Aero III/IV Complex power series, residue theorem and
its applications

1 Series and convergence
Series: Z fi(2) = fi(z) + fa(z) + - -+ with f;(z) usually monomials like 2/
j=1
Partial sum: S,(z) = ij(z)
j=1

Convergence: ij(z) is said to be convergent to f(z) if for any z (possibly limited to
j=1
some domain), lim S,(z) = f(z).

n—oo

More precisely: Z fi(z) converges to f(z) if for any z and e > 0, there exists an integer N
=1
(which may depend on z and €), such that |S,(z) — f(z)| <, for all n > N(z,¢€).

Uniform convergence: Z fj(z) converges to f(z) uniformly if N is independent of z.
j=1

Example 1.1. The geometric series 1 + z + 2% + - -+ converges to 1/(1 — z) for any |z| < 1,
but not uniformly.

Uniformly convergent series are preferred because of the following good properties:

i) Preserves continuity: if ) f;(z) converges to f(z) uniformly, and each term f;(z) is
continuous, then f(z) is continuous

ii) Integration term-by-term:

[1:=3 [ 5

where C lies entirely in the region of uniform convergence.

iii) Differentiate term-by-term: Y f;(z) converges to f(z) uniformly, and each term of f; is
analytic, then f(z) is analytic and

fi(2)=>_fi(2).



Recall that for the convergence of the series > a,, we have the following general criteria :
(a) Comparison test: If Y |b,| converges and |a,| < |b,|, then > a, converges.

(b) Ratio test: Let
An41
Qn

[ := lim

n—oo

exists. If [ < 1 then the series ) a,, converges, otherwise if [ > 1, the series diverges.

(¢) Root test: Let
[:= lim ]an]%

n—oo

exists. If [ < 1 then the series ) a,, converges, otherwise if [ > 1, the series diverges.

Remark. All the complications happen at [ = 1. But in this course, we only consider the
series strictly inside the radius of convergence (or [ < 1).

When a,, = ¢, (z—z0)", we are interested in the domain where the series >~ ¢, (z—z0)"
converges, which leads to the concept of radius of convergence R:

Cn

n—oo | C
n—1 n+1

R = max {|z —al: Z |cn(z —a)”| converges} = lim

Be careful that in this definition the ratio is |¢,/c,41| instead of |c,11/¢nl.

Remark. Since the series f(z) = > ¢, (2 — 20)" diverges when |z — 29| > R and is complicated
when |z — zy| = R, we only consider the case |z — 29| < R, in which we can manipulate the
series as an analytic function on the disk |z — z9| < Ry for any Ry < R:

a) c,(z —20)" — 0 as n goes to infinity

(a)
(b) > |en(z — 20)™| converges, or the series Y ¢,(z — z9)™ converges absolutely
(c) > cn(z — 29)™ is continuous and analytic on the disk

)

(d) The derivative of the series > c¢,(z — zo)™ is given by

oo
Z nep(z — ZO)”_l,
n=1

which is convergent and have the same radius of convergence R.

(e) We can differentiate the series more times and the higher order derivative at zy is
f™(2) = nle,.

Example 1.2. Expand the function f(z) = ﬁ at z = 0 and show that the radius of
convergence if R = 1. Even though f(x) is a well-behaved function, decays to zero at
infinity and has derivatives of any order on the real line, it has a finite radius of convergence.
The reason is that there are actually singularities at z = +¢ and we have to extend the scope
to the whole complex plane to understand the function.



2 Taylor Series

The Taylor series is a straightforward generalization of the result for real variable.

Theorem 2.1. If f(z) is analytic within |z — 2| < R, then f(z) can be expanded as

f"(20) fo
o1

n!

f(z) = f(=0) + f'(20)(z — 20) + (z— 202+ + (2 —2)" +---

with ¢, = f™(z)/n!, and this series is convergent in |z — z| < R.
Remark. The coefficient ¢, can also be obtained from contour integration

en = [ (2)/n! = L Ldf.

210 Jo (& — zp)"H!

Example 2.1. Some well-known Taylor series:

1 1
e—l—i—z—i-gz—i— —|——| +oee
3 _ 13 ( ) 2n+1
smz—z—ﬁz +”‘+(2n—|—1)'z +oee
1 (]') 2n
cosz—1—52+ +(2n)!2 4o
:1+Z+22+"',
1—=z
1 (1>n+1
log(1 — oy 2y 2,8 no .
og(l+2) == 2z+32+ o

Example 2.2. Expand f(z) = (1 — 2)~% about z = 0 for positive integer K. What’s the
radius of convergence?

Solution:
flz)=K1-2)"%"' = f(0)=K,
f'2)=K(K+1)(1-2)7"72 = [f(0)=K(K+1),
f2)=KK+1)-(K+n—-1)1-2)7%" — fm0)=KK+1)--- (K +n—1).

Therefore,

1 1
f(Z):1+KZ+§K(K+1)22+"'+aK(K—i—l)'--(K-l-n—l)Zn—l-"'

1 (K+n—1)!
— 1+ K K(K+1)22 4. op x> % Jon gy
+ Kzt (K+1)z"+ -+ n!(K—l)!Z +



The radius of convergence is determined by
| — 1)
1> lim (K +n)! / (K+n-1)! (K +n)nz
m+1)(K+n-1)

oo | (n+ (K — )17 (K —1)!
Therefore, the radius of convergence is R = 1, which is the distance between z = 0 (the
point the expansion is based on) and z = 1 (the nearest singular point).

n n

z = |z|.

= lim

n—oo

Example 2.3 (Taylor expansion by decomposing into simple fractions). For example, ex-
pand f(z) = ;52— about z = 1.

Solution: It is not convenient to find the coefficients by differentiating the function as above.
We can find it by decompose the function into simpler components,

1 1 1 1
f<Z):z+1+4—z:2+(z—1)+3—(z—1)'

We can expand both ﬁ and # in geometric series,

)

1 1 1 1 1 1 (—1)
— = 1 —Z(z=1D+(z=1)%+--- — 1) 4.
24 (z—1) 21+L(z—1) 2{ = DA e - ) }
1 1 1 1 1 1 1
=_ =21+ Z(z2=1 (=12 4+ (=) ... b
3—(:—1) 31-1(z—1) 3{ LIS RS B TiC R }
Therefore,

f(Z)=%+%+(%—%) (z—1)+---+<3n1+1+(2_nl+)1n>(z—1)"+....

In this way it is easy to determine the radius of convergence R = 2, which is the distance
between z = 1 and the nearest singular point z = —1.

3 Laurent series

If f(2) is not analytic at z, then it is impossible to expand f(z) to Taylor series at z.

But even in such cases; it is possible to represent f(z) by a power series expansion which
consists of both positive and negative powers of z — z5. Such a series is known as Laurent
series.

Laurent expansion If f(z) is analytic in the annulus Ry < |z — 25| < Ry, then f(z) can
be represented by the series

[e.o]

f(Z) = Z Cn(Z — Zo)n, R; < ]z — 20] < Ry,

n=—oo

and the coefficients are given by

_ f(§)
= 5 L e

where C is any simple closed curve within the annulus.
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Figure 1: The closed contour C = Cy + AB — C; — AB used to derive Laurent expansion.

Derivation of Laurent expansion from contour integration: The derivation involves
two steps: during the first step, we get the coefficient ¢, from special contours to allow a
convergent expansion; during the second step, the contours can be deformed to the desired
one C.

Choose the closed contour C = C, + AB —Cy, — AB as in Figure 1, then since f is analytic
on the region bounded by the contour, by Cauchy’s integral theorem

1 f&) .. 1 & . 1 1 [l
f<z>—m§g——zd§—mimd§ sz;g—zd’i'

For the first integral, we have

1 1 1 1

Z — ZO
— . (e _ — (s — T _ T ] _z= _ Z _
E—2z (E—20)—(2—20) E—20 1 == 20 “= 0 20)"
Here the series converges because 2_20 < 1 for any & on C;.

Similarly, for the second integral,

1 1 1 I i(é—Zo)m

E—z (2—2)—(E—2) z—zl-2 z—z (2 —z9)™

zZ—20 m=0
which is convergent as |£ — z|/|z — 20| < 1 for any £ on C,.
Putting these together, we get

ZA ) +ZB 2 — z9) (M

where

aZ L[ O

271 Jo, (€ — 20)" !
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Since f is analytic in the annulus, the two integrands above defining A, and B,, are
analytic too, and hence C; and Cy can be deformed into C. Now let ¢, = A,, when n # 0 and
¢, = B_,_1 when n < —1, then we get the desired Laurent expansion.

Remark. (1) If f is analytic inside |z — 29| = Ry, then ¢, = 0 for n < —1 ( because
f(2)/(z — 20)"™! is analytic). We have just Taylor series as expected.

(2) If fis NOT analytic inside |z — zo| < R; but still differentiable at x¢, then in general
cn = f™M(2)/n! for n > 0. Check Example 2.3 with f(z) = 44&’)% with the annulus
2 < |zl < 3.

How do you find Laurent series for a given f on an annulus? There are basically
two ways:
a) Using the formula for ¢,:

1 f€)

“ " i Je e oy

You may have to choose a special contour C.
b) Using other (simpler) series expansion: geometric series, Taylor expansions, ...
In many cases, the second approach is much faster.

Example 3.1. Using the above two approaches to find the Laurent expansion of f(z) = e!/?
on |z| > 0.
Solution: a) We choose C to be the unit circle. Then (¢ = ¢%)

27 27
—i . . 1 —1 ;
Cn 2 /5 1 2 / e 0€_l(n+1)9610id0: —2 / e Ge—andQ‘
0 " e T Jo

Using the change of variable, ¢ = —6, then

1 2 e—iG —ind 1 -2 et® zmj) ]. 2 et® zmj)
— e e ") = —— dop = do.
2m J, 2m J, o

Now change back to complex integration (because we want to use Cauchy integral theorem)
with z = €',

2m
Cn = L e emdg = L / e*2" 2.
0 |2|=1

27 i
If n > 1, we get ¢, = 0, because 2" ! is analytic on the unit disk. When n = —m <0,
1 | 1 e 1 dm 1 1
C —_— eZZTL* dz = —_— dZ - ez -
27T'Z |z|=1 27TZ |2|=1 Zm—l—l ml dzm o m| (_n)|

b) From Taylor expansion,
f&) = e =1+ 1)z 4 (/2 +

Therefore, ¢, =0if n > 1 and ¢, = ifn <0.

()'



Figure 2: The Laurent expansion at z = 0 and z = 1 for Example 3.2 and Example 3.3.

Exercise. Find the Laurent expansion of f(z) = e**= on |z| > 0.

Example 3.2. Find the Laurent expansion of f(z) = 2(1;2) in the region (a) 0 < |z| < 1,
(b) |z] > 1.
Solution: When 0 < |z| < 1,
1 1 1 9 4 6 1 3
f2) =177 :;(1+z +2t+ 20 =z
When |z]| > 1,
11 1 2, 4 3 _ =5 _ T

Example 3.3. Find the Laurent expansion of f(z) = m in the region (a) 0 < |z—1] < 1,
(b)yl<l|z—1]<2, (¢)2<|z—1].
Solution: Using the change of variable w = z — 1, then

1 1

J@ =Jwt+D) = e i w9~ et wern) f(w).

When 0 < |w| < 1,

. 11 1 1
f(w):_%1+w1+w/2:_%(1_““L“’z_"')(1_w/2+w2/4—w3/6+“')

1 3 07
:——<1——w—|——w2+--->
2w




Alternatively, we can decompose f into partial fraction

]E( ) 1< 1 1 ) 1 1 1 1
w) = —— — e e
w\l+w 24w w\l+w 21+w/2

__1 <(1—w+w2—---)—%(1—w/2+w2/4—~--))

w
B 1 3 Tw n
20 4 8

In this way we can get the general formula for all the coefficients.
When 1 < |w| < 2, we expect infinite many terms for both positive and negative powers
of w and it is better to use partial fraction.

. 1/1 1 11
f(w):_i<61+1/w_§1+w/2)

_ (6(1—1/w+1/w2+---)—%(1—w/2+w2/4+-~-))

w
B 1 +1 1+1 1+w w2+
o w wd w2 ow 2 4 8

When |w| > 2,
. 1/1 1 11
f<w)__5(51+1/w_61+2/w>
:—%<(1—1/w+1/w2+---)—(1—2/w+4/w2+---)>
_ 13T

Put all these together,

S =yt Sl {CEl YRR 0<|z—1] <1,
f(Z): _(2_11)2+2(21_1)_%1+%1_? 1<’Z—1’<2,
_(2—11)3 + (z—31)4 - (2_71)5 +eee |z — 1] > 2.

Remark. The specific Laurent expansion is valid only on one annulus R; < |z — 2| < Ra.
The function is analytic on this annulus and has singularity on the circles |z — 29| = R; and
|z — 20| = Rg. In fact, the numbers 0, 1,2 determining the annulus are exactly the distance
of the singular points to zg = 1, which is true for general function with more complicated
expressions.

Exercise. Find the first three terms of the Laurent expansion of f(z) = —— on (1)
O<|z|<m (2)m<]|z| <2rand 3)0< |z —7| <.



Comparison between Taylor series and Laurent series: Even though, Laurent series
looks very similar to Taylor series (it is a generalization of Taylor series), the presence of
negative powers of z — zy makes some fundamental differences:

(a) For the Taylor series, the coefficient ¢, given by

1 © )
= omi X (€ - ZO)’"“Fldf (*)

is related to the derivatives of f at 2y, i.e., c, = f™(2)/n!, but in general, the function
expanded by a Laurent series is not defined at z, (hence the derivatives are not defined
there either).

(b) Another difference is that the contour C in (x) for Taylor series can be deformed into an
arbitrary small circle around zq (f is analytic around zj), but it is not true for Laurent
series (the function is defined only on Ry < |z — 2| < Ry for some R; > 0.

4 Singularity of complex function

Definition 4.1. A point 2 is a singular point of f(z) if f(z) is not analytic at z. Tt is a
isolated singular point if there is no other singular point in the neighbourhood of 2z, i.e.,
there is a region 0 < |z — 29| < r in which f(z) is analytic for r small.

Remark. The function f(z) can be represented as a Laurent series at an isolated singular
point zy, otherwise it is not. Omne example of non-isolated singular point is z = 0 for

_ 1
f(Z) ~ sin(l/z)°

In general, the isolated singular point zy of a function f(z) can be classified in terms of
its Laurent series f(z) =>>° _ ¢,(z — 20)™ as follow:

n=—oo

(1) Regular point: if ¢, =0 for all n <0, and ¢y = f(z20).

(2) Removable singularity: if ¢, =0 for all n < 0 and ¢y # f(z). For example,

o=f o

a, z =0,

when a # 1/2. Since

l1—cosz 1 22 2
T—?(1_(1_a+1+...))—

we can redefine f(0) = 1/2, then f(z) is analytic on the whole complex plane.

(3) Pole of order m(m > 1): If c_,, # 0 and ¢, = 0 for all n < —m. For example
f(z) = “=2 has a simple pole at z = 0, and f(z) = has a double pole at z = 0.

z
sin® z

9



(4) Essential singularity at zo: if there are infinite number of inverse powers in the
Laurent series. For example, f(z) = cos 1.

There are two other types of less common singularities:
Singularity at infinity: f(z) is said to be singular at oo if f(2) is singular at the origin,
where f(z) = f(z7!). For example f(z) = — is NOT singular at oo, while f(z) = % is
singular at oo.
Branch singularity: This type of singularity is related to multi-valueness of some complex

function, for example f(z) = logz, and f(z) = 2"/? at z = 0. Writing 2z = re? = re/(0+2k7)
for any integer k, then
log z = log(re’®*%™) = logr + (0 + 2kr), k=0,41,42,---
and
S1/2 _ p1/2,0(0/24+km) _ 4 1/2,060/2
Example 4.1. Find the type of singularity of f(z) = Z(l—iz)Q and the Laurent expansion
around them.
Solution: The singularities are z = 0 and z = 1.
(a) When 0 < |z| < 1,
1 9 5 1
f(z):;(1+z+z +e0) :;+2+32+--- .
Therefore, z = 0 is a simple pole.
(b) When 0 < |z — 1| < 1,
1 1 1
= = 1—(z—-1 —1)2 ...
Ul P ey el e G A
1 1

— - 1—...
-1 -1

Therefore z = 1 is a double pole.

Example 4.2. Find the type of singularity of f(z) = sin % and the Laurent expansion around

them.
_ = () 1
Solution When z # 0, f(z) = Z mz’”l'

n=0
of f(z).

Therefore z = 0 is an essential singularity

5 Blasius laws and Kutta-Joukowski’s lifting force

If the origin is inside the obstacle, then the complex velocity
7 , C1 C2
Vv = — UOO - = R
(2) (2) + ~ + =2 +
for some complex number U, ¢y, ---. The far field flow is matched for Uy, = ts + 100.

10



Uso

Figure 3: Streamlines representing the potential low with niform upstream velocity U, past
an obstacle

Tangent and normal on the boundary :

L dF d d dy . d
r=" ="+ Y m="Ye - g

ds %ex Eey’ ds ds ¥

— —

The flux across a curve 7 is defined by

fwz/ﬁ-ﬁdS:/udy—vdx://(@+@>dxdy://V~ﬁdxdy
. - or 0Oy

and the circulation along a curve 7y is

CV:/U-dfz/udx—i-vdy://wdxdy.
2! gl

The contour integral of the complex velocity around the body defined by the closed
curve v is equal to C, + iF,, where C, and F, are the circulation and flux around the body,
respectively. This can be checked easily as

]{V(z)dz = j{(u —w)(dz + idy)
= ?{(uda: + vdy) + z'?{udy — vdx

Y Y

=C, +1iF,
Blasius laws of hydrodynamic force and moment: First, the pressure is
d(z) |?
dz

p P
PIPO‘%”“Q):W%‘

and the force and moment are defined as

@:_fﬂw @:%Rm M:ff@m+ww
v gl K
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Pdx

. dx »

Pdy
dy

Now we can define the complex force as

FIFx—iFy:—fP(dy+idx):—z’j{sz:_Z'pO%ngrgi?{
v y ~y ~

The first integral —ipg fv dz vanishes identically (check this!). The second integral is not

2

dz.

dQ(z)
dz

ready for use to use yet, because of the presence of the |€'(2)|? and dz.

But we can convert the integral in the complex force F' into a “regular” one, using the
special boundary condition on 7 (which can be deformed in the “regular” complex integral
you see before).

Because v is the fixed boundary of the body, the flow can not penetrate the boundary,
leading to ¥ - 77 = 0 or the fact that v is a constant on 7. Therefore, di) = 0 and

dQ(z) = d¢ — idip) = dp = dQ(z)

Therefore,

dQ(z) 00z) . dQz)dQ(z) ,_  d(z) o
p P — dz = & dz = Wd(l(z) = (Q(2))%dz.

Alternatively, we can use {¥(z) = u — v to show that

|V (2)]2dz = (u* + v*)(dw —idy) = (u® — v* — 2uwi)(dx + idy) = ' (2)*dz

where the identity 0 = dy = —vdx + udy is essential.
As a result we get the Blasius law for hydrodynamic force,

F=F,— zF——@j{Q’()d
2/,

In the tutorial sheet, you can show that

M= ——7{|Q 2(zdz + ydy) = (—— 7{ (2 |2zdz> — Re <—gjfﬂ’(z)22dz) .

12



Kutta-Joukowski’s lifting force: Let the complex potential be
JE T b
Q(z):UooZ+—10gZ+—1+——|—
271 z 2

with far-field velocity (Ueo, Voo) and Usy = Uoe — 1000-
Then the circulation Re fﬂ/ Y(z)dz is exactly I' and the total force on the obstacle is

F, —iF, = Bi%Q’(z)de
2 Jy

which is the celebrated Kutta-Joukowski theorem representing the lifting force as a function
of the circulation and far field velocity.

6 Cauchy Residue Theorem

If a function f(z) has a Laurent expansion - ¢,(z—2,)" on the annulus Ry < |z — 2| <

R,, the coefficient c¢_; is special because it is the only one that appears in the integral
f7 f(2)dz for any contour v on the annulus, and is call the residue of f at z,, and is
denoted as Res(f; zp).

Exercise. Find Res(f; 2 = 1) with f(z) = -

z(z—1)2"

Calculation of residue depending on the form of the singularity

a) Essential singularity like f(z) = sin < at z = 0: Laurent expansion is the only way.

b) Functions of the special form f(z) = (zf(z'z))m with m > 1, ®(z) is analytic at zp and
®(2) # 0, then
1 1 amt
. . (m—1) . . m
Res(f, 20) - (m _ 1>‘(I) (ZU> - <m _ 1)| dzm—1 (Z ZO) f(Z)] e

In particular for m = 1 (simple pole), Res(f; z0) = ®(20).

c) If f(2) =p(2)/q(2), p(z), q(z) are analytic at zy, and q(z0) = 0, ¢’(29) 7# Om then

Res(f;20) = 7

13



Example 6.1. Find the residue of f(z) = (% at z=1and z = —1.

z—1)2(2+1)
Solution: Since f(z) satisfies the form in b) above,
d 1 3 3
Res(fiz=1)= -~ | =_-_2 | =_=
AR = e ) B T ) M T
1 d? 1 1 6 3
estfie= D=y G|, T2 G-, 16

Example 6.2. Find the residue of f(z) = 52 at z = k.
Solution: Let p(z) = e*,q(z) = €** — 1 as in ¢) above, then

p(kmi) ehmi B (—1)’“'

R y 2z =kmi) = = . =
es(f3z = ki) q (kmi) — 2e2kmi 2

Theorem 6.1 (Cauchy’ residue theorem). Let f be analytic inside and on a contour y except
a finite number of poles, z1, 29, -+ ,zn. Then

Figure 4: Cauchy Residue Theorem: The integral on the contour 7 is reduced to integrals
on small circles around each poles.

Example 6.3. Find the contour integral f,y ;)dz, where 7y is the circle |z| = 2, with

z(1+422
counter-clockwise orientation.
Solution: Since there are three singular points 0, £¢ inside the contour,

1 . 1 1 _ 1 .
Lmdz = 27 (Res(m, O) + ReS(m,Z) + Res(m, —7/))

1 1
! ( + 272 + 2(_@,)2) 0

Is this result consistent with the case when v is deformed to the circle |z| = R with radius
R goes to infinity?

1
Exercise. FFind I = — [ cot zdz where C is the unit circle.

™ Je
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7 Applications of Residue Theorem

In this section, several examples are given for the application of residue theorem to evaluate
certain integrals.

1
14+ a2 —2acosf

2
Example 7.1 (Integrals involving trigonometric functions). Find /

0
for 0 < a <1 and a > 1 using contour integration and residue theorem.

Solution: For integrals with trigonometric on [0,27], we can use the fact that on the unit
circle z = ¢ and cosf = (¥ +e7%)/2 = (2 +271)/2 and sin@ = (z — 271)/2i. This change
of variable implies that df = idz and for this problem

o 1 1 1 dz 1 1
2 df = — 2 N =7 5 5 dz,
o 1+a®—2acosh iJel+a?—alz+2z71) 2z iJe(l+a?)z—a(z?2+1)

where C is the unit circle with counter-clockwise orientation.
When a > 1, the only pole inside the unit circle is z = 1/a and is a simple pole. Therefore
by residue theorem

o 1 1 1
df =2 -
/0 1+ a? —2acosf 7TReS<(1+a2)z—a(22—i-1)’a>

—1
— 97 lim z—1/a
z—1/a (1 + CL2>Z — CL<22 + 1)
1 2
=27 lim = T

i—1jal+a?—2az a?—1

Similarly, when 0 < a < 1, we can get

2
1 2
/ o= ——"—.
o l+a?—2acosf 1 —a?

Remark. For integrals involving trigonometric functions, we usually convert it to an integral
on a circle and then use Residue theorem. But not for all such integral, for instance the

following integral
*  cosazr
I = —————dx.
/_ o @R

For integrals with unbounded limit, we usually have to complete the contour which is a
sector of a circle of radius R and then let R goes to infinity.

1
1+ 24
Solution: There are different ways to complete a closed contour on the complex plane, which
includes the integral we want to evaluate. The motivation comes from the fact that we want

to related 1+1Z4 to our integral if it does not vanish or ﬁ is a real number. We can use any
of these and for simplicity, we choose the first one.

dx

Example 7.2. Find /
0
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Cy
“ o . o o
o R r G ¢, R . ¢ R
s
R

Figure 5: Three possible contours for example 7.2.

By residue theorem, since z = €/™/* is the only singularity inside the contour and is a

simple pole,

- ,
. - z — e/ T o T
6”/4) =92mi lim S = %M/ = Z /A

1 + 24’ z—»eiﬂ'/‘l ]_ + Z4 2 2

/ 1 dz = 2miRes(
Cr4Cytcy L2

The contour on Cj vanishes, because after the parametrization z = Re®,

1 R Re? B R 2R
/(;21+z4d2' /0 1+R4ei92d9'_/0 R4—1d9 R4_1—>O

as R — o0o. The integral on Cj is related that on C). Using the parametrization z = iz,

Taking the limit R — oo, we have

(1-— z)/ dy = Lemin/4
o l+at 2

or

/°° 1 _We*i”/‘L_ T
o 14zt 21—4 29

Example 7.3 (Indented contours). Find the integral [;° S2£dz.

T

Solution: As usual, we can to make the integrand % complex. But in general sinz is
exponentially large when |z| — oo. More precisely, if we write sin z = (e +e7%)/2, then %
decays on when z goes to infinity on the upper half plane, and becomes exponentially large
on the lower half plane. The case for e~ % is the opposite. Therefore, we have to separate e

and e~% and consider them on the upper and lower semicircle.

16
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Figure 6: Two possible contours for example 7.3.

One alternative way is the fact that

/Smxdlem(/ e—d$>,
0 z o <

which enable us to focus on € and the upper semicircle (Figure 6).

Another comment is that because now z = 0 is a singularity, we have to use a dented
contour around zero. There are two choices, both giving the same final answer. To reduce
the complex, we can consider the one where z = 0 is outside the contour. Therefore, we use
the contour on the left of Figure 6, and (forget about the imaginary part for the moment)

eiz
/ —dz = 0.
C1+Ca+C3+Cy <
It is easy to see that [, e”/2dz = [, €*/2dz. On Cy, 2 = Ret and
eiz ™ ) T
gy = / eiRewidQ _ Z/ eiR(Cose+iSin9)d9.
Co # 0 0

We can show that this integral goes to zero. Taking the modulus,

eiz s )
/ —dz| < / e~ ftsinf g,
Cy < 0

Using the inequality sin 6 = %9, we get

e i . T R T
—d < Rsm9d9</ fTGdQZ_ 1_ —2R 0
/CQZZ_/Oe <[ (1) 0,
as R — oo.

Finally, z = ee? on Cy and

e T e
—dz = —i/ e df — —im,
Cy z 0

17



as € — 0.
Therefore,

) e *®sinx )
0= lim Im(/ —dz):2/ dx — i
€¢—=0,R—00 C1+C2+C3+Cy % 0 X

or [7 Iy = /2.

We don’t focus too much on multi-valued functions like log z and 2z'/2 in this course.
In the context of contour integration, the extra difficulty with these multivalued functions
comes from the fact that the contour in general can not across the branch cut (which
we introduce to get a unique function value). Here is one example with log z.

Example 7.4 (Contours with branch cut). Find the integral fooo iffz dx using contour inte-

gration.

Figure 7: Two choices of the contours for example 7.4. Both contours give you the same
answer.

Solution: There are two contours that keep the denominator 1 + z? invariant, as shown in

Figure 7.
If we are using the contour on the left, the only singularity is z = ¢ and
1 1 —4)1 2
/ o8 22 dz = 2miRes < o8 Z2 , z) = 27 lim w T,
Ci+Ca+CytCy L+ 2 142 =i 14z 2

When R — oo, the integral on (5 vanishes, and the integral on Cj is related to the desired
integral. Using the parametrization, z = (—1)t for ¢ € [¢, R] then log z = iw + logt (Here is
the place you choose the right branch of log 2, since log z can be —im 4 logt or other values.

Therefore
log z Rinm 4 logt _ R R logt
dz = ———dt = dt dt.
/031+z2z /E 1+¢t2 W/E 1+t +/E 1+t2




In the limit € — 0 and R — oo,
1 * 1 > logt 2 > logt
lim 082 g = m/ ——_dt +/ 8 =Ty / 8"t
E—>0,R—>OO 03 1 + 22 0 1 + t2 0 1 + t2 2 0 1 + t2
On Cy, using the parametrization z = e, 0 € [0, ], then

1 T 1 0 )
/ o8 22 dz = —/ %ee’%cﬁ
o, 1+ 2 0 1+ e“e

The limit of the integral when ¢ — 0 is zero. Therefore,

72 log z 72 /‘X’ log =
0

—i1=lim sdz = —i+2
e=0.F=00 Jor 1 0ntC3+Cy 142 2

You get the same answer using the contour on the right in Figure 7. For these multivalued
function, the integral of two contours C; and Cj along the positive real axis but different
orientations do not cancel each other. In factor, the positive real axis is a branch cut. (Try
the calculation for this contour).

Example 7.5 (Summation of infinite series). Show that E — = % by applying the residue
n
n=1

m
theorem to the function f(z) = — cotmz.
z

(=N —1/2,N +1/2) (N+1/2,N +1/2)
-N—-1-N —1 1 N | N+1
(=N —1/2,—-N —1/2) (N +1/2,—N —1/2)

Figure 8: The contour for example 7.5.

Solution: The contour Cly is a square with corners (£ (N +1/2), £(N +1/2)), where N is
an integer. This contour has to be choose in this way such that as N becomes infinity, the
integral [, f(z)dz vanishes because cot z is bounded on C'. Therefore,

f(z)dz meotmz

Cn

< max
zeCn

Length(Cy) = O(1/N),

22
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since Length(Cy) = O(N) and | % cot mz| = O(1/N?).
On the other hand, the only singularity of f inside Cy is 0,%1,--- ,£N. By residue
theorem,
1
— f(z)dz = Z Res(f,n).
Cn

21
n=—N
If n # 0, then z = n is a simple pole and

— — 1
Res(f,n) = lim(z — n)f(z) = lim ECOSWZ(Z, n) = " cosnrlim (z n) = —.
z—n z—n 22 sinmz  n? z—n sinTz  n?

When z = 0, it is a triple pole and we can use power series expansion to find it (may be
2

more complicated to use hI% §Pz3f(z))
Z— z

meosmz  m 1—m2? /24 1 2

f(z) =

2sintz 2wz —mB/6+--- 25 3z
Therefore Res(f,0) = —72/3. Put all these together,

2 N 2 N

T T 1
o =g A D D3
n=—N,n#0 n=1
Let N then we have the identit f: 1 T
— 00, nw v identi —_ = —.
Y — n? 6

General questions for integration using residue theorem:
1. What kind of contours you can guess from the integrand?

2. How do you deal with integrand involving trigonometric functions sin x and cosz, on
finite intervals (say [0, 27| or infinite intervals (say [0, 00))?

3. How to keep things simple (the minimal number of curves to integrate)?

4. Can you taking advantage of the fact that the integral is real?

Destiny of different parts of the contours:
a) vanish in the limit (R — oo or zero);
b) connect to what you want to evaluate;

¢) something you know or you are given.
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