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Aero I11/1V Calculus of Variations

Historical Development

The calculus of variations originated in problems to maximize or minimize certain integrals
depending on functions. It is developed from several examples through history:

a)

)

Isoperimetric problem: Find the closed curve (or surface) with maximal area (or volume)
with a given total length (or surface area). In two dimension, it becomes the minimal
surface (like soap bubble)

Geodesics: Find the shortest distance between two points on a general surface (like the
sphere)

Figure 1: The isoperimetric problem and the geodesic on a sphere.

Optical Path: the path from one point to another has the least time (not the least distance
if the media is not homogeneous). This fact can give another derivation of the law of
reflection and refraction.

Brachistochrone: the curve that carries a bead from one place to another in the least
amount of time. This problem was solved by several mathematicians, including the
inventors of Calculus, Newton and Leibniz. The general formulation was proposed by
Euler and Lagrange, leading to the celebrated Euler-Lagrange equation below.

The inspired further development in mechanics: The Lagrangian mechanics and Hamil-
tonian mechanics, Hamilton’s principle, virtual work ...

Exercise: Name some examples of optimizing in your daily life or course work?
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Figure 2: The Brachistochrone and the Fermat’s problem of least time.

2 Formulation of the problem and derivation of the gov-
erning equation

The fundamental problem in the calculus of variations: Given a functional [ =
I[y(z)], find the function y(x) for which I[y(x)] is maximum or minimum.

Here a functional takes a function y(z) into a real number (function of function), for
example:

Motivation for the characterizing equation: In calculus, to find the maximum or
minimum of a function f(z), for x in n-dimensional space, the usual approach is to find all
the points z* such that V f(z*) = 0. But I[y| is defined for y(z) in an infinite dimensional
space, and we can not define the gradient or partial derivatives of I[y| with respect to y.
The motivation comes from the equivalent condition to V f(x*): for any z, if p(e) =

f(z* + ex) has a maximum or minimum point at ¢ = 0, then f(z) has a maximum or
minimum point at z*. In fact,
0=(0) = Sp( o= 5"+ )| =3 Vi@ +er)| =2 Vi)
= = —(€)|emo = — f(z* + €T =17I- ¥+ el =7I- x¥).
1 degp 07 de =0 =0

Since 7 is arbitrary, we can choose & = V f(z*) to get 0 = V f(z*) - Vf(2*) or V f(z*) = 0.
In this way, all the calculations are for the scalar function ¢, regardless the dimension of the
space of x. We are going to derive the governing equation for the maximizer or minimizer
of I[y], by first reducing it to a scalar point with a “test” function 7.

Derivation of the Euler-Lagrange equation: Find the curve y(x) that extremizes the
integral

fwzfﬁ@mmwmw
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subject to the end conditions y(xg) = yo,y(x1) = y;1. Similarly, the extreme curve y(zx) is
characterized by the fact that for any other function n, p(e) = Iy + en], we have

Iy + en] — I[y]

0=¢'(0) =lim = d Iy +en]| . (1)

e—0 € de

Figure 3: If y = y(z) is a minimizer of I[y|, then I[y + €] should be larger than I[y] for any
variation y + en.

Remark (The boundary conditions). Here y + en should satisfies the same end condition as
Y, y(zo) + en(zo) = yo,y(z1) + en(z1) = y1 or n(xo) = n(z1) = 0. We need this boundary
condition later to eliminate certain terms to get the final Euler-Lagrange equation.

For simple cases, we can evaluate the limit in (1) directly. For example when I[y] =
[y (2) + y(x)?)dx, then

dx

e—0 € e—0 €

oty el =10 lhm (' (2) + e/ (2)" + (y2) + ente))” = y'(@)” = y()?

— [ty 20 @) (@) + 20 a)na) + el (@) + (o))

o

xr1
— [ @@+ 2y(n(a))ds
)
For more complicated integrand f(x,y,y’), we can use the definition and partial derivatives
to find the Euler-Lagrange equation characterizing extremal curves of the integrals.

The Euler-Lagrange equation for the stationary value of the integral Iy] = f: flz,y,y)dz
can be derived using the definition (1):

dx

e—0 € e—0 €

Ctres o)
_/IO [a—y“a—y/ ]dm—o. (2)

_ x1 / i /
iy Ly enl = I[y] :/ i J@y+eny +en) — flr,y,y)
Zo



It is not immediately clear the conditions such that the last expression in (2) is identically
zero, for any 1. We have to convert 1’ to n, using integration by parts:

of  of / of d of of
O_/xo {0 +0yn]dm 20 [811 dwy’]ndﬁﬁy’ v

o d 0
:/m {a—i‘%a—ﬂ”df’c' )

During the last step, the end condition for 7 is used such that

ol = 2L )y o)) = 2 o, ). o)) = 0.

Since 7 is arbitrary, we get the Euler-Lagrange equation:
0 d (0
of _d (9f\ _, (4)
dy dx \ oy

. d . .
The derivative T is the total derivative and if we expand the second term
x

A\ Fpde Gfdy | By PP PR
oy’ ) 0xdy dxz = Oyoy'dx  Oy'dy dx  Oxdy Y oyoy’ Y oy'oy’

The Euler-Lagrange equation is usually a second order differential equation, because of the
last term 7" % in (5). Moreover, the expansion % 2—5/) is in general very complicated,
we expand it only when f is relatively simple in ¢ (for example, f is quadratic and we get
a linear differential equation).

In this class, you can use the Euler-Lagrange equation (4) directly in your calculation
(without the derivation). The main focus should be on how to solve (4), according the the

precision form of f given.
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How do you remember the Euler-Lagrange equation (4)? At least two ways:

(1) From the derivative above. Using § to denote the wariation (commonly used in math
and engineering), then (forget about the bounary conditions)

f of s
5 [ feptiae = [ [0—5 + 50| de
of of d of d (0 f
0y —o0y| de = - - — dyd
”ay YT oy de y} ! /{ay dz \ay )| 0
(2) If you vaguely remember the two terms in the Euler-Lagrange equation, then you can
get the right form by notting (a) there is no terms like ﬂ because the variation is with
respect to y; (b) using dimensional analysis to determine the derivative di is on gi or %
[the integral f

[the function Y]

of the equation g—;, — % (2—5) = 0 does not match ( f] 7é

The equation (4) is the only one has right dimension of . The dimension

x] [y] )
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Solution of the Euler-Lagrange equation

In general, the solutions can be classified into two classes:

(i)

The Euler-Lagrange equation is linear (f is at most quadratic in y and y’) and we can
find the general solution. For example:

1) /0 (y? +y*)dz, y(0)=0,y(1) = 1.

1 dy 2
2 [ @Y 2
2) /0 x <dx) + 2y

See the Appendix about general solutions of the second order ODEs.

de,  y(1) =0,y(2) =1

The Euler-Lagrange equation has certain “symmetry” in the sense that x or y is missing
in f, then we can get a first integral (reducing the equation to an ODE), and the final
problem is reduced into integration w.r.t y or x only:

0
a) If x is missing (or f = f(y,v')), then f — y’—f = ¢y is a constant. In fact,

oy’
af 8.]“ 8f / ﬂ " _ //8_f _ liﬁ
(f y> or T oyY ToayY TV ay Varoy
_ 2L _dof
—Y dy  dx 0y
=0 (by Euler-Lagrange equation)

Since z is missing, this first order equation can be rewritten as y' = F(y,c;) for
some function F' and can be integrated by separation of variable:

/y dy =x+c
F<yacl) >

Example. For the hanging chain, the shape of the chain is determined by the
extremal curve of the integral [ y/1 + y”2dy. Therefore

,0f Y

AN

f_

or

The general solution is given by

s
JE-1

T+ Ccg =



b) If y is missing (or f = f(x,y)), then by the Euler-Lagrange equation

a(ory_or

de \oy') 0oy
This implies that df/0y" = ¢y is a constant. We can also solve for ¢’ to get ¢/ =
G(z,¢1) and the general solution is given by

y:/G(:p,cl)dech.

Example (Problem 3 in tutorial sheet). Show that the extremal curves of the

integral
1/2
A%
[[6]—/1”2 1+ 77 (%) ] dr

Here ¢ is the dependent variable and is missing in the integrand. Therefore,

ﬁ—r40—l—c
00 Vi+ro?
or
de_ C1

dr  py/r6 — ¢

Using the substitution 73

dr

1
:§tanudu, \/16 — = ¢y tanu
,

c1 1 Uu
0 = / ——dr = /—du = — 4 constant
ry/18 — 2 3 3

Therefore, the solution is given by r3 = ¢; sec(36 + c3).

= ¢y secu, we get

and

Remark. In general, the integration in a) and b) are complicated, and you should look
at the solution (if given) to find the right change of variable.

4 More examples

Example (Brachistochrone and cycloid) The speed of the bead at (x,y) can be obtained
from energy conservation, 2mv? — mgy = 0 or v = (2gy)"/2. Therefore,

? 2
d 1 /2 1/2
v 2qy

and the total time from (0,0) to (z1,y1) is

x1 1 2\ 1/2
Tzf[y]z/ <;y> d.
0 gy
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Figure 4: The brachistochrone: the curve that carries a bead from one place to another in
the least amount of time.

L2\ 172
Solution: Since f = <+—y> is independent of z,

29y
RV
oy’ 2gy(1+y7)

f

is a constant, or y(1 + ) = D? for some constant D. The derivative ¢’ can be obtained

y/: C_%_u
Yy

where the fact ¥/ > 0 (with y increasing downwards) is used to get rid of the other solution
Yy = — /% — 1. The solution can be defined implicitly by

d
T = / 2—y + Co
¥,/ 1
Yy
or more conveniently in parametric form as follows. Let y = ¢? sin 6, then dy = 2¢? sin 6 cos 0df)

and
_ 2¢isinfcosf

= df = 2% sin® 0d.

d
dr = 2y
c 1
\/?1_1 \/sin29_1

1
x = 20?/sin2 0db = c%/ (1 — COSQQ)d@ = c%(@ —3 sin29) + co.

Therefore,

Using the boundary condition at the origin (y = 0 when x = 0), we get co = 0 with
6y = 0. Using the boundary at the end point,

1
cf sin? 6, =y, c?(@l — ésin 91) = 11,
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Figure 5: The solution to the brachistochrone is part of the cycloid.

from which we can find ¢; and 6y, in terms of (z1,y;). Finally, the solution is given by
{x = %(0——sm26) 0<6<b

2, <6 <b,.

&1

The resulting curve is called a cycloid. We can get the trajectory, which is a fixed point on
a disk with radius ¢? rotating with angle 26. See Figure 5.

B
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Figure 6: The creation of a mirage.

When light travels through a media, it is the time (instead of length) that is minimized.
In a homogeneous media, where the refraction index n is constant, the path is a straight
line. When light travels from one media to another, the law of refraction can be obtained
by minimizing the traveling time. Even in one media, the index of refraction can differ
significantly, for instance the air near the ground is very hot and the corresponding index of
refraction is smaller. This may lead to mirage.
Example (The mirage) Find the extremal curve to

1
/ (1+ ry)no/1 + y%dx,
z0

there the index of refraction is (1 + ky)no.
Solution: Since f = (1 + ky)no/1 + y'? is independent of z, constant, or

of Y (1 + ky)ng
—yL 1+ T+y?—y(1+ _
f—vy 0y (14 Kky)no y'? —y' (1 + Kky)ng Ty =



is a constant, denoted as ¢;. We can solve ¢ from the equation % = ¢1, that is
Y

Y = :I:\/—(l ryPn g

2
1

The solution is

| F=—
==+ + Ca.
(14+ky)2n? _1
cf

We can find the integral by the change of variable

(1 + ky)ng
1

= cosh . (6)

Therefore

1 202
sinh 0d0 = 2y, \/w —1=1/cosh®0 — 1 = sinh 0.
1

The solution can be written as

x:ii db + ¢ :ic—19+02,
N N

or = £ (z — ;). Substituting ¢ into (6), we get

C1 Kng 1
y = — cosh —(z — ) — —.
N C1 K

The most important information from the solution is that y is always conver (or concave
up).

Exercise (Straight lines are the paths with shortest distance) Show that the shortest path
between two points on a plane is a straight line. In other words, show that the extremal

curve of .
Iy] = / V1+y?2de,
o

with the boundary conditions y(x¢) = yo, y(x1) = 31 is a straight line.

Exercise (Which method to choose?) Find the extremal curve of the integral [(y* —y”?)dx
(a) by solving the linear Euler-Lagrange equation (b) by realizing the fact that f = y* — ¢
is independent of z. Which way is easier and faster?

5 Extremal curves with integral constraint
In practice, many problems involves constraints: the total length of a suspension bridge or

a hanging chain, the perimeter or total area in isoperimetric problem. The general problem
can be formulated as:



Find the extremal curve of

Iy] = /xlf(:v,y,y/)dx, y(zo) = 4o, ylo1) =u

with constraint -
/ g($7y7y/)dx: JO-

zo

Similar to optimization of a scalar function with constraints, we have to introduce the
Lagrange multiplier \ and replace f by

f,y,y) = flz,u.9) = Ag(z,y,9).

of  dof

The solution from the Constrained-Euler-Lagrange equation 8_f = d—a—f/ has three
Y T oY

parameters ¢y, co and A, which are determined by the two end conditions and the constraint.

Remark. We can also use f(z,y,y) = f(z,y,y') + Ag(z,y,7) in the definition, everything
is the same except the opposite sign. But do keep the sign in front of A consistent in one
problem.

Example (Eigenfrequency). Find the extremal curve y(z) of the functional

1
1
/ —y?dz,  y(0)=0, y(1)=0
0

2
1
1
/ —y?dr = 1.
0 2

Solution: Since f = y”/2 and g = y*/2,

subject to the constraint

r_ _1/2 )‘2
f=f Ag—Qy S

The corresponding Constrained-Euler-Lagrange equation is
d (of\ of d
—|N=] 5= Ay =19y"+y=0.
dz (ay) y dz” TN=Y A
The solution depends on the sign of A:

i) When A < 0, y = c;eV™> + ¢peV?. Using the boundary conditions y(0) = 0,y(1) = 0,
we get ¢; = co = 0. But the solution y(z) = 0 does not satisfy the constraint above.

ii) When A =0, y = ¢; + coz. From the boundary conditions, we still get the same trivial
solution y(x) = 0, which does not satisfy the constraint.
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iii) When A > 0, y = ¢;sin v Az + ¢ cos vV Az. The boundary condition y(0) = 0 implies
that ¢, = 0, and the other boundary condition leads to y(1) = ¢;sin vA = 0. To get a
non-trivial solution (or ¢; # 0), we must have sinvVA =0 or VA =kr for k=1,2,---.
Consequently,

)\k = k27'('2

and the coefficient ¢; can be obtained from the constraint

1 1 CQ 1 9 02
1= / . —1/ (sin(kmz)) de = =,
. 2 2 J, 4
or ¢; = £2.

Therefore, the extremal curves are y, = 2sin kmx, with the corresponding Lagrange multi-
plier \, = k72,

Remark. In the previous example, the Lagrange multiplier can be interpreted as the eigen-
frequency. Here y; is the minimizer of the constrained problem, but all other y;s with £ > 1
are not minimizers.

Example (Suspension bridge and catenary). Find the curve that minimize the total (rescaled)
gravitational potential ffay\/l + y"2dx with y(a) = y(—a) = 0, subject to the total length

of the curve [* /14 y?dz =L > 2a.

S '

y = y(x)

Solution: We have f =f—Xg=(y—N)+/1+y? Since f does not depend on z,
o vm A
o  Ji+yr

is a constant. Then derivative y’ can be solved from this equation

— %_1. (7)

f

Using the change of variable y = A + ¢y cosh u, we have

(y — A)?

o

dy = ¢y sinh udu, — 1 =sinhu.
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The differential equation (7) is reduced to (the sign can be absorbed by ¢;).

dy
(y=N2 1

2
1

dr = = c1du,

or u = z/c; 4 co. Therefore the solution is given by y = A+ ¢y cosh(ca +x/c1). The boundary
conditions y(a) = y(—a) = 0 become

0 = A+ ¢ cosh (3—1-02), 0 = X+ ¢y cosh (—£+62),
&1

C1
which can be solved as ¢co = 0, A = —¢; cosh a/c;. Substituting the solution y = ¢ ( cosh(x/cy)—
cosh(a/cy)) into the constraint

L:/ \/1—|—y’2dx:/ Coshﬁdx:2clsinhﬁ.

—a C1 C1

Solve ¢;(> 0) from this algebraic equation, then we get A and the curve y(z).

6 Some Extensions (not required for the exam)

There are many general extensions to the Euler-Lagrange equation, higher order derivatives,
multiple independent variables and several dependent functions:

(I) If f depends on higher order derivatives, say f = f(x,y,v',y”), then the Euler-
Lagrange equation becomes fourth order

dof & af

dx 0y’ * @ay” B

(IT) If f depends on multiple independent variables, say x1 and x5, with the corresponding
ou

partial derivatives 5 and 59_;2 (that is f = f(x1, T2, u, uz,, Uy, )), then we get a partial

differential equation:

0O 4 of dof _of o g
- Ou  dvyOu,, dryOu,, Ou v

where F = (uy,, uy,).

(IIT) If f depends on several function, say f = f(z,u,v,us,v,;), then we get a system of
equation

_of d of 0o 9f d49f

 Ou  dxduy’ v dx v,

The equations that are Euler-Lagrange equations of special f:
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Equation The functional
d4 L E 2
The beam equation Elﬁw(x) = q(x) /0 <7 @ - q(x)w(x)) dx
1 d
Euler equation j—;X(a, t)=—-Vp 5/ aX(a t)| da + incompressibility
d o GM g GM
Kepler’s problem o —(mr*0) = 0, mit = mr® — 2m / (—r + 222 4 ) at
r
Wave equation uy = Au // < up — —|Vu\2) dtdx

Two major types problems arising in calculus of variations:

(1)

(2)

A

Steady state that minimize the energy, for example the catenary minimizes the total
gravitational energy or the soap bubble minimizes the total surface area. You get a
boundary value problem.

Mechanic or time-dependent systems corresponds to an action A, where the action is the
integral (w.r.t time) of the Lagrangian L defined to be the difference of kinetic energy
and potential energy. For example, the trajectory of a particle x(¢) with mass m under
the force —VV (x), then the equation can be obtained from fttol (Z|x|* - V(x))dt, or the
Newton’s equation of the second law. You get a initial value problem. In this case,
the total energy 2|x|*> + V(x) ( the sum of kinetic and potential energy) is conserved.

General solutions of linear second order ODEs

Linear second order ODEs have the form

a(x)y” + b(x)y + c(x)y = f(z). (8)

The equation is called homogeneous if f(x) = 0. In general, the coefficients a(z), b(x), c¢(z)
are either constants or monomials ( for example a(z) = 22,b(z) = z,c(z) = 1).

A.1 Homogeneous linear equations with constant coefficients

The equation is ay” + by’ + cy = 0 where a, b, ¢ are constants and a is nonzero. We can find
the general solution with the characteristic equation (using the ansatz y(x) = e/*)

(1)

(2)

ap® + by +c = 0.
If 11 and py are distinct real numbers (when b* — 4ac > 0), then the general solution is

y(x) = c1eM® 4 coet®.

If 11 = po (when b? — 4ac = 0), then the general solution is

y(x) = e 4 cowe!®.
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(3) If g = a+if and py = a — i3 are complex numbers (when b* — 4ac < 0), then the
general solution is
y(x) = c1€* cos fx + c9e™” sin fu.

Example.
Dy +y=0
2) y' —y=0

(1)
(2)
3) v +2/+y=0
4) vV +2y +2y=0

A.2 Homogeneous linear equations with monomials
These linear ODEs have the form

az*y" + bxy' + cy = 0.

We are looking for solutions of the form y(x) = x*, whose characteristic equation (by putting
y(z) = 2 into above equation)

al(l —1)+bl+c=0.
There are two solutions ¢; and /¢ for the quadratic equation and the general solution of the

differential equation is

y(r) = ca + cpa®.

A.3 Solutions of equations with inhomogeneous terms

The general solution of the equation

a(x)y” + b(z)y + c(x)y’ = f(x)

has the structure y(x) = ciy1(z) + caye(z) + yp(x), where ¢; and ¢y are two constants
(determined by end conditions), y; and y, are the solutions of the homogeneous equation
a(z)y" +b(x)y + c(x)y = 0, and y,(z) is any solution of the inhomogeneous equation. The
particular solution can be obtained by inspection:

Example. Find the general solution of the following equations
(1) v —y=z,y(0)=1,y(1) =¢e* -1

(2) 2%y’ +ay =a',y(1) = 3. 9(2) = §
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