of the modulus from the governing equations |z − z1|/|z − z2| = λ. That is

λ =
z1 − z3
z3 − z2

=
z1 − z4
z2 − z4

,

which gives

z3 =
λz2 + z1
λ+ 1

, z4 =
λz2 − z1
λ− 1

.
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By the symmetry, the centre of the radius should be on this straight line, and z3, z4 are on
the opposite sides of a diameter. Therefore, the centre of the circle is

z0 =
1

2
(z3 + z4) =

λ2z2 − z1
λ2 − 1

, (2)

and the radius is
R =

|z3 − z4|
2

=
λ

|λ2 − 1|
|z1 − z2|, (3)

which should be compared with the centre and radius calculated from the algebraic equa-
tion (1).

(iv) Check that when 0 < λ < 1, the centre and the radius are still given by (2) and (3), respectively.

(v) Find the curve on the w-plane, which is transformed from the circle |z| = 1 by the map
w = (z + 2)/(z − 2).

Solution: (i) When λ = 1, the curve is the bisector of z1 and z2, a straight line.
(ii) If λ 6= 1, then the equation

λ =
|z − z1|
|z − z2|

=
|(x− x1) + i(y − y1)|
|(x− x2) + i(y − y2)|

=

√
(x− x1)2 + (y − y1)2√
(x− x2)2 + (y − y2)2

(4)

can be simplified as

(λ2 − 1)(x2 + y2) + 2(x1 − λ2x2)x+ 2(y1 − λ2y2)y + λ2(x22 + y22)− (x21 + y21) = 0.

Since the coefficient of the quadratic term x2 and y2 are the same, and we can easily find point
on the line connecting z1 and z2 satisfying the equation, it is a circle. But the expressions for
the center and the radius are both very complicated. Alternatively, we can find these geometric
quantities using complex numbers.

(iv) If 0 < λ < 1, then the circle looks like the one in Figure 4. Similarly, we have

λ =
z1 − z3
z3 − z2

=
z1 − z4
z2 − z4

,

which is exactly the same as the case when λ > 1. Therefore, the expressions for the centre and the
radius are the same.

(v) If the circle |z| = 1 is transformed by the map w = (z+ 2)/(z− 2), the map is equivalent to
z = (2w + 2)/(w − 1), implies that the curve satisfies the equation

1 = |z| =
∣∣∣∣2w + 2

w − 1

∣∣∣∣
or ∣∣∣∣w + 1

w − 1

∣∣∣∣ =
1

2
.

Therefore λ = 1/2, w1 = −1 and w2 = 1, and the curve on the w-plane is a circle with centre
z0 = λ2z1−z2

λ2−1 = −5
3 and radius R = λ

|λ2−1| |z1 − z2| =
2
3 .

Exercise. Shown that

sin θ + sin 2θ + · · ·+ sinnθ =
sin θ − sin(n+ 1)θ − sin θ cos(n+ 1)θ + cos θ sin(n+ 1)θ

2− 2 cos θ
,
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z1

z2

z3

z4

Figure 4: The circle of Apollonius of all the points |z − z1|/|z − z2| = λ with 0 < λ < 1.

using the relation between Euler equation (The right hand side can be simplified further).
Solutions: Using the fact that sin kθ = Imeikθ,

sin θ + sin 2θ + · · ·+ sinnθ = Im
(
eiθ + ei2θ + · · ·+ einθ

)
.

We can find the sum on the right hand side, using the formula for the geometric series, or the
following equivalent way. Set Sn = eiθ + ei2θ + · · ·+ einθ, then

eiθSn = e2iθ + e3iθ + · · ·+ ei(n+1)θ = Sn + ei(n+1)θ − eiθ

or

Sn =
ei(n+1)θ − eiθ

eiθ − 1
.

Taking the imaginary part of Sn, we get the desired conclusion.

Exercise. Show that the four points A,B,C,D are on
the same circle if and only if the distances satisfies the
condition

AC ·BD = AB · CD +AD ·BC.

A

B
C

D

Hint: Notice the condition that A,B,C,D are on the same circle can be characterized by ∠ADC +
∠ABC = π (or equivalently ∠BAD + ∠BCD = π) and the identity (zA − zC)(zB − zD) =
(zA − zB)(zC − zD) + (zA − zD)(zB − zC), where zA, zB, zC and zD are the complex numbers
corresponding to the four points.
Solution: If zA, zB, zC , zD are on the same circle, then ∠BAD + ∠BCD = π or equivalently (be
careful about how the angle is represented, and which complex numbers are involved):

arg
zC − zD
zA − zD

+ arg
zC − zB
zA − zB

= π.

This equation can be written as

arg
zC − zD
zA − zD

= π − arg
zC − zB
zA − zB

= arg
zB − zC
zA − zB

.

and is equivalent to
arg(zA − zB)(zC − zD) = arg(za − zD)(zB − zC).
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Since the triangle inequality |z + w| ≤ |z|+ |w| becomes an equality if and only if arg z =
argw, we get

AC ·BD = |(zA − zC)(zB − zD)| = |(zA − zB)(zC − zD) + (zA − zD)(zB − zC)|
= |(zA − zB)(zC − zD) + (zA − zD)(zB − zC)|
= AB · CD +AD ·BC.

Similarly, we can show that if AC ·BD = AB ·CD+AD ·BC then the four points are on a circle.

Exercise. Shown from the property |z1 + z2| ≤ |z1|+ |z2|, we can get

|z1 + · · ·+ zn| ≤ |z1|+ · · ·+ |zn|.

Moreover, for any real number a1, · · · , an, b1, · · · , bn, we have the inequality√
a21 + b21 + · · ·+

√
a2n + b2n ≤

√
(a1 + · · ·+ an)2 + (b1 + · · ·+ bn)2.

Solution: Using the inequality |w1 + w2| ≤ |w1|+ |w2| recursively,

|z1 + z2 + · · ·+ zn| = |z1 + (z2 + · · ·+ zn)|
≤ |z1|+ |z2 + z3 + · · ·+ zn|
= |z1|+ |z2 + (z3 + · · ·+ zn)|
≤ |z1|+ |z2|+ |z3 + · · ·+ zn|
...
≤ |z1|+ |z2|+ · · ·+ |zn|.

For any real number a1, · · · , an, b1, · · · , bn, if we define z1 = a1 + b1i, · · · , zn = an + bni, then the
above inequality becomes√

a21 + b21 + · · ·+
√
a2n + b2n ≤

√
(a1 + · · ·+ an)2 + (b1 + · · ·+ bn)2.

A B E F

C D G H

Figure 5: Sum of three angles

Exercise. Three squares placed side by side as shown in Figure 5. Prove that the sum of ∠HAF ,
∠HBF and ∠HEF is a right angle. Hint: Let the vectors

−−→
AH,

−−→
BH and

−−→
CH be the complex number

3 + i, 2 + i and 1 + i respectively, the the sum of the three angles is the argument of the product
(3 + i)(2 + i)(1 + i).
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Solution: The sum of the angles is the argument of the product of 3 + i, 2 + i and 1 + i. Since

(3 + i)(2 + i)(1 + i) = (5 + 5i)(1 + i) = 10i,

whose argument is π/2, the sum of the three angles is π/2.

Exercise. Find the limit of f(z) =
z2 + iz + 2

z − i
as z → i.

Solution: The L’Hospital’s Rule still holds for the limits of complex variables: if both the numer-
ator and denominator vanish in the limit, their ratio is the same as the ratio of their derivatives.
Therefore,

lim
z→i

z2 + iz + 2

z − i
= lim

z→i

2z + i

1
= 3i.

Exercise. Show that the Cauchy-Riemann equations is equivalent to

∂u

∂r
=

1

r

∂v

∂θ
,

1

r

∂u

∂θ
= −∂v

∂r
,

when u and v are represented in polar coordinates.
Solution: From the polar coordinates x = r cos θ, y = r sin θ,

∂x

∂r
= cos θ =

1

r

∂y

∂θ
,

∂y

∂r
= sin θ = −1

r

∂x

∂θ
.

Therefore, using chain rule and the Cauchy-Riemann conditions,

∂u

∂r
=
∂u

∂x

∂x

∂r
+
∂u

∂y

∂y

∂r
=
∂v

∂y

∂x

∂r
− ∂v

∂x

∂y

∂r
=

1

r

(
∂v

∂y

∂y

∂θ
+
∂v

∂x

∂x

∂θ

)
=

1

r

∂v

∂θ
.

Similarly, we can show that other relation 1
r
∂u
∂θ = −∂v

∂r .

Exercise. Use the Cauchy-Riemann equation to show that f ′(z) = ez for f(z) = ez.
Solution: If f(z) = ez = ex(cos y + i sin y) with u = ex cos y, v = ey sin y. Then by definition

f ′(z) = ux + ivx = ex cos y + iex sin y = ex+iy = ez.

Exercise. Evaluate
∫
C e

z/(z − 1)dz where C is the circle |z − 2| = 2.
Solution: Since the point z0 = 1 is inside the contour, the circle |z − 2| = 2, using the Cauchy
integral formula for the analytic function f(z) = ez,∫

C
f(z)/(z − 1)dz = 2πif(1) = 2πie1.

4.3 Power series, residue theorem and its applications

Exercise. Find the Laurent expansion of f(z) = ez+
1
z on |z| > 0.

Solution: If we use the Taylor expansion of the exponential function, then we have to options. The
first way is to treat z + 1

z as one variable, that is

f(z) = ez+
1
z = 1 +

(
z +

1

z

)
+

1

2!

(
z +

1

z

)2

+ · · ·+ · · ·+ 1

n!

(
z +

1

z

)n
+ · · ·

11



if we want to get the coefficients, for example, c0, then we have to add infinite many terms from
each of the binomial expansions of

(
z + 1

z

)2n (the odd powers like
(
z + 1

z

)
or
(
z + 1

z

)3 have zero
constant coefficient), which gives

cn = 1 +
1

2!

(
2

1

)
+

1

4!

(
4

2

)
+ · · ·+ 1

(2n)!

(
2n

n

)
+ · · · .

The second way is to write f(z) = eze
1
z and to expand the two exponentials first, that is

f(z) = eze
1
z =

(
1 + z +

1

2!
z2 + · · ·

)(
1 +

1

z
+

1

2!

1

z2
+ · · ·

)
Once again we have to add infinitely many products of terms from both expansions to get the final
coefficients.

In general, we don’t expect a compact explicit form for the coefficients, but we can still express
them as integrals using the definition, that is

cn =
1

2πi

∮
|z|=1

f(z)

zn+1
dz =

1

2πi

∮
|z|=1

z−1−n exp

(
z +

1

z

)
dz.

Using the parametrization z = eiθ, the above integral can be simplified as

cn =
1

2πi

∫ 2π

0
e−i(1+n)θ exp(eiθ + e−iθ)eiθidθ =

1

2π

∫ 2π

0
e−inθ exp(2 cos θ)dθ.

Exercise. Find the first three terms of the Laurent expansion of f(z) = 1
z sin z on (1) 0 < |z| < π;

(2) π < |z| < 2π (only c−1, c0 and c1) and (3) 0 < |z − π| < π.
Solution: (1) By Taylor expansion of sin z = z − z3

6 + z5

120 + · · · ,

1

z sin z
=

1

z
(
z + z3

6 + z5

120 + · · ·
) =

1

z2

(
1−

(z2
6
− z4

120

)
+ · · ·

)−1
.

Since
(

1−
(
z2

6 −
z4

120

)
+ · · ·

)−1
= 1 +

(
z2

6 −
z4

120

)
+
(
z2

6 −
z4

120

)2
+ · · · = 1 + z2

6 + 7z4

360 + · · · , the
Laurent expansion is

1

z sin z
=

1

z2

(
1 +

z2

6
+

7z4

360
+ · · ·

)
=

1

z2
+

1

6
+

7z2

360
+ · · · .

(2) In the range π < |z| < 2π, 1
z sin z = · · ·+ c−1

z +c0+c1z+· · · and we find the three coefficients c−1, c0
and c1 from the definition cn = 1

2πi

∮
C ξ
−n−1f(ξ)dξ for some contour C in the annulus π < |z| < 2π.

c−1 =
1

2πi

∮
C

1

ξ sin ξ
dξ = Res

(
1

ξ sin ξ
, ξ = 0

)
+ Res

(
1

ξ sin ξ
, ξ = π

)
+ Res

(
1

ξ sin ξ
, ξ = −π

)
.

From the computation in (1), Res
(

1
ξ sin ξ , ξ = 0

)
= 0 since the coefficient of ξ−1 is zero.

Res
(

1

ξ sin ξ
, ξ = π

)
= lim

ξ→π

ξ − π
ξ sin ξ

= lim
ξ→π

1

ξ cos ξ
= −π−1 = Res

(
1

ξ sin ξ
, ξ = −π

)
.
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Therefor, c−1 = −2/π. Similarly,

c0 =
1

2πi

∮
C

1

ξ2 sin ξ
dξ = Res

(
1

ξ2 sin ξ
, ξ = 0

)
+ Res

(
1

ξ2 sin ξ
, ξ = π

)
+ Res

(
1

ξ2 sin ξ
, ξ = −π

)
.

The residue Res
(

1
ξ2 sin ξ

, ξ = 0
)

= 1/6 is exactly the constant from (1) and

Res
(

1

ξ2 sin ξ
, ξ = π

)
= lim

ξ→π

ξ − π
ξ2 sin ξ

= lim
ξ→π

1

ξ2 cos ξ
= −π−2 = Res

(
1

ξ2 sin ξ
, ξ = −π

)
.

Therefore, c0 = 1
6 −

2
π2 . Finally,

c0 =
1

2πi

∮
C

1

ξ3 sin ξ
dξ = Res

(
1

ξ3 sin ξ
, ξ = 0

)
+ Res

(
1

ξ3 sin ξ
, ξ = π

)
+ Res

(
1

ξ3 sin ξ
, ξ = −π

)
.

Similarly, Res
(

1
ξ3 sin ξ

, ξ = 0
)

= 0 and Res
(

1
ξ3 sin ξ

, ξ = π
)

= Res
(

1
ξ3 sin ξ

, ξ = −π
)

= −π−3 and

c1 = − 2
π3 .

(3) Using the substitution w = z − π, we get 1
z sin z = − 1

(w+π) sinw . When 0 < |w| < π,
1

w+π = 1
π

1
1+w/π = 1/π − w/π2 + w2/π3 + · · · and

1

sinw
=

1

w − w3/6 + · · ·
=

1

w

(
1− w2

6

)−1
=

1

w

(
1 +

w2

6
+ · · ·

)
.

Therefore,

− 1

(w + π) sinw
= −

(
1

π
− w

π2
+
w2

π3
+ · · ·

)
1

w

(
1 +

w2

6
+ · · ·

)
= − 1

w

(
1

π
− w

π2
+

(
1

6π
+

1

π3

)
w2

)
or equivalently

1

z sin z
= − 1

z − π
+

1

π2
+

(
1

6π
+

1

π3

)
(z − π) + · · · , 0 < |z − π| < π.

Exercise. Find Res(f ; z = 1) with f(z) = 1
z(z−1)2 .

Solution: If we use the Laurent expansion at z = 1, then

f(z) =
1

(z − 1)2
1

1 + (z − 1)
=

1

(z − 1)2

(
1− 1

z − 1
+

1

(z − 1)2
+ · · ·

)
=

1

(z − 1)2
− 1

z− 1
+ 1− (z − 1) + · · · .

The residue of f(z) at z = 1 is the coefficient c−1 of the term (z − 1)−1, which is −1.
Alternatively we can use the formula

c−1 = lim
z→z0

1

(m− 1)!

dm−1

dzm−1
(z − z0)mf(z)
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for a pole of order m at z = z0, then

c−1 = lim
z→1

d

dz
(z − 1)2f(z) = lim

z→1

d

dz

1

z
= lim

z→1

(
− 1

z2

)
= −1.

Exercise. Find I =
1

2πi

∫
C

cot zdz, where C is the unit circle.

Solution: The only pole of f(z) = cot z = cos z
sin z inside the unit cicle is z = 0, which is a simple pole.

Therefore,

I =
1

2πi

∫
C

cot zdz = Res(cot z, z = 0) = lim
z→0

z cot z = 1.

4.4 Laplace Transform

Exercise. Find the Laplace transform of tf ′(t) and tf ′′(t).
Solution: Using the definition and integrating by parts,

F [tf ′(t)](s) =

∫ ∞
0

tf ′(t)e−stdt =

∫ ∞
0

te−stdf(t) = te−stf(t)
∣∣t=∞
t=0
−
∫ ∞
0

f(t)d(te−st)

= −
∫ ∞
0

f(t)e−stdt+ s

∫ ∞
0

tf(t)e−stdt

= −F (s) + sF [tf(t)](s).

Taking the derivative of the definition of the Laplace transform,

F ′(s) =
d

ds

∫ ∞
0

f(t)e−stdt =

∫ ∞
0

f(t)
d

ds
e−stdt = −

∫ ∞
0

tf(t)e−stdt.

Therefore, the Laplace transform of tf ′(t) is −F (s)− sF ′(s).
Similarly, we have

F [tf ′′(t)](s) =

∫ ∞
0

tf ′′(t)e−stdt =

∫ ∞
0

te−stdf ′(t) = −
∫ ∞
0

f ′(t)d(te−st)

= −
∫ ∞
0

f ′(t)e−st + s

∫ ∞
0

tf ′(t)e−stdt.

Using the Laplace transform of f ′(t) and tf ′(t), we get

F [tf ′′(t)](s) = −(sF (s)− f(0)) + s(−F (s)− sF ′(s)) = f(0)− 2sF (s)− s2F ′(s).

Exercise. Verify the inverse transform of n!/sn+1, 1/(s+a), s/(s2 +ω2), ω/(s2 +ω2), e−sT /s in the
table of transforms.
Solution: We have the series expansion,

estn!/sn+1 =

(
1 + st+

(st)2

2!
+ · · ·+ (st)n

n!

)
n!

sn+1
=

n!

sn+1
+
n!t

sn
+

n!t2

2!sn−1
+ · · ·+ tn

s
+ · · · .

Therefore, L−1[n!/sn+1](t) = Res(estn!/sn+1, s = 0) is the coefficient of 1
s , that is t

n. For the rest
functions,

L−1[1/(s+ a)](t) = Res(est/(s+ a), s = −a) = lim
s→−a

est = e−at;
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L−1[s/(s2 + ω2)](t) = Res(ests/(s2 + ω2), s = iω) + Res(ests/(s2 + ω2), s = −iω)

= lim
s→iω

sest

s+ iω
+ lim
s→−iω

sest

s− iω

=
1

2
(eiωt + e−iωt) = cosωt.

Similarly, L−1[ω/(s2+ω2)](t) = Res(estω/(s2+ω2), s = iω)+Res(estω/(s2+ω2), s = −iω) = sinωt.
The inverse Laplace transform for the last function e−sT /s is trickier than it looks, and is related

to the subtle left and right semi-circle in the definition. You get either 0 or 1, depending on t < T
or t > T . The situation is similar to the fact the inverse Laplace transform f(t) = L−1[F ](t) is
always chosen to be zero for t < 0 (or f(t) is a causal function).

Exercise. Show that the solution of the integral equation

g(x) = 1−
∫ x

0
(x− y)g(y)dy

is g(x) = cosx using Laplace transform.
Solution: Let G(s) be the Laplace transform of g(x), then the integral equation becomes

G(s) =
1

s
− 1

s2
G(s).

Then G(s) = s
1+s2

, which gives g(x) = cosx.

4.5 Conformal Mapping

Exercise. Find the bilinear transformation that carries the points −1,∞, i on the z-plane to the
following points on the w-plane:

(a)i, 1, 1 + i; (b)∞, i, 1.

Solution: (a) Let the bilinear mapping to be w = az+b
cz+d , then the points −1,∞ and i mapped to i,

1 and 1 + i implies that

i =
b− a
d− c

, 1 =
a

c
, 1 + i =

ai+ b

ci+ d
.

There are only three equations for four parameters (a,b, c and d). We can take a as a known
parameter and solve the equations for b, c and d, which gives

b = (2 + i)a, c = a, d = (2− i)a.

Therefore, the bilinear mapping is

w =
az + (2 + i)a

az + (2− i)a
=
z + 2 + i

z + 2− i
.

(b) The points −1,∞ and i mapped to ∞, i and 1 implies that

0 = −c+ d, i =
a

c
, 1 =

b+ ai

d+ ci
.

We can solve the equation for a, b and d (in terms of c), then

a = ci, b = (2 + i)c, d = c.
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Therefore, the bilinear map is

w =
ciz + (2 + i)c

cz + c
=
iz + 2 + i

z + 1
.

Exercise. Consider the following bilinear transformation

w = f(z) =
2iz − 2

2z − i
.

(a) Determine the invariant points of the transformation (those points such that z = f(z)).

(b) Find the point ξ for which the equation f(z) = ξ has no solution for z in the finite complex
plane.

(c) Show that the imaginary axis is mapped onto itself.

(d) Determine the image of the disc |z| < 1.

Solution: (a) The invariant points satisfies

z = f(z) =
2iz − 2

2z − i

or 2z3−3iz+ 2 = 0. This quadratic equation can be solved by the same way as for real coefficients,
i.e.,

z± =
3i±

√
(−3i)2 − 4 ∗ 2 ∗ 2

4
=

3i± 5i

4
.

Therefore, the two invariant points are 2i and −i/2.
(b) We can write the equation f(z) = ξ as z(2ξ − 2i) = iξ − 2. This equation has no solution if

and only if 2ξ − 2i = 0 and iξ − 2 6= 0, which is exactly when ξ = i.
(c) The imagianary axis is parameterized by z = it for real number t. Then

w = f(it) =
2i(it)− 2

2(it)− i
=
−2t− 2

2it− i
=

2t+ 2

2t+ 1
i,

which is purely imaginary. Therefore, the imaginary axis is mapped onto itself.
(d)

Exercise. Show that the circle |z| = a(6= 1) in the z-plane is mapped into the ellipse in the w-plane:

u2

A2
+
v2

B2
= 1, A = a+ 1/a, B = a− 1/a.

Show also that the circle |z| = 1 is mapped to the line segment from −2 to 2.
Solution: The circle |z| = a can be parameterized by z = aeiθ for 0 ≤ θ ≤ 2π. Then

w = u+ iv = z +
1

z
= aeiθ +

1

a
e−iθ =

(
a+

1

a

)
cos θ + i

(
a− 1

a

)
sin θ.

Therefore,

u =

(
a+

1

a

)
cos θ, v =

(
a− 1

a

)
sin θ,
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which is an ellipse with semi-axis A = a+ 1/a and B = |a− 1/a|.
If a = 1, then B ≡ 0 and the ellipse becomes the line segment connecting −2 and 2.

More details on Example 7.1: Since there is no circulation generated by vorticity, we expect
the force is zero. In fact,

Fu − iFv =
iρ

2

∮
C

(
dW

dw

)2

dw =
iρ

2

∮
|z|=a

F (z)dz, F (z) =
z2

z2 − 1

(
e−iα − a2

z2
eiα
)2

.

There are three singular points inside the circle |z| = a: z = 1 and z = −1 are both simple poles,
and z = 0 is a double pole. The total force becomes

Fu − iFv = (−πρ)
1

2πi

∮
|z|=a

F (z)dz = (−πρ)
[
Res(F ; z = −1) + Res(F ; z = −1) + Res(F ; z = 0)

]
.

The residue of F at z = −1 is

Res(F, z = −1) = lim
z→−1

(z + 1)F (z) = lim
z→−1

z2

z − 1

(
e−iα − a2

z2
eiα
)2

= −1

2

(
e−iα − a2eiα

)2
.

Similarly, the residue of F at z = 1 is

Res(F, z = 1) = lim
z→1

(z−1)F (z) = lim
z→1

z2

z + 1

(
e−iα − a2

z2
eiα
)2

=
1

2

(
e−iα − a2eiα

)2
= −Res(F, z = −1).

Finally the residue of F at z = 0 is calculated most conveniently using series expansions at the
origin, i.e.,

F (z) = −z2(1− z2)−1
(
e−2iα − 2a2

z2
+
a4

z4
e2iα

)
= −z2(1 + z2 + · · · )

(
e−2iα − 2a2

z2
+
a4

z4
e2iα

)
.

The coefficient of z−1 should be zero (actually all coefficients of odd powers) and the total force is
zero.

Similarly, we can calculate the moments

M = −ρ
2
Re
∫
|z|=a

G(z)dz, G(z) =
z(z2 + 1)

z2 − 1

(
e−iα − a2

z2
eiα
)2

,

from the residue calculus

1

2πi

∫
|z|=a

G(z)dz = Res(G; z = −1) + Res(G; z = −1) + Res(G; z = 0).

Res(G; z = −1) = lim
z→−1

(z + 1)G(z) = lim
z→−1

z(z2 + 1)

z − 1

(
e−iα − a2

z2
eiα
)2

=
(
e−iα − a2eiα

)2
,

Res(G; z = 1) = lim
z→1

(z − 1)G(z) = lim
z→1

z(z2 + 1)

z + 1

(
e−iα − a2

z2
eiα
)2

=
(
e−iα − a2eiα

)2
.
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Finally, we use series expansion to calculate Res(G; z = 0) (it is much more complicated to use the
formula Res(G; z = 0) = limz→0

1
2
d2

dz2

[
z3G(z)

]
.

G(z) = −z(1 + z2)(1− z2)−1
(
e−2iα − 2a2

z2
+
a4

z4
e2iα

)
= −z(1 + z2)(1 + z2 + · · · )

(
e−2iα − 2a2

z2
+
a4

z4
e2iα

)
= −z(1 + 2z2 + · · · )

(
e−2iα − 2a2

z2
+
a4

z4
e2iα

)
.

Notice here that we can ignore the terms z4 or higher. Collecting the coefficient of z−1 from G(z),
we get

Res(G; z = 0) = 2a2 − 2a4e2iα.

Therefore,

1

2πi

∫
|z|=a

G(z)dz = Res(G; z = −1) + Res(G; z = −1) + Res(G; z = 0) = 2e−iα − 2a2

and

M = −ρ
2
Re
∫
|z|=a

G(z)dz = −ρ
2
Re
{

2πi(2e−iα − 2a2)
}

= −ρ
2
Re
{

2πi(−2 sin 2α)i
}

= −2πρ sin 2α.
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