
Aero III/IV Calculus of Variations

1 Historical Development

The calculus of variations originated in problems to maximize or minimize certain integrals
depending on functions. It is developed from several examples through history:

a) Isoperimetric problem: Find the closed curve (or surface) with maximal area (or volume)
with a given total length (or surface area). In two dimension, it becomes the minimal
surface (like soap bubble)

b) Geodesics : Find the shortest distance between two points on a general surface (like the
sphere)
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S

ℓ

D

Figure 1: The isoperimetric problem and the geodesic on a sphere.

c) Optical Path: the path from one point to another has the least time (not the least distance
if the media is not homogeneous). This fact can give another derivation of the law of
re�ection and refraction.

d) Brachistochrone: the curve that carries a bead from one place to another in the least
amount of time. This problem was solved by several mathematicians, including the
inventors of Calculus, Newton and Leibniz. The general formulation was proposed by
Euler and Lagrange, leading to the celebrated Euler-Lagrange equation below.

e) The inspired further development in mechanics : The Lagrangian mechanics and Hamil-
tonian mechanics, Hamilton's principle, virtual work ...

Exercise: Name some examples of optimizing in your daily life or course work?
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Figure 2: The Brachistochrone and the Fermat's problem of least time.

2 Formulation of the problem and derivation of the gov-

erning equation

The fundamental problem in the calculus of variations: Given a functional I =
I[y(x)], �nd the function y(x) for which I[y(x)] is maximum or minimum.

Here a functional takes a function y(x) into a real number (function of function), for
example:

I[y] =

∫ b

a

y(x)dx, I[y] =

∫ b

a

(
y(x)

)2
dx, I[y] =

∫ b

a

(
y′(x)

)2
dx.

Motivation for the characterizing equation: In calculus, to �nd the maximum or
minimum of a function f(x), for x in n-dimensional space, the usual approach is to �nd all
the points x∗ such that ∇f(x∗) = 0. But I[y] is de�ned for y(x) in an in�nite dimensional
space, and we can not de�ne the gradient or partial derivatives of I[y] with respect to y.

The motivation comes from the equivalent condition to ∇f(x∗): for any x̃, if ϕ(ε) =
f(x∗ + εx̃) has a maximum or minimum point at ε = 0, then f(x) has a maximum or
minimum point at x∗. In fact,

0 = ϕ′(0) =
d

dε
ϕ(ε)|ε=0 =

d

dε
f(x∗ + εx̃)

∣∣∣
ε=0

= x̃ · ∇f(x∗ + εx̃)
∣∣∣
ε=0

= x̃ · ∇f(x∗).

Since x̃ is arbitrary, we can choose x̃ = ∇f(x∗) to get 0 = ∇f(x∗) · ∇f(x∗) or ∇f(x∗) = 0.
In this way, all the calculations are for the scalar function ϕ, regardless the dimension of the
space of x. We are going to derive the governing equation for the maximizer or minimizer
of I[y], by �rst reducing it to a scalar point with a �test� function η.

Derivation of the Euler-Lagrange equation: Find the curve y(x) that extremizes the
integral

I[y] =

∫ x1

x0

f(x, y(x), y′(x))dx
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subject to the end conditions y(x0) = y0, y(x1) = y1. Similarly, the extreme curve y(x) is
characterized by the fact that for any other function η, ϕ(ε) = I[y + εη], we have

0 = ϕ′(0) = lim
ε→0

I[y + εη]− I[y]

ε
≡ d

dε
I[y + εη]

∣∣∣∣
ε=0

. (1)

(x0, y0)

(x1, y1)
y

x

y = y(x) + ǫη(x)

y = y(x)

Figure 3: If y = y(x) is a minimizer of I[y], then I[y + ε] should be larger than I[y] for any
variation y + εη.

Remark (The boundary conditions). Here y + εη should satis�es the same end condition as
y, y(x0) + εη(x0) = y0, y(x1) + εη(x1) = y1 or η(x0) = η(x1) = 0. We need this boundary
condition later to eliminate certain terms to get the �nal Euler-Lagrange equation.

For simple cases, we can evaluate the limit in (1) directly. For example when I[y] =∫ x1
x0

(y′(x)2 + y(x)2)dx, then

0 = lim
ε→0

I[y + εη]− I[y]

ε
=

∫ x1

x0

[
lim
ε→0

(
(y′(x) + εη′(x)

)2
+
(
y(x) + εη(x)

)2 − y′(x)2 − y(x)2

ε

]
dx

=

∫ x1

x0

lim
ε→0

[
2y′(x)η′(x) + 2y(x)η(x) + ε(η′(x)2 + η(x)2)

]
dx

=

∫ x1

x0

(
2y′(x)η′(x) + 2y(x)η(x)

)
dx

For more complicated integrand f(x, y, y′), we can use the de�nition and partial derivatives
to �nd the Euler-Lagrange equation characterizing extremal curves of the integrals.

TheEuler-Lagrange equation for the stationary value of the integral I[y] =
∫ b
a
f(x, y, y′)dx

can be derived using the de�nition (1):

lim
ε→0

I[y + εη]− I[y]

ε
=

∫ x1

x0

lim
ε→0

f(x, y + εη, y′ + εη)− f(x, y, y′)

ε
dx

=

∫ x1

x0

[
∂f

∂y
η +

∂f

∂y′
η′
]
dx = 0. (2)
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It is not immediately clear the conditions such that the last expression in (2) is identically
zero, for any η. We have to convert η′ to η, using integration by parts:

0 =

∫ x1

x0

[
∂f

∂y
η +

∂f

∂y′
η′
]
dx =

∫ x1

x0

[
∂f

∂y
− d

dx

∂f

∂y′

]
η dx+

∂f

∂y′
η

∣∣∣∣x1
x0

=

∫ x1

x0

[
∂f

∂y
− d

dx

∂f

∂y′

]
η dx. (3)

During the last step, the end condition for η is used such that

∂f

∂y′
η

∣∣∣∣x1
x0

=
∂f

∂y′
(x1, y(x1), y

′(x1))η(x1)−
∂f

∂y′
(x0, y(x0), y

′(x0))η(x0) = 0.

Since η is arbitrary, we get the Euler-Lagrange equation:

∂f

∂y
− d

dx

(
∂f

∂y′

)
= 0. (4)

The derivative
d

dx
is the total derivative and if we expand the second term

d

dx

(
∂f

∂y′

)
=

∂2f

∂x∂y′
dx

dx
+

∂2f

∂y∂y′
dy

dx
+

∂2f

∂y′∂y′
dy′

dx
=

∂2f

∂x∂y′
+ y′

∂2f

∂y∂y′
+ y′′

∂2f

∂y′∂y′
. (5)

The Euler-Lagrange equation is usually a second order di�erential equation, because of the

last term y′′ ∂
2f

∂y′∂y
in (5). Moreover, the expansion

d

dx

(
∂f

∂y′

)
is in general very complicated,

we expand it only when f is relatively simple in y′ (for example, f is quadratic and we get
a linear di�erential equation).

In this class, you can use the Euler-Lagrange equation (4) directly in your calculation
(without the derivation). The main focus should be on how to solve (4), according the the
precision form of f given.

How do you remember the Euler-Lagrange equation (4)? At least two ways:

(1) From the derivative above. Using δ to denote the variation (commonly used in math
and engineering), then (forget about the bounary conditions)

δ

∫
f(x, y, y′)dx =

∫ [
∂f

∂y
δy +

∂f

∂y′
δy′
]
dx

=

∫ [
∂f

∂y
δy +

∂f

∂y′
d

dx
δy

]
dx =

∫ [
∂f

∂y
− d

dx

(
∂f

∂y′

)]
δydx.

(2) If you vaguely remember the two terms in the Euler-Lagrange equation, then you can
get the right form by notting (a) there is no terms like ∂f

∂x
because the variation is with

respect to y; (b) using dimensional analysis to determine the derivative d
dx

is on ∂f
∂y

or ∂f
∂y′

.

The equation (4) is the only one has right dimension of
[the integral f

[the function y]
. The dimension

of the equation ∂f
∂y′
− d

dx

(
∂f
∂y

)
= 0 does not match ( [x][f ]

[y]]
6= [f ]

[x][y]
).
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3 Solution of the Euler-Lagrange equation

In general, the solutions can be classi�ed into two classes:

(i) The Euler-Lagrange equation is linear (f is at most quadratic in y and y′) and we can
�nd the general solution. For example:

1)

∫ 1

0

(y′2 + y2)dx, y(0) = 0, y(1) = 1.

2)

∫ 1

0

[
x2
(
dy

dx

)2

+ 2y2

]
dx, y(1) = 0, y(2) = 1

See the Appendix about general solutions of the second order ODEs.

(ii) The Euler-Lagrange equation has certain �symmetry� in the sense that x or y is missing
in f , then we can get a �rst integral (reducing the equation to an ODE), and the �nal
problem is reduced into integration w.r.t y or x only:

a) If x is missing (or f = f(y, y′)), then f − y′ ∂f
∂y′

= c1 is a constant. In fact,

d

dx

(
f − y′ ∂f

∂y′

)
=
∂f

∂x
+
∂f

∂y
y′ +

∂f

∂y′
y′′ − y′′ ∂f

∂y′
− y′ d

dx

∂f

∂y′

= y′
[
∂f

∂y
− d

dx

∂f

∂y′

]
= 0 (by Euler-Lagrange equation)

Since x is missing, this �rst order equation can be rewritten as y′ = F (y, c1) for
some function F and can be integrated by separation of variable:∫ y dy

F (y, c1)
= x+ c2.

Example. For the hanging chain, the shape of the chain is determined by the
extremal curve of the integral

∫
y
√

1 + y′2dy. Therefore

c1 = f − y′ ∂f
∂y′

=
y√

1 + y′2
,

or

dy

dx
=

√
y2

c21
− 1.

The general solution is given by

x+ c2 =

∫
dy√
y2

c21
− 1

= c1 ln
y +

√
y2 − c21
c1

+ c2.
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b) If y is missing (or f = f(x, y′)), then by the Euler-Lagrange equation

d

dx

(
∂f

∂y′

)
=
∂f

∂y
= 0.

This implies that ∂f/∂y′ = c1 is a constant. We can also solve for y′ to get y′ =
G(x, c1) and the general solution is given by

y =

∫
G(x, c1)dx+ c2.

Example (Problem 3 in tutorial sheet). Show that the extremal curves of the
integral

I[θ] =

∫
r2

[
1 + r2

(
dθ

dr

)2
]1/2

dr

Here φ is the dependent variable and is missing in the integrand. Therefore,

∂f

∂θ′
= r4

θ′√
1 + r2θ′2

= c1,

or
dθ

dr
=

c1

r
√
r6 − c21

.

Using the substitution r3 = c1 secu, we get

dr

r
=

1

3
tanudu,

√
r6 − c21 = c1 tanu

and

θ =

∫
c1

r
√
r6 − c21

dr =

∫
1

3
du =

u

3
+ constant

Therefore, the solution is given by r3 = c1 sec(3θ + c2).

Remark. In general, the integration in a) and b) are complicated, and you should look
at the solution (if given) to �nd the right change of variable.

4 More examples

Example (Brachistochrone and cycloid) The speed of the bead at (x, y) can be obtained
from energy conservation, 1

2
mv2 −mgy = 0 or v = (2gy)1/2. Therefore,

dt =
ds

v
=

(
1 + y′2

2gy

)1/2

,

and the total time from (0, 0) to (x1, y1) is

T = I[y] =

∫ x1

0

(
1 + y′2

2gy

)1/2

dx.
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x

gravity

dy

dx

ds
y = y(x)

(x1, y1)

0

y

v =
√
2gy

Figure 4: The brachistochrone: the curve that carries a bead from one place to another in
the least amount of time.

Solution: Since f =
(

1+y′2

2gy

)1/2
is independent of x,

f − y′ ∂f
∂y′

=
1√

2gy(1 + y′2)

is a constant, or y(1 + y′2) = D2 for some constant D. The derivative y′ can be obtained

y′ =

√
c21
y
− 1,

where the fact y′ ≥ 0 (with y increasing downwards) is used to get rid of the other solution

y′ = −
√

c21
y
− 1. The solution can be de�ned implicitly by

x =

∫
y

dy√
c21
y
− 1

+ c2

or more conveniently in parametric form as follows. Let y = c21 sin2 θ, then dy = 2c21 sin θ cos θdθ
and

dx =
dy√
c21
y
− 1

=
2c21 sin θ cos θ√

1
sin2 θ

− 1
dθ = 2c21 sin2 θdθ.

Therefore,

x = 2c21

∫
sin2 θdθ = c21

∫ (
1− cos 2θ

)
dθ = c21

(
θ − 1

2
sin 2θ

)
+ c2.

Using the boundary condition at the origin (y = 0 when x = 0), we get c2 = 0 with
θ0 = 0. Using the boundary at the end point,

c21 sin2 θ1 = y1, c21
(
θ1 −

1

2
sin θ1

)
= x1,
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2θ
2θ

Figure 5: The solution to the brachistochrone is part of the cycloid.

from which we can �nd c1 and θ1, in terms of (x1, y1). Finally, the solution is given by{
x = c21

(
θ − 1

2
sin 2θ

)
,

y = c21 sin2 θ,
0 ≤ θ ≤ θ1.

The resulting curve is called a cycloid. We can get the trajectory, which is a �xed point on
a disk with radius c21 rotating with angle 2θ. See Figure 5.

The Roadhot air

cold air

refraction
index of 

B

B′

Figure 6: The creation of a mirage.

When light travels through a media, it is the time (instead of length) that is minimized.
In a homogeneous media, where the refraction index n is constant, the path is a straight
line. When light travels from one media to another, the law of refraction can be obtained
by minimizing the traveling time. Even in one media, the index of refraction can di�er
signi�cantly, for instance the air near the ground is very hot and the corresponding index of
refraction is smaller. This may lead to mirage.
Example (The mirage) Find the extremal curve to∫ x1

x0

(1 + κy)n0

√
1 + y′2dx,

there the index of refraction is (1 + κy)n0.
Solution: Since f = (1 + κy)n0

√
1 + y′2 is independent of x, constant, or

f − y′ ∂f
∂y′

= (1 + κy)n0

√
1 + y′2 − y′(1 + κy)n0

√
y′

1 + y′2
=

(1 + κy)n0√
1 + y′2
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is a constant, denoted as c1. We can solve y′ from the equation (1+κy)n0√
1+y′2

= c1, that is

y′ = ±
√

(1 + κy)2n2
0

c21
− 1.

The solution is

x = ±
∫

dy√
(1+κy)2n2

0

c21
− 1

+ c2.

We can �nd the integral by the change of variable

(1 + κy)n0

c1
= cosh θ. (6)

Therefore

sinh θdθ =
κn0

c1
dy,

√
(1 + κy)2n2

0

c21
− 1 =

√
cosh2 θ − 1 = sinh θ.

The solution can be written as

x = ± c1
κn0

∫
dθ + c2 = ± c1

κn0

θ + c2,

or θ = ±κn0

c1
(x− x1). Substituting θ into (6), we get

y =
c1
κn0

cosh
κn0

c1
(x− x0)−

1

κ
.

The most important information from the solution is that y is always convex (or concave

up).
Exercise (Straight lines are the paths with shortest distance) Show that the shortest path
between two points on a plane is a straight line. In other words, show that the extremal
curve of

I[y] =

∫ x1

x0

√
1 + y′2dx,

with the boundary conditions y(x0) = y0, y(x1) = y1 is a straight line.
Exercise (Which method to choose?) Find the extremal curve of the integral

∫
(y2− y′2)dx

(a) by solving the linear Euler-Lagrange equation (b) by realizing the fact that f = y2− y′2
is independent of x. Which way is easier and faster?

5 Extremal curves with integral constraint

In practice, many problems involves constraints: the total length of a suspension bridge or
a hanging chain, the perimeter or total area in isoperimetric problem. The general problem
can be formulated as:
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Find the extremal curve of

I[y] =

∫ x1

x0

f(x, y, y′)dx, y(x0) = y0, y(x1) = y1

with constraint ∫ x1

x0

g(x, y, y′)dx = J0.

Similar to optimization of a scalar function with constraints, we have to introduce the
Lagrange multiplier λ and replace f by

f̃(x, y, y′) = f(x, y, y′)− λg(x, y, y′).

The solution from the Constrained-Euler-Lagrange equation
∂f̃

∂y
=

d

dx

∂f̃

∂y′
has three

parameters c1, c2 and λ, which are determined by the two end conditions and the constraint.

Remark. We can also use f̃(x, y, y′) = f(x, y, y′) + λg(x, y, y′) in the de�nition, everything
is the same except the opposite sign. But do keep the sign in front of λ consistent in one
problem.

Example (Eigenfrequency). Find the extremal curve y(x) of the functional∫ 1

0

1

2
y′2dx, y(0) = 0, y(1) = 0

subject to the constraint ∫ 1

0

1

2
y2dx = 1.

Solution: Since f = y′2/2 and g = y2/2,

f̃ = f − λg =
1

2
y′2 − λ

2
y2.

The corresponding Constrained-Euler-Lagrange equation is

d

dx

(
∂f̃

∂y′

)
− ∂f̃

∂y
=

d

dx
y′ + λy = y′′ + λy = 0.

The solution depends on the sign of λ:

i) When λ < 0, y = c1e
√
−λx + c2e

√
λx. Using the boundary conditions y(0) = 0, y(1) = 0,

we get c1 = c2 = 0. But the solution y(x) = 0 does not satisfy the constraint above.

ii) When λ = 0, y = c1 + c2x. From the boundary conditions, we still get the same trivial
solution y(x) = 0, which does not satisfy the constraint.
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iii) When λ > 0, y = c1 sin
√
λx + c2 cos

√
λx. The boundary condition y(0) = 0 implies

that c2 = 0, and the other boundary condition leads to y(1) = c1 sin
√
λ = 0. To get a

non-trivial solution (or c1 6= 0), we must have sin
√
λ = 0 or

√
λ = kπ for k = 1, 2, · · · .

Consequently,
λk = k2π2

and the coe�cient c1 can be obtained from the constraint

1 =

∫ 1

0

1

2
y2dx =

c21
2

∫ 1

0

(
sin(kπx)

)2
dx =

c21
4
,

or c1 = ±2.

Therefore, the extremal curves are yk = 2 sin kπx, with the corresponding Lagrange multi-
plier λk = k2π2.

Remark. In the previous example, the Lagrange multiplier can be interpreted as the eigen-
frequency. Here y1 is the minimizer of the constrained problem, but all other yks with k > 1
are not minimizers.

Example (Suspension bridge and catenary). Find the curve that minimize the total (rescaled)
gravitational potential

∫ a
−a y

√
1 + y′2dx with y(a) = y(−a) = 0, subject to the total length

of the curve
∫ a
−a

√
1 + y′2dx = L > 2a.

x−a

y

a

y = y(x)

Solution: We have f̃ = f − λg = (y − λ)
√

1 + y′2. Since f̃ does not depend on x,

f̃ − y′ ∂f
∂y′

=
y − λ√
1 + y′2

= c1

is a constant. Then derivative y′ can be solved from this equation

y′ = ±
√

(y − λ)2

c21
− 1. (7)

Using the change of variable y = λ+ c1 coshu, we have

dy = c1 sinhudu,

√
(y − λ)2

c21
− 1 = sinhu.
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The di�erential equation (7) is reduced to (the sign can be absorbed by c1).

dx =
dy√

(y−λ)2
c21
− 1

= c1du,

or u = x/c1 +c2. Therefore the solution is given by y = λ+c1 cosh(c2 +x/c1). The boundary
conditions y(a) = y(−a) = 0 become

0 = λ+ c1 cosh

(
a

c1
+ c2

)
, 0 = λ+ c1 cosh

(
− a
c1

+ c2

)
,

which can be solved as c2 = 0, λ = −c1 cosh a/c1. Substituting the solution y = c1
(

cosh(x/c1)−
cosh(a/c1)

)
into the constraint

L =

∫ a

−a

√
1 + y′2dx =

∫ a

−a
cosh

x

c1
dx = 2c1 sinh

a

c1
.

Solve c1(> 0) from this algebraic equation, then we get λ and the curve y(x).

6 Some Extensions (not required for the exam)

There are many general extensions to the Euler-Lagrange equation, higher order derivatives,
multiple independent variables and several dependent functions:

(I) If f depends on higher order derivatives, say f = f(x, y, y′, y′′), then the Euler-
Lagrange equation becomes fourth order

f − d

dx

∂f

∂y′
+

d2

dx2
∂f

∂y′′
= 0.

(II) If f depends on multiple independent variables, say x1 and x2, with the corresponding
partial derivatives ∂u

∂x1
and ∂u

∂x2
(that is f = f(x1, x2, u, ux1 , ux2)), then we get a partial

di�erential equation:

0 =
∂f

∂u
− d

dx1

∂f

∂ux1
− d

dx2

∂f

∂ux2
=
∂f

∂u
− div F,

where F = (ux1 , ux2).

(III) If f depends on several function, say f = f(x, u, v, ux, vx), then we get a system of
equation

0 =
∂f

∂u
− d

dx

∂f

∂ux
, 0 =

∂f

∂v
− d

dx

∂f

∂vx
.

The equations that are Euler-Lagrange equations of special f :
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Equation The functional

The beam equation EI
d4

dx4
w(x) = q(x)

∫ L

0

(
EI

2

(d2w
dx2

)2
− q(x)w(x)

)
dx

Euler equation d2

dt2
X(α, t) = −∇p 1

2

∫ ∣∣∣∣ ddtX(α, t)

∣∣∣∣2 dα + incompressibility

Kepler's problem
d

dt
(mr2θ̇) = 0, mr̈ = mrθ̇2 − GMm

r2

∫ t1

t0

(
m

2
ṙ2 +

m

2
r2θ̇2 +

GMm

r

)
dt

Wave equation utt = ∆u

∫ ∫ (
1

2
u2t −

1

2
|∇u|2

)
dtdx

Two major types problems arising in calculus of variations:

(1) Steady state that minimize the energy, for example the catenary minimizes the total
gravitational energy or the soap bubble minimizes the total surface area. You get a
boundary value problem.

(2) Mechanic or time-dependent systems corresponds to an action A, where the action is the
integral (w.r.t time) of the Lagrangian L de�ned to be the di�erence of kinetic energy
and potential energy. For example, the trajectory of a particle x(t) with mass m under
the force −∇V (x), then the equation can be obtained from

∫ t1
t0

(
m
2
|ẋ|2−V (x)

)
dt, or the

Newton's equation of the second law. You get a initial value problem. In this case,
the total energy m

2
|ẋ|2 + V (x) ( the sum of kinetic and potential energy) is conserved.

A General solutions of linear second order ODEs

Linear second order ODEs have the form

a(x)y′′ + b(x)y′ + c(x)y = f(x). (8)

The equation is called homogeneous if f(x) ≡ 0. In general, the coe�cients a(x), b(x), c(x)
are either constants or monomials ( for example a(x) = x2, b(x) = x, c(x) = 1).

A.1 Homogeneous linear equations with constant coe�cients

The equation is ay′′ + by′ + cy = 0 where a, b, c are constants and a is nonzero. We can �nd
the general solution with the characteristic equation (using the ansatz y(x) = eµx)

aµ2 + bµ+ c = 0.

(1) If µ1 and µ2 are distinct real numbers (when b
2 − 4ac > 0), then the general solution is

y(x) = c1e
µ1x + c2e

µ2x.

(2) If µ1 = µ2 (when b
2 − 4ac = 0), then the general solution is

y(x) = c1e
µ1x + c2xe

µ1x.
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(3) If µ1 = α + iβ and µ2 = α − iβ are complex numbers (when b2 − 4ac < 0), then the
general solution is

y(x) = c1e
αx cos βx+ c2e

αx sin βx.

Example.

(1) y′′ + y = 0

(2) y′′ − y = 0

(3) y′′ + 2y′ + y = 0

(4) y′′ + 2y′ + 2y = 0

A.2 Homogeneous linear equations with monomials

These linear ODEs have the form

ax2y′′ + bxy′ + cy = 0.

We are looking for solutions of the form y(x) = x`, whose characteristic equation (by putting
y(x) = x` into above equation)

a`(`− 1) + b`+ c = 0.

There are two solutions `1 and `2 for the quadratic equation and the general solution of the
di�erential equation is

y(x) = c1x
`1 + c2x

`2 .

A.3 Solutions of equations with inhomogeneous terms

The general solution of the equation

a(x)y′′ + b(x)y′ + c(x)y′ = f(x)

has the structure y(x) = c1y1(x) + c2y2(x) + yp(x), where c1 and c2 are two constants
(determined by end conditions), y1 and y2 are the solutions of the homogeneous equation
a(x)y′′ + b(x)y′ + c(x)y = 0, and yp(x) is any solution of the inhomogeneous equation. The
particular solution can be obtained by inspection:

Example. Find the general solution of the following equations

(1) y′′ − y = x, y(0) = 1, y(1) = e1 − 1

(2) x2y′′ + xy′ = x4, y(1) = 1
16
, y(2) = 1

4
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