
Aero III/IV Complex Variables

Many of the basic properties of complex variables are a generalization of those of real
variables. The most striking di�erence is the concept of (complex) di�erentiable functions or
analytic functions. It requires more than ordinary di�erentiability of the real and imaginary
parts, the so called Cauchy-Riemann condition.

In this section, the basics of complex numbers, elementary complex functions and an-
alytic functions will be brie�y reviewed �rst. We will focus on some applications of the
complex variables, and then move to complex line integrals, the most important topics in
the remaining course.

1 Basic concepts and arithmetics of Complex numbers

1) The fundamental relation: i2 = −1

2) Two representations:

(i) Cartesian representation: z = x+ iy

(ii) Polar representation: z = reiθ

In general, the Polar representation is preferred for certain manipulations like n-th roots
z1/n, the logarithm log z and other calculations related to trigonometric functions.

3) Related concepts for z = x+ iy = reiθ:

(i) Real part x = Rez

(ii) Imaginary part y = Imz

(iii) Modulus r = |z| = √x2 + y2

(iv) Argument θ = Argz = arctan y
x

z = x + iy

y

x

θ

tan θ = y/x

r = |z|

4) These two representations are related by the Euler equation:

eiθ = cos θ + i sin θ,

where θ is measured in radian like π/3, π/2 (instead of degree).
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5) Basic operations between complex numbers:

(i) (Addition) If z = x+ iy and w = u+ iv,

z + w = (x+ iy) + (u+ iv) = (x+ u) + i(y + v).

(ii) (Multiplication)

zw = (x+ iy)(u+ iv) = xu− yv + i(xv + yv).

(iii) (Division)

z

w
=
x+ iy

u+ iv
=

(x+ iy)(u− iv)

u2 + v2
=
ux+ vy + i(uy − vx)

u2 + v2
.

6) Another important concepts is complex conjugate z̄ = x− iy
(i) ¯̄z = z

(ii) Rez =
z + z̄

2
, Imz =

z − z̄
2i

(iii) z + w = z̄ + w̄, zw = z̄w̄

(iv) |z̄| = |z|, |z|2 = zz̄, |zw| = |z||w|
7) There are also important inequalities that can be used later (to estimate some of the

terms in contour integration)

(i) |Rez| ≤ |z|, |Imz| ≤ |z|
(ii) |z + w| ≤ |z|+ |w|
(iii)

∣∣|z| − |w|∣∣ ≤ |z − w|
The equality in (ii) is achieved when
Argz = Argw.
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8) De Moirre's formula (
cos θ + i sin θ

)n
= cosnθ + i sinnθ.

9) Special curves on the complex plane (in terms of equation or parametrization):

(i) General straight line: z = (1− t)z0 + tz1. If we restrict t ∈ [0, 1], then this is a line
segment connecting z1 and z2

(ii) The real axis: Imz = 0

(iii) The imaginary axis: Rez = 0

(iv) The straight line going through the middle point of z1, z2, and perpendicular to
z1 − z2: |z − z1| = |z − z2|
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(v) The circle with centre z0 and radius r: |z − z0| = r. We can also parametrized by
z = z0 + reiθ with θ ∈ [0, 2π).

(vi) Annular region: r1 ≤ |z − z0| ≤ r2

10) n-the roots: Given z, �nd w such that wn = z (and w is denoted by z
1
n ).

Let z = r
(

cos θ + i sin θ
)
, w = R

(
cosφ+ i sinφ

)
. By Demoirre's formula,

Rn
(

cosnφ+ i sinnφ
)

= r
(

cos θ + i sin θ
)
.

Therefore, Rn = r and nφ = θ + 2kπ with k = 0,±1,±2, · · · . This implies that

w = z
1
n = r

1
n

(
cos

θ + 2kπ

n
+ i sin

θ + 2kπ

n

)
, k = 0, 1, · · · , n− 1,

which are n distinct points lying equally-spaced on a circle of radius r1/n.

Exercise 1.1. Find the modulus of 3+i
1+i

.

Exercise 1.2 (The Circles of Apollonius). The equation |z− z1|/|z− z2| = λ(> 0) for λ 6= 1
is a circle, called the Circles of Apollonius.

(i) What is the curve corresponding to λ = 1?

(ii) If λ 6= 1, substituting z1 = x1 +iy1 and z2 = x2 +iy2 into the equation |z−z1|/|z−z2| =
λ, we get (with z = x+ iy)

λ =
|z − z1|
|z − z2| =

|(x− x1) + i(y − y1)|
|(x− x2) + i(y − y2)| =

√
(x− x1)2 + (y − y1)2√
(x− x1)2 + (y − y1)2

. (1)

Con�rm that this is a circle (the expressions for the center and the radius are very
complicated).

(iii) Once we are sure it is circle, we can �nd the center and the radius in other alternative
ways, using the geometry.

Let z3 and z4 be the intersection points of the circle with the straight line connecting
z1 and z2. Without loss of generality, we can take λ > 1 (the case 0 < λ < 1 works
similarly), which looks like in Figure 1. The advantage using this geometric information
is that we can get rid of the modulus from the governing equations |z−z1|/|z−z2| = λ.
That is

λ =
z1 − z3

z3 − z2

=
z1 − z4

z2 − z4

,

which gives

z3 =
λz2 + z1

λ+ 1
, z4 =

λz2 − z1

λ− 1
.

By the symmetry, the centre of the radius should be on this straight line, and z3, z4

are on the opposite sides of a diameter. Therefore, the centre of the circle is

z0 =
1

2
(z3 + z4) =

λ2z2 − z1

λ2 − 1
, (2)
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z1

z3

z2

z4

Figure 1: The circle of Apollonius of all the points |z− z1|/|z− z2| = λ > 1, which intersects
the straight line (connecting z1 and z2) at z3 and z4.

and the radius is

R =
|z3 − z4|

2
=

λ

|λ2 − 1| |z1 − z2|, (3)

which should be compared with the centre and radius calculated from the algebraic
equation (1).

(iv) Check that when 0 < λ < 1, the centre and the radius are still given by (2) and (3),
respectively.

(v) Find the curve on the w-plane, which is transformed from the circle |z| = 1 by the map
w = (z + 2)/(z − 2).

The following exercises show some applications of complex numbers, but are less related to
the rest of the course.

Exercise 1.3. From the identity ei(θ+ϕ) = eiθeiϕ and the arithmetics of multiplication of
complex numbers, derive the following trigonometric identities:

sin(θ + ϕ) = sin θ cosϕ+ cos θ sinϕ,

cos(θ + ϕ) = cos θ cosϕ− sin θ sinϕ.

Exercise 1.4. Shown that

sin θ + sin 2θ + · · ·+ sinnθ =
sin θ − sin(n+ 1)θ − sin θ cos(n+ 1)θ + cos θ sin(n+ 1)θ

2− 2 cos θ
,

using the relation between Euler equation (The right hand side can be simpli�ed further).

Exercise. Show that the four points A,B,C,D
are on the same circle if and only if the distances
satis�es the condition

AC ·BD = AB · CD + AD ·BC.

A

B
C

D

Hint: Notice the condition that A,B,C,D are on the same circle can be characterized by
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∠ADC+∠ABC = π (or equivalently ∠BAD+∠BCD = π) and the identity (zA−zC)(zB−
zD) = (zA − zB)(zC − zD) + (zA − zD)(zB − zC), where zA, zB, zC and zD are the complex
numbers corresponding to the four points.

Exercise 1.5. Shown from the property |z1 + z2| ≤ |z1|+ |z2|, we can get

|z1 + · · ·+ zn| ≤ |z1|+ · · ·+ |zn|.

Moreover, for any real number a1, · · · , an, b1, · · · , bn, we have the inequality√
a2

1 + b2
1 + · · ·+

√
a2
n + b2

n ≤
√

(a1 + · · ·+ an)2 + (b1 + · · ·+ bn)2.

A B E F

C D G H

Figure 2: Sum of three angles

Exercise 1.6. Three squares placed side by side as shown in Figure 2. Prove that the sum

of ∠HAF , ∠HBF and ∠HEF is a right angle. Hint: Let the vectors
−−→
AH,

−−→
BH and

−−→
CH be

the complex number 3 + i, 2 + i and 1 + i respectively, the the sum of the three angles is the
argument of the product (3 + i)(2 + i)(1 + i).

2 Elementary complex functions

Exponential function ez = ex
(

cos y + i sin y
)
: Basic algebraic properties:

(i) When z = x (i.e. y = 0), familiar exponential of real variable; when z = iy, eiy =
cos y + i sin y, for instance eiπ = −1.

(ii) ez1+z2 = ez1ez2 ; (ez)n = enz.

Trigonometric functions: From the Euler's formula

eix = cosx+ i sinx, e−ix = cosx− i sinx

for real variable x, we have

cosx =
eix + e−ix

2
, sinx =

eix − e−ix
2i

.
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These de�nitions can be generalized from real variable x to complex variable z, i.e.,

cos z =
eiz + e−iz

2
, sin z =

eiz − e−iz
2i

.

Other trigonometric functions can be de�ned similarly,

tan z =
sin z

cos z
, cot z =

cos z

sin z
, sec z =

1

cos z
, csc z =

1

sin z
.

It can be veri�ed that all trigonometric identities of real variables are valid, when the real
variables are replaced by complex variables. For example (try it!),

sin(z1 + z2) = sin z1 cos z2 + cos z1 sin z2,

cos(z1 + z2) = cos z1 cos z2 − sin z1 sin z2,

sin2 z + cos2 z = 1, · · ·

Hyperbolic functions: The hyperbolic functions of complex variable are de�ned analo-
gously as for real variable:

sinh z =
ez − e−z

2
, cosh z =

ez + ez

2
,

and

tanh z =
sinh z

cosh z
, coth z =

cosh z

sinh z
, sechz =

1

cosh z
, cschz =

1

sinh z
.

The identities of hyperbolic functions of real variables hold also for complex variables, like

cosh2 z − sinh2 z = 1.

Finally we have the following relations between trigonometric functions and their hyperbolic
counterparts:

sinh iz = i sin z, sin iz = i sinh z, cosh iz = cos z, cos iz = cosh z.

3 Functions of a complex variable, limit and continuity

De�nition of a complex function f(z) : z → w = f(z). If for each z (in a suitable region
R in z-plane), there exists a unique complex w(z), then we say that w(z) is a function of z,
written as w = f(z).

Remark. We isolate this de�nition here, because of multi-valued function we encounter
later, like zα, ln z, · · · .

The concept of limit and continuity of a complex function is similar to those of a real
function. The sequence {zn} converges to the limit z0 ∈ C if lim

n→∞
zn = z0, or equivalently

lim
n→∞

|zn − z0| = 0.

Suppose f(z) is de�ned at all points in some neighbourhood of z0 (except possibly at z0

itself). We say f(z) has limit w0 if as z approaches z0 (along any path), w approaches w0.
This is written as

lim
z→z0

f(z) = w0.
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x

y

u

v

w = f(z)

Figure 3: Two separate planes to represent the complex function w = f(z).

Exercise 3.1. Find the limit of f(z) =
z2 + iz + 2

z − i as z → i.

A complex function f(z) is continuous at z0 if

lim
z→z0

f(z) = f(z0),

regardless of the manner in which z → z0.
The combination complex conjugate, modulus and their related (triangle inequalities)

can be used to show the continuity of many simple functions e�ectively.

Example 3.1. Show that the following functions are continuous on the �nite complex plane:
(1) f(z) = z̄; (2) f(z) = Rez; (3) f(z) = |z|.
Solution: (1) |f(z)− f(z0)| = |z̄ − z0| = |z − z0| = |z − z0|, therefore

lim
z→z0
|f(z)− f(z0)| = lim

z→z0
|z − z0| = 0.

(2) |f(z)− f(z0)| = |Rez − Rez0| = |Re(z − z0)| ≤ |z − z0|, therefore
lim
z→z0
|f(z)− f(z0)| ≤ lim

z→z0
|z − z0| = 0.

(3) We use the triangle inequality
∣∣|z| − |z0|

∣∣ ≤ |z − z0| and
lim
z→z0
|f(z)− f(z0)| ≤ lim

z→z0
|z − z0| = 0.

For continuity of a function f(z), we can just look at the real u and imaginary part v of
f(z), which is reduced to the continuity of u and v as a function of x and y. To show some
discontinuous functions, one way is to choose di�erent sequence of zn approaching z0 to get
di�erent limits.

Example 3.2. Show that

f(z) =

{
Imz/Rez, Rez 6= 0,

0, Rez = 0.

is not continuous at z0 = 0.
Solution: Choose z = t+ it→ 0 as t→ 0, then we have f(z) = f(t+ it) = 1 6= 0. Therefore
the limit f(z) when z → 0 does not exist.
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4 Di�erentiability

To avoid the problem of de�ning di�erentiability of a function near the boundary, we only
consider functions de�ned on open set like {z : |z| < 1}, instead of closed set like {z : |z| ≤ 1}.
De�nition 4.1 (Di�erentiation). A complex function f is de�ned on an open subset D of
C is di�erentiable at z0 ∈ D if

lim
z→z0

f(z)− f(z0)

z − z0

= lim
∆z→0

f(z0 + ∆z)− f(z0)

∆z

exists, denoted by f ′(z0).

Notice that the above limit is independent on the path. In other words, if you get
di�erent limits along di�erent paths, then the function is not di�erentiable (this is exactly
how we show that some functions are not di�erentiable).

Example 4.1. Show that f(z) = zn is di�erentiable for positive integral n.
Solution: Using binomial expansion,

lim
∆z→0

(z0 + ∆)n − zn0
∆z

= lim
∆z→0

(
zn0 +

(
n
1

)
zn0 ∆z + · · · )− zn0

∆z0

= nzn−1
0 .

Therefore, f(z) = zn is di�erentiable for all z, and f ′(z) = nzn−1.

Example 4.2. Show that f(z) = z̄ = x− iy is not di�erentiable.
Solution:

lim
∆z→0

(z0 + ∆z0)−∆z0

(z0 + ∆z0)− z0

= lim
∆z→0

∆x− i∆y
∆x+ i∆y

=

{
1, if ∆y = 0,

−1, if ∆x = 0.

Since the limits are di�erent on di�erent paths, f(z) = z̄ is not di�erentiable anywhere.

Remark. Di�erentiability of a complex function is quite a severe requirement. Functions that
are di�erentiable in the real line may NOT di�erentiable in the complex plane, because of
the limit can be taken away from the real line. For example consider the function

f(x) =

{
e−1/x2

, x 6= 0,

x = 0, x = 0,

then f ′(x) exists at x = 0 as a real function of x. Now if f is extended to the whole complex
plane

f(z) =

{
e−1/z2 , z 6= 0,

x = 0, z = 0,

then f ′(z) does not exist at z = 0. When the origin is approached from the real axis
(z = x ∈ R),

lim
x→0

e−1/x2

x
= 0.
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When the origin is approached from the imaginary axis z = iy, then

lim
y→0

e−1/(iy)2

iy
= lim

y→0

e1/y2

iy

does not exist. Therefore, f(z) = e−1/z2 is not di�erentiable at z = 0.

A function f(z) is called analytic in a region R if f(z) is de�ned and di�erentiable at
all points of R. A function f(z) is said to be analytic at a point z0, if f(z) is di�erentiable
in a neighbourhood of z0.

Remark. Analyticity of a function at z0 is stronger than di�erentiability. Show that f(z) =
zz̄ = |z|2 is di�erentiable at z = 0, but it is not analytic at z = 0.

The di�erentiability of a complex function f(z) = u(x, y) + iv(x, y) is characterized by
the so-called Cauchy-Riemann equations. They are derived by taking ∆z = ∆x and
∆z = i∆y respectively:

f ′(z) = lim
∆x→0

(
u(x+ ∆x, y)− u(x, y)

∆x
+ i

v(x+ ∆x, y)− v(x, y)

∆x

)
= ux(x, y) + ivx(x, y),

f ′(z) = lim
∆y→0

(
u(x, y + ∆y)− u(x, y)

i∆y
+ i

v(x, y + i∆y)− v(x, y)

i∆y

)
= −iuy(x, y) + vy(x, y),

or

ux = vy, vx = −uy (The Cauchy-Riemann Equations).

The Cauchy-Riemann equations are also su�cient condition for di�erentiability. In fact,
by Taylor expansion, for ∆x and ∆y small,

∆u = ux∆x+ uy∆y + o(|∆z|), ∆v = vx∆x+ vy∆y + o(|∆z|).
Therefore,

∆f = ∆u+ i∆v

= (ux∆x+ uy∆y) + i(vx∆x+ vy∆y) + o(|∆z|)
= (ux + iuy)(∆x+ i∆y) + o(|∆z|). (4)

Therefore,

lim
∆z→0

f(z + ∆z)− f(z)

∆z
= lim

∆z→0

∆f

∆z
= ux + ivx := f ′(z).

Theorem 4.1. A function f(z) = u + iv is analytic in a region if and only if ux, uy, vx, vy
are continuous functions and satisfy the C-R equations.

Exercise 4.1. Show that the Cauchy-Riemann equations is equivalent to

∂u

∂r
=

1

r

∂v

∂θ
,

1

r

∂u

∂θ
= −∂v

∂r
,

when u and v are represented in polar coordinates.
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A lot of common complex functions like z̄, |z|2,Rez are NOT di�erentiable (show it). As
a rule of thumb, if you write the function f(z) in terms of z and z̄ and there is non-trivial
dependence on z̄ (the partial derivative w.r.t z̄ is non-zero), then the function is not
di�erentiable. For example,

|z|2 = zz̄, Rez =
z + z̄

2
,

both depend nontrivally on z̄ and hence non-di�erentiable. Actually ∂(zz̄)/∂z̄ = z = 0 if
z = 0, we can show that |z|2 is di�erentiable at the origin (ux = uy = vx = vy = 0). On
the other hand, if f is a �di�erentiable� function of z alone, then we can proceed as in real
variables.

Exercise 4.2. Use the Cauchy-Riemann equation to show that f ′(z) = ez for f(z) = ez.

Special properties satis�ed by u and v:

(a) Both u and v satis�ed the Laplace equation, ∇2u = 0,∇2v = 0, called harmonic func-
tions.

(b) The level curves of u = constant and v = constant intersect at right angle, or equivalently
∇u ·∇v = 0. Here the normals n1, n2 to the level curve u(x, y) = c1 and v(x, y) = c2 are

u(x, y) = c1

v(x, y) = c2

n2

n1

Figure 4: The level curves of u and v are orthogonal to each other.

~n1 =
(ux, uy)√
u2
x + u2

y

, ~n2 =
(vx, vy)√
v2
x + v2

y

.

Therefore,

~n1 · ~n2 =
uxvx + uyvy√
u2
x + u2

y

√
v2
x + v2

y

= 0.
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(c) Using the change of variable x = z+z̄
2
, y = z−z̄

2i
or z = x+ iy, z̄ = x− iy, we get

∂

∂x
=
∂z

∂x

∂

∂z
+
∂z̄

∂x

∂

∂z̄
=

∂

∂z
+

∂

∂z̄
,

∂

∂y
= i

(
∂

∂z
− ∂

∂z̄

)
,

∇2 =
∂2

∂x2
+

∂2

∂y2
=

(
∂

∂z
+

∂

∂z̄

)(
∂

∂z
+

∂

∂z̄

)
−
(
∂

∂z
− ∂

∂z̄

)(
∂

∂z
− ∂

∂z̄

)
= 4

∂2

∂z∂z̄
.

Therefore, the Laplace equation ∇2u = 4 ∂2

∂z∂z̄
u = 0 can be integrated, to obtain u =

g(z) + h(z̄). The fact that u is real (if it is true) puts some constraints on g and h,
leading �nally to the real or imaginary part of an analytic function.

(d) Similarly, the biharmonic equation (or the beam equation in 2D) ∇4u = 0 is equivalent
to 16 ∂4

∂z2∂z̄2
u = 0, whose general solution is given by

u = z̄f(z) + g(z) + zh(z̄) + j(z̄)

or u = Rez̄f(z) + g(z) if u is real.

5 Two applications

Application in ideal �ow: A steady �ow is called ideal if it is incompressible and irro-
tational. In two dimension, in terms of the velocity component ~v = (v1, v2), these conditions
are

∂v1

∂x
+
∂v2

∂y
= 0, (incompressible) (5a)

∂v1

∂y
− v2

∂x
= 0. (irrotational) (5b)

These two conditions are exactly the Cauchy-Riemann equations, which motivate the
introduction of a complex velocity potential Ω(z) = φ(x, y) + iψ(x, y). Here φ is the ve-
locity potential ((v1, v2) = ∇φ or v1 = ∂φ/∂x, v2 = ∂φ/∂y), and ψ is the stream function
(v1 = ∂ψ/∂y, v2 = −∂ψ/∂x). Therefore, the velocity ~v = (v1, v2) can be obtained from the
derivative of Ω, i.e, Ω′(z) = v1 − iv2.

For many �ow patterns, we can get the velocity by a suitable choice of Ω(z). For example,
for a �ow around the cylinder of radius a, we have

Ω(z) = v0(z +
a2

z
).

The velocity components in polar coordinates are

v1 = v0

(
1− a2 cos 2θ

r2

)
, v2 = −v0

a2 sin 2θ

r2
.

It is easy to see that these velocity has the right boundary condition on the cylinder r = a
and at in�nity (only horizontal velocity v0).
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Figure 5: The ideal �ow around an in�nite cylinder.

Application in Stokes �ow: The governing equation for v = (v1, v2):

µ∇2v −∇p = 0, divv = 0.

Similarly, introducing the stream function ψ, such that v1 = ∂ψ/∂y, v2 = −∂ψ/∂x and de�ne
the (scalar) vorticity by

ω =
∂v2

∂x
− ∂v1

∂y
= −∇2ψ.

Then
∂ω

∂x
= −∇2∂ψ

∂x
= ∇2v2 =

1

µ

∂p

∂y
,

∂ω

∂y
= −∇2∂ψ

∂y
= −∇2v1 = − 1

µ

∂p

∂x
,

which implies that

f(z) = ω +
i

µ
p

is analytic.

Remark. As we can see from the above a few examples, complex variable techniques can
be conveniently employed to represent harmonic functions and solutions in many simpli�ed
problems. But the real di�culty lies in connecting the boundary conditions. We will get a
partial answer in Section 8, using complex contour integration.

6 Analyticity and derivatives of elementary functions

• We start with the basic one

f(z) = ez = ex
(

cos y + i sin y
)

with u = ex cos y, v = ex sin y. Then

ux = ex cos y = vy; vx = ex sin y = −uy.
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Hence the Cauchy-Riemann equations are satis�ed for all z = x+ iy, and ez is analytic
for all z. Furthermore,

d

dz
ez = ux + ivx = ex cos y + iex sin y = ez.

• It follows from the de�nitions and rules of di�erentiation and limits that

cos z, sin z, cosh z, sinh z

are all analytic. Their derivatives are the same as in real variables:

d

dz
cos z = − sin z,

d

dz
sin z = cos z,

d

dz
cosh z = sinh z,

d

dz
sinh z = cosh z.

7 Multi-valued functions

Multi-valued functions arise naturally as the inverse of single-valued functions.

7.1 The logarithm function ln z

For a real x > 0, there exists a unique real y such that ey = x. This de�nes y as a function
of x, y = lnx.

De�nition: Now for a complex z, there are in�nitely many w such that ew = z. In analogy
with real variable, we write

w = ln z.

Let w = u+ iv, z = reiθ (or θ = arg z, r = |z|),

ew = eu+iv = eu · eiv = reiθ.

This implies that eu = r, v = θ, or

w = ln |z|+ iθ = ln |z|+ i arg z.

Therefore,

ln z = ln |z|+ i arg z = ln |z|+ i(Argz + 2nπ), n = 0,±1, · · · ,−π < Argz ≤ π.

There are in�nite branches : they all have the same real part while the imaginary parts di�er
by a multiple of 2π.

We can also de�ne a single-valued function, or the principal value of ln z as

Lnz = ln |z|+ iArgz,

which corresponds to n = 0.

13



Branch cut

z = −x + iǫ

z = −x− iǫ

Branch point

Figure 6: Branch point, branch cut and di�erent limits when approaching from two sides of
the branch cut.

Branch point: Consider how Lnz change when z transverses a small circuit around z = 0.
We consider the limit of the logarithm of z = −x± εi for x > 0, as ε(> 0) goes to zero:

lim
ε→0+

Ln(−x+ εi)→ log x+ iπ, lim
ε→0+

Ln(−x− εi)→ log x− iπ.

Therefore, there is a jump in Lnz by 2πi as z crosses the negative x-axis.
A point z0 is a branch point if a multi-valued function f(z) does not return to its

original values when z transverses a small circuit around this point z0.
The function ln z is not continuous in the whole plane, as jumps by 2πi as z crosses the

negative x-axis. The make ln z (including Lnz) continuous, we need to �cut out� the negative
x-axis, which is called a branch cut. The resulting plane is called cut plane.

Analyticity of Lnz: From Lnz = ln r + iθ, we have u = ln r = ln(x2 + y2)1/2, v =
θ = arctan y

x
. The Cauchy-Riemann equations ux = vy, vx = −uy (or the equivalent ones

ur = 1
r
vθ, vr = −1

r
uθ in polar coordinates) are satis�ed except at r = 0.

Therefore, Lnz is analytic in the cut plane, and f ′(z) = 1/z.

7.2 Generalized power function ez with complex α

De�nition: zα ≡ eα ln z.
In general, zα is multi-valued. If α = m/l for integers m and l (α is rational),

zα = e
m
l

(
ln r+iθ+2nπi

)
= r

m
l ei

m
l
θe

2nπim
l , −π < θ ≤ π, n = 0, 1, · · · , l − 1.

Principal value: eαLnz

• Analytic in the same cut plane as for Lnz.

• d

dz
zα =

d

dz
eαLnz = αeαLnz

d

dz
Lnz = αzα−1.

14



Example 7.1. Find (1− i)(1+i).
Solution: we have

(1− i)(1+i) = exp
(
(1 + i) ln(1− i)) = exp

(
(1 + i)[ln

√
2 + i(−π

4
+ 2nπ)]

)
,

since 1− i =
√

2 exp
(
i(−π

4
+2nπ)

)
. Collecting the real and imaginary part in the exponents,

(1− i)(1+i) = exp
{(

ln
√

2 +
π

4
− 2nπ

)
+ i
(

ln
√

2− π

4
+ 2nπ

)}
=
√

2e
π
4
−2nπ

{
cos
(

ln
√

2− π

4

)
+ i sin

(
ln
√

2− π

4

)}
, n = 0,±1,±2, · · ·

The principle value is the one with n = 0

8 Complex line integral

A curve or path C in the plane can be described by parametric equations

x = ξ(t), y = η(t)

or z = γ(t) = ξ(t) + iη(t), for a ≤ t ≤ b.
Examples of curves including the line segment z(t) = 1 + it, t ∈ [0, 1] connecting the

points z(0) = 1 and z(1) = 1 + i, and the circle z(θ) = eiθ, θ ∈ [0, 2π].

or 

A

B

C

t = a

t = b

(ξ(t), η(t))

z = ξ(t) + iη(t)

C

Such a curve is smooth if γ′(t) is continuous in [a, b].
The complex integration of f(z) along some curve C parametrized by γ(t) for t ∈ [a, b]

is de�ned by ∫
C
f(z)dz :=

∫ b

a

f(γ(t))γ′(t)dt.

If C is a closed curve, the integration direction is assumed to be anti-clockwise, unless oth-
erwise stated.

Example 8.1. Integrate zn around the unit circle for any integer n.
Solution: The closed curve can be parametrized by z(t) = eit with t ∈ [0, 2π).∮

C
zndz =

∫ 2π

0

(eit)nd(eit) = i

∫ 2π

0

ei(n+1)tdt =

{
0, if n 6= −1,

2πi, if n = −1.
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Basic properties of path integrals :
(1) Fundamental theorem of calculus: If f ′(z) exist (f is analytic) and C is smooth,
then ∫

C
f ′(z)dz = f(z2)− f(z1)

where C joints z1 and z2.
(2)Orientation Reversal :

∫
−C f(z)dz = − ∫C f(z)dz. Here −C means reverse the direction

of the integration path.
(3) Joining of two paths: If C consists of two curves C1 and C2, then∫

C
f(z)dz =

∫
C1
f(z)dz +

∫
C2
f(z)dz.

(4) Linearity: For any constants κ1, κ2 and any functions f(z), g(z),∫
C

[
κ1f(z) + κ2g(z)

]
dz = κ1

∫
C
f(z)dz + κ2

∫
C
g(z)dz.

(5) Independence of the parametrization: If γ(t) and ψ(s) are two parametrizations of
the same path C, then∫

C
f(z)dz =

∫ b

a

f(γ(t))γ′(t)dt =

∫ b̃

ã

f(ψ(s))ψ′(s)ds.

(6) Estimation of integrals∣∣∣∣∫
C
f(z)dz

∣∣∣∣ ≤ ∫ b

a

|f(γ(t))||γ′(t)|dt, (a < b).

With these properties, we can decompose an integral on a complicated path into di�erent
pieces.

Example 8.2. Find the integral
∫
C z̄dz, where C is the boundary of the unit square (counter-

clockwise orientation) with corners 0, 1, 1 + i, i.
Solution: The path can be decomposed into four line segments:

γ1 = z(t) = t, t ∈ [0, 1]

γ2 = z(t) = 1 + it, t ∈ [0, 1]

γ3 = z(t) = i+ 1− t, t ∈ [0, 1]

γ4 = z(t) = (1− t)i, t ∈ [0, 1].

Therefore∫
C
z̄dz =

∫
γ1

z̄dz +

∫
γ2

z̄dz +

∫
γ3

z̄dz +

∫
γ4

z̄dz

=

∫ 1

0

tdt+

∫ 1

0

(1− it)idt+

∫ 1

0

(−i+ 1− t)(−1)dt+

∫ 1

0

(t− 1)i(−i)dt

=
1

2
+

(
i+

1

2

)
+

(
i− 1

2

)
− 1

2

= 2i.
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Simple non−simple

C C

D

Figure 7: Simple vs non-simple curves.

9 Cauchy's integral theorem

Theorem 9.1. If f(z) is analytic on a simple closed curve C and in the region enclosed by
C, then ∮

C
f(z)dz = 0.

Here simple curve means a curve which does not intersect with itself.

Proof. Suppose f(z) = u(x, y) + iv(x, y), then∮
C
f(z)dz =

∮
C
[u(x, y) + iv(x, y)](dx+ idy) =

∮
C
(udx− vdy) + i

∫
C
(vdx+ udy).

The two integrals are now integrations of functions of real variables. By Green's theorem,∮
C
(udx− vdy) =

∫∫
D

(
−∂v
∂x
− ∂u

∂y

)
dxdy = 0,∮

C
(vdx+ udy) =

∫∫
D

(
∂u

∂x
− ∂v

∂y

)
dxdy = 0.

In the last step, the Cauchy-Riemann equations are used.

Remark. (a) In order to use Green's Theorem, we require f ′(z) to be continuous in D. But
Cauchy's theorem is still true without this � a more general proof was given by E. Goursat.
(b) The theorem is also true for non-simple curves, which has a �nite number of intersections
(decomposing into simple curves).

Consequences of Cauchy's Theorem We have the following three equivalent statements
about contour integrals, if f is analytic on the paths and the region enclosed by the paths:

(I) Vanishing integrals for closed path (Cauchy's theorem). If C is a closed path,
then

∫
C f(z)dz = 0.
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C2

C1 C = C1 − C2

Figure 8: Two paths C1 and C2 form a closed path C, or C = C1 − C2.

(II) Path independent integral. If C1 and C2 are two paths connecting z1 and z2, then∫
C1 f(z)dz =

∫
C2 f(z)dz.

If C1 and C2 are two paths connecting z1 and z2, then C = C1 − C2 is a closed path.
Then using the properties of path integrals,

0 =

∫
C
f(z)dz =

∫
C1−C2

f(z)dz =

∫
C1
f(z)dz −

∫
C2
f(z)dz.

Therefore,
∫
C1 f(z)dz =

∫
C2 f(z)dz.

(III) Deformation of path. If C1 can be deformed into C2, then
∫
C1 f(z)dz =

∫
C2 f(z)dz.

Suppose that C1 and C2 are two closed curves as in Figure 9 (the left one) and f is
analytic on both and in the region between them. Introduce 'crosscut' AB and A′B′,
then C = C1 + AB − C2 +B′A′ is closed. Then by Cauchy's theorem,

0 =

∮
C
f(z)dz =

∫
C1
f(z)dz +

∫
AB

f(z)dz −
∫
C2
f(z)dz +

∫
B′A′

f(z)dz.

The 'crosscut' B′A′ can be chosen to be −AB and
∫
AB

f(z)dz =
∫
B′A′ f(z)dz. There-

fore, ∮
C1
f(z)dz =

∮
C2
f(z)dz

Remark. Usually in calculation, the contour is deformed into a circle (easier to evaluate).

The result can be extended to deform one contour into multiple contours as in Figure (9)
(the right one): ∮

C
f(z)dz =

∮
C1
f(z)dz +

∮
C2
f(z)dz,

provided that f is analytic on C, C1, C2, and in the shaded region.

Remark. For closed path, we can shrink the path into one point. When f has no singular
point, then the integral should vanish, so is the original integral on the undeformed path.
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C1

C2

C

C1

A

A′

B

C2 B′

Figure 9: Deformation of one contour into other contour(s).

The function f should be analytic on the region encircled by the paths, which is not true
with singular points or �obstacles� (where the functions are not de�ned), as in Figure 10. If
f is not de�ned (or not analytic) on the shaded region, then C1 can not be deformed into C2

and in general ∮
C1
f(z)dz 6=

∮
C2
f(z)dz.

C1

C2

Figure 10: One example of non-deformable paths, if f is not analytic on the shaded �obstacle�.

Theorem 9.2 (Fundamental theorem of calculus). If γ is a path with parameter interval
[a, b], and F is de�ned on a domain containing the path γ and is analytic, then∫

γ

F ′(z)dz = F (γ(b))− F (γ(a)).

Especially, if the path is closed (γ(a) = γ(b)), then
∫
γ
F ′(z)dz = 0.

Remark. The antiderivative of any analytic function f given by

F (z) =

∫
[a,z]

f(ξ)dξ

is well-de�ned for any path from a to z, since the integral is independent of the path.
Moreover, we have F is analytic and F ′(z) = f(z).
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10 Cauchy integral formula

Theorem 10.1 (Cauchy integral formula). Let f be analytic inside and on a simple closed
curve C, then for any z inside C,

f(z) =
1

2πi

∫
C

f(ξ)

ξ − zdξ. (6)

Proof. Since f(ξ)/(ξ − z) is analytic inside C except at z, the contour C can be deformed
into a circle of radius ε, i.e.

1

2πi

∫
C

f(ξ)

ξ − zdξ =
1

2πi

∫
|ξ−z|=ε

f(ξ)

ξ − zdξ

=
1

2πi

∫ 2π

0

f(z + εeiθ)

εeiθ
εeiθidθ (ξ = z + εeiθ)

=
1

2π

∫ 2π

0

f(z + εeiθ)dθ. (7)

Since f is analytic at z, it is continuous at that point too. Therefore

1

2πi

∫
C

f(ξ)

ξ − zdξ = lim
ε→0

1

2π

∫ 2π

0

f(z + εeiθ)dθ = f(z).

z

|z − ξ| = ǫ

φ

φ

Figure 11: Left: the deformation of the contour C to a circle |z − ξ| = ε; right: the interior
angle φ.

When z is outside C, then f(ξ)/(ξ − z) is analytic on the domain bounded by C and the
integral is zero. When z is on the contour C, the integral has to be de�ned with care (for
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example using principle value), because the integral becomes singular when ξ → z. If the
contour is smooth, then we get the average f(z)/2; otherwise it is φ

2π
f(z), where φ is the

interior angle in Figure 11. In summary,

1

2πi

∫
C

f(ξ)

ξ − zdξ =


f(z), if z is inside C,
0, if z is outside C,
φ
2π
f(z), if z is on C.

Remark. From the Cauchy integral formula (6), if f is known on a contour C and f is analytic
inside, then the value of f at any point inside is known (a representation formula in terms
of boundary values).

Remark. If we look at the real and imaginary part of f in (6) when the contour C is a circle
|ξ − z| = r, we get the following mean value formula:

u(x, y) =
1

2π

∫ 2π

0

u(x+ r cos θ, y + r sin θ)dθ,

v(x, y) =
1

2π

∫ 2π

0

v(x+ r cos θ, y + r sin θ)dθ.

In fact, the Cauchy integral formula (6) can be taken as the mean value formula of f on the
contour, with weight 1

2πi
1
ξ−z . The value of z given in the weight determines the location of

the value of f . Especially, the sum of the weight is unit, in the sense that∫
C

1

2πi

1

ξ − zdξ = 1

for any z inside the contour.

Exercise. Evaluate
∫
C e

z/(z − 1)dz where C is the circle |z − 2| = 2.

Since both sides of the Cauchy integral formula (6) are analytic inside C, we can take
derivative w.r.t z n times and get the Cauchy's formula for derivatives:

f (n)(z) =
n!

2πi

∫
C

f(ξ)

(ξ − z)n+1
dξ. (8)

Example 10.1. Find
∫
C

cos z
z3
dz where C is the unit circle i) using (8); ii) using the series

expansion cos z = 1− z2/2! + z4/4! + · · · .
Solution: i) Write the integral in the form of (8),∫

C

cos z

z3
dz =

2πi

2!

2!

2πi

∫
C

cos z

(z − 0)3
dz =

2πi

2!

d2

dz2
cos z

∣∣∣∣
z=0

= −πi.

ii) Expand cos z at the origin,

cos z

z3
=

1

z3

(
1− z2

2!
+
z4

4!
+ · · ·

)
=

1

z3
− 1

2!

1

z
+

1

4!
z + · · ·

Only the z−1 term matters in the contour integral, and∫
C

cos z

z3
dz =

∫
C

(
− 1

2!

1

z

)
dz = −πi.
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Remark. When using the Cauchy integral formula, you should check which singular point is
inside the contour and you can safely ignore those singular points outside the contour.

Example 10.2 (Multiple singular points). Find the contour integral
∫
C

z2

z2+1
dz, where C is

the circle |z − i| = 1 as in Figure 12(a).

Solution: The integrand z2/(z2 + 1) is not analytic inside C, because of the singular point at
z = i. We can write it as z2

z2+1
= z2

(z−i)(z+i) = f(z)
z−i , where f(z) = z2/(z + i) is analytic inside

C. Applying the Cauchy integral formula,
∫
C

z2

z2+1
dz =

∫
C
f(z)
z−i dz = 2πif(i) = −π.

(a) (b)

i

−i

z

ξ

w

C

C

Figure 12: (a) Example 3.2; (b) Example 3.3

Example 10.3 (Consistence between Taylor expansion and the Cauchy integral formula).
From the expression for the higher order derivatives in (8), we can express the Taylor ex-
pansion in terms of integrals:

f(z) + (w − z)f ′(z) +
(w − z)2

2!
f ′′(z) + · · ·+ (w − z)n

n!
f (n)(z) + · · ·

=
1

2πi

∫
C

(
1

ξ − z +
w − z

(ξ − z)2
+ · · ·+ (w − z)n

(ξ − z)n+1
+ · · ·

)
f(ξ)dξ

=
1

2πi

∫
C

1

ξ − z
(

1 +
w − z
ξ − z + · · ·+

(
w − z
ξ − z

)n
+ · · ·

)
f(ξ)dξ. (9)

When |w − z| < |ξ − z|, what's inside the bracket is just a geometric series, and can be
evaluated explicitly as

1

2πi

∫
C

1

ξ − z
1

1− (w − z)/(ξ − z)
f(ξ)dξ =

1

2πi

∫
C

1

ξ − wf(ξ)dξ.

This is exactly the Cauchy integral formula for f(w). Therefore, we have

f(w) = f(z) + (w − z)f ′(z) +
(w − z)2

2!
f ′′(z) + · · ·+ (w − z)n

n!
f (n)(z) + · · · .
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