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Abstract. We show how non-linear representations of local image struc-
ture can be used to improve the performance of model matching algo-
rithms in medical image analysis tasks. Rather than represent the image
structure using intensity values or gradients, we use measures that indi-
cate the reliability of a set of local image feature detector outputs. These
features are image edges, corners, and gradients. Feature detector out-
puts in flat, noisy regions tend to be ignored whereas those near strong
structure are favoured. We demonstrate that combinations of these fea-
tures give more accurate and reliable matching between models and new
images than modelling image intensity alone. We also show that the ap-
proach is robust to non-linear changes in contrast, such as those found
in multi-modal imaging.

1 Introduction

This paper builds on Cootes’s et al.[2, 5] work on constructing statistical appear-
ance models and matching them to new images using the Active Appearance
Model (AAM) search algorithm. When building models of the appearance of ob-
jects it is advantageous to choose a representation of the image structure which
can capture the features of interest in a way that allows a reliable comparison
between model and image, and is invariant to the sorts of global transformation
that may occur. For instance, when building statistical appearance models[2, 18]
it is common to represent the image texture by a vector of intensity values sam-
pled from the image, normalised by a linear transform so as to be invariant to
global changes in brightness and contrast. By sampling across the whole region,
all image structures are represented and all pixels treated equally (though the
statistical analysis will then typically favour pixels in some regions over others,
as dictated by the data.) However, models based on raw intensity tend to be
sensitive to changes in conditions such as imaging parameters or biological vari-
ability. Thus models built on one data set may not perform well on images taken
under different conditions. Also, intensity models do not explicitly distinguish
between areas of noisy flat texture and real structure, and thus may not lead to
accurate fitting in AAM search.

Edge based representations tend to be less sensitive to imaging conditions
than raw intensity measures. Thus an obvious alternative to modelling the in-
tensity values directly is to record the local image gradient in each direction



at each pixel. Although this yields more information at each pixel, and at first
glance might seem to favour edge regions over flatter regions, it is only a lin-
ear transformation of the original intensity data. Where model building involves
applying a linear Principal Component Analysis (PCA) to the samples, the re-
sulting model will be almost identical to one built from raw intensities, apart
from some effects around the border where computing the gradients includes
some background information into the model.

In this paper we present a new representation. Rather than just recording
the intensities at each pixel, we record a local structure tuple. It is useful to
think about the rest of this work as using texture preprocessors which take an
input image, and produce an image of tuples representing various aspects of local
structure. This local structure tuple can include such things as edge orientation,
corner strength, etc. When sampling the image to produce a texture vector for
a model, instead of sampling n image intensity values from the original image,
we sample all the values from each m-tuple at n sample locations, to produce a
texture vector of length nm.

The local structure descriptors that we have used are gradient orientation
(which was first discussed in a previous paper[4],) corner and edge strength. We
demonstrate that using all of these measures in the texture preprocessor gives
improved AAM matching accuracy and reliability when compared to intensity
texture AAMs alone. We demonstrate that these improvements are statistically
significant. We also show that the new approach can deal with images subject
to strong non-linear changes in contrast, as found in multi-modal imaging.

2 Background

Eigen-faces[18] model the statistics of the intensities in a region of an image,
and have been widely used for object location and recognition. Moghaddam and
Pentland generalised this to include models of smoothed canny edge images[14].
In the image registration community, edge maps are widely used[17]. However,
they tend to use either linearly normalised gradients or squared gradients, or non-
maximally suppressed edges (all pixels other than those thought to be exactly
on the edge are set to zero).

Edge orientation images have been used for face recognition by Hond and
Spacek[7], who created histograms of edge orientation over regions and obtained
good results. One of our structure descriptors can be thought of as a weighted
version of edge orientation, in which strong edges are given more weight than
weak edges. Rather than use a histogram we model the edge structure at every
pixel.

Bosch et al.[1] have used a non-linear normalisation step on intensities in
echo-cardiograms as pre-processing before building an appearance model. The
intention is to modify the strongly non-gaussian noise statistics of such images
into more normal shaped distributions. This gives significantly improved results.
However, this was on intensities, not structure descriptors, and the approach
described may not be optimal when applied to structure descriptors.



Several authors have attached feature detectors to points on an Point Dis-
tribution Model (PDM). This PDM can been automatically generated created
using elastic variation of a single image[10]. A manually trained, but statisti-
cally learnt PDM can be used with profiles[3], and Gabor jets[11]. In all these
approaches there is no dense model of texture, and the feature detector location,
and effect on the shape model, has been set by humans rather than learnt.

Kittler et al.[9] demonstrated that different types of image normalisation
could have a significant effect on a face verification task. They found that his-
togram normalisation tended to perform well over a range of experiments.

3 Statistical Models of Appearance

An appearance model can represent both
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Fig. 1. Effect of varying first two
parameters of a spinal X-ray appear-
ance model, by ±3 standard devia-
tions from the mean.

the shape and texture variability seen in a
training set. The training set consists of la-
belled images, where key landmark points are
marked on each example object. An appear-
ance model can be thought of as generalisa-
tions of eigen-patches or eigen-faces[14, 18] in
which, rather than represent a rigid region,
we model the shape of the region and allow it
to deform.

Given a training set we can generate sta-
tistical models of shape and texture varia-
tion using the AAM method developed by
Cootes et al.[2]. The shape of an object can
be represented as a vector s of the positions
of the landmarks and the texture (grey-levels
or colour values) as a vector t. This texture is
sampled after the image has been warped to
the mean shape. The texture preprocessing
described in this paper also takes place af-
ter the texture has been warped to the mean
shape. The appearance model has parame-
ters, c, controlling the shape and texture ac-
cording to

s = s̄ + Qsc
t = t̄ + Qtc

where s̄ is the mean shape, t̄ the mean texture
and Qs,Qt are matrices describing the modes
of variation derived from the training set.

An example image can be synthesised for a given c by generating a texture
image from the vector t and warping it using the control points described by s
(see figure 1.)



Such a model can be matched to a new image, given an initial approximation
to the position, using the AAM algorithm[2]. This uses a fast linear update
scheme to modify the model parameters so as to minimise the difference between
a synthesised image and the target image. Appearance models and AAMs have
been shown to be powerful tools for medical image interpretation [13, 1] and face
image interpretation [2].

4 Local Structure Detectors

4.1 Non-linear transforms

As noted earlier, the texture preprocessor needs to be non-linear to make a
significant difference to a linear PCA-based model. If we restrict the choice of
preprocessor to those whose magnitude reflects the strength of response of a local
feature detector, then it would be useful to transform this magnitude m into a
reliability measure. We have chosen to use sigmoid function for this non-linear
transform;

f(x) =
m

m + m
(1)

where m is the mean of the feature response magnitudes m over all samples. This
function has the effect of limiting very large responses, preventing them from
dominating the image. Any response significantly above the mean gives similar
output. Also, any response significantly below the mean gives approximately
zero output. This output behaves like the probability of there being a real local
structure feature at that location.

4.2 Gradient Structure

The first local structure descriptor with which we have experimented is gradient
orientation. Early work on non-linear gradient orientation is described in [4].
We calculate the image gradient g = (gx gy)T at each point giving a 2-tuple
texture image for 2-d input images. The magnitude |g| can be transformed using
equation 1, while preserving the direction. This is followed by the non-linear
normalisation step to give

gn =
(gx gy)T

|g|+ |g| (2)

4.3 Corner and Edge Structure

We had observed that image corners were sometimes badly matched by gradient
and intensity AAMs. Corners are well known as reliable features for correspond-
ing multiple images[17], and in applications such as morphometry[15] accurate
corner location is important in diagnosis.



Harris and Stephens [6] describe how to build a corner detector. They con-
struct a local texture descriptor by calculating the Euclidean distance, or sum
of square differences between an image patch and itself as one is scanned over
the other. This local image difference energy E is zero at the patch origin, and
rises faster for stronger textures.

E(x, y) =
∑
u,v

[I(u + x, v + y)− I(u, v)]2

To enforce locality and the consideration of only small shifts, they added a
Gaussian window w(u, v),and then made a first order approximation:

E(x, y) =
∑
u,v

w(u, v)
[
x

∂I

∂u
(x, y) + y

∂I

∂v
(x, y) + O(x2, y2)

]2

Expanding the square-term gives

E(x, y) = Ax2 + 2Cxy + By2 = (x y)M(x y)T

where w(u, v) = exp−(u2 − v2)/2σ2, M = ( A C
C B ), A(x, y) =

[
∂I
∂u

]2 ⊗ w, etc.

The eigenvalues α,β of M characterise the rate of change of the sum of
squared differences function as its moves from the origin. Since α and β are
the principle rates of change, they are invariant to rotation. Without loss of
generality, the eigenvalues can be rearranged so that α >= β. The local texture
at each point in the image can be described by these two values. As shown in
figure 2, low values of α and β imply a flat image region. A high value of α
and low value of β imply an image region flat in one direction, but changing in
another, i.e. an edge. High values of both α and β imply a region that isn’t flat
in any direction, i.e. a corner.

At this point Harris and Stephens identified individual points of interest by
looking for local maxima in detM − k[trM]2. We leave their approach here,
except to note that useful measures derived from α and β can be found without
actually performing an eigenvector decomposition, e.g. det(M) = AB − C2

4.4 Developing measures of cornerness and edgeness

It would be useful to have independent descriptors of edgeness and cornerness. To
force α and β into an independent form, we take the vector (α β)T and double
the angle from the α axis, as in figure 3. It is possible to calculate the cornerness,
r, and edgeness, e, defined this way, without explicitly having to calculate an
eigenvector decomposition. Note that our edgeness measure is different from the
gradient measure, by being independent of edge direction.

tan θ =
β

α
⇒ sin θ =

β√
α2 + β2

and cos θ =
α√

α2 + β2
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Fig. 2. How α and β relate
to cornerness and edgeness.
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Fig. 3. Making cornerness independent of edgeness by
doubling angle from axis.

r = (α2 + β2) sin 2θ

= 2 detM
= 2AB − 2C2 (3)

e = (α2 + β2) cos 2θ

= trM
√

tr2 M− 4 detM
= (A + B)

√
(A−B)2 + 4C2 (4)

5 Experiment with Spinal X-Rays

We took a previously described[16] data

Fig. 4. A spinal DXA image with
markup, and after multi-modal sim-
ulation.

set of low-dose Dual X-ray Absorptiometry
(DXA) lateral scans of the spines of 47 nor-
mal women. The vertebrae from T7 to L4
were marked up under the supervision of an
experienced radiologist — figure 4 shows an
example. The images are 8-bit greyscale and
roughly 140×400 pixels in size. Each vertebra
is about 20-25 pixels tall.

Since we did not have a large data set,
we performed leave-1-out experiments, by re-
peatedly training an AAM on 46 of the im-
ages and testing it on the remaining image.
For each test image we performed 9 AAM
searches starting with the mean shape learned
during training, displaced by all combinations
of [−10, 0, +10] pixels in x and y. After the
AAM search had converged we measured the distance from each control point
on the AAM to the nearest point on the curve through the equivalent marked-up
points. We calculated the mean of these absolute errors for each AAM search.
Because of the even spacing of control points around each vertebra, this error
will be approximately proportional to the total pixel overlap error.

This whole experiment was run for each of the following texture preproces-
sors:
Intensity Original AAM.



Sigmoidal gradient 2-tuple output gn of sigmoidally normalised directed gra-
dient (equation 2.)

Sigmoidal edge Sigmoidally normalised version of undirected edgeness e
(equation 4.)

Sigmoidal corner Sigmoidally normalised version of cornerness r (equation 3.)
Sigmoidal corner and edge 2-tuple of the sigmoidally normalised cornerness

and edgeness (r, e). (equations 3 and 4.)
Sigmoidal corner and gradient . . .
Sigmoidal edge and gradient . . .
Sigmoidal corner, edge, and gradient . . .

In another experiment to simulate performance on multi-modal images, roughly
half of the set of images were transformed by applying a bitonic pixel-value trans-
fer function — see figure 4 for an example. The two groups were then merged,
to give a set of 47 images. A leave-1-out experiment, similar to the previously
described one, was then performed on this simulated multi-modal data set.

5.1 Results

The distribution of mean ab-
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Fig. 5. Error spread between spinal AAM control
points and the marked-up curves.

solute errors for the 47× 9 = 423
searches of the normal data set
for three of the preprocessors is
shown in figure 5. Each search was
considered a success if the mean
absolute point to curve error was
less than 2 pixels. (The estimated
repeatability of expert annotation
is 1 to 1.5 pixels on this data.)
Figure 6 summarises the results
for all of the preprocessors. The results from the simulated multi-modal data
set for the original “Intensity” and the “Sigmoidal corner, edge and gradient”
AAMs are summarised in figure 7.

5.2 Statistics

It is not possible enough to show that the improvement is significant by simply
comparing the means and standard deviations in figure 6, because the data is
not normally distributed. Instead we use the percentage of successful results.
If we classify the results as successes or failures according to the above test
(section 5.1,) and count the number of successes, we should expect the result to
be a binomially distributed random variable. When comparing two experiments,
we need to show that any improvement in the percentage of successful results is
statistically significant. To do this we must assume that there is an underlying
distribution based on a probability of a single success of θ. After performing
one experiment with n trials we get ny successes, and so estimate a probability



Fig. 6. Comparing point-to-curve errors (in pixels) for different spinal AAM texture pre-
processors.

Texture Preprocessor Searches Point-Curve error
<2 pixels mean std median 90%-ile

Intensity 35% 5.4 3.8 5.6 11.0

Sigmoidal gradient 40% 5.1 4.0 4.7 10.8

Sigmoidal edge 82% 2.4 3.1 1.4 6.5

Sigmoidal corner 75% 2.6 2.7 1.5 7.5

Sigmoidal corner and edge 81% 2.2 2.6 1.3 4.8

Sigmoidal corner and gradient 80% 2.1 2.2 1.2 1.9

Sigmoidal edge and gradient 85% 1.9 2.1 1.2 4.6

Sigmoidal corner, edge, and gradient 92% 1.5 1.4 1.2 1.8

Fig. 7. Comparing point-to-curve errors (in pixels) for simulated multi-modal spinal images

Texture Preprocessor Searches Point-Curve error
<2 pixels mean std median 90%-ile

Intensity 7% 9.5 6.1 8.9 16.0

Sigmoidal corner, edge, and gradient 60% 3.4 3.8 1.6 9.3

of success y. We perform another experiment of m trials and get a probability
of success x. We are interested in the probability of x being from the same
distribution as y, having already measured y.

p(x|y) =
p(x ∩ y)

p(y)

Each of these probabilities depends on the parameter of the underlying binomial
distribution p(x|θ), so we must marginalise θ away.

p(x|y) =

∫ 1

0
p(x ∩ y|θ)dθ∫ 1

0
p(y|θ)dθ

=

∫ 1

0
p(x|θ)p(y|θ)dθ∫ 1

0
p(y|θ)dθ

where the binomial distribution is

p(x|θ) =
(

n
x

)
θx (1− θ)n−x

It doesn’t appear to be possible to find an analytic solution to these integrals,
however we can use numeric integration. Figure 8 gives the p-values for each
result, given a null hypothesis that a poorer performing experiment could have
produced that result. It should be noted that because the 9 search tests per
image can not be considered independent of each other, we based the significance
calculation on a value n = 47.



Fig. 8. Probabilities (p-values) that an experiment could be a random result of a worse
performing spinal experiment.

Texture Preprocessor Result − log10 p-value given base result
35% 40% 75% 80% 81% 82% 85%

Intensity 35%

Sigmoidal gradient 40% 0.5

Sigmoidal corner 75% 4.7 3.9

Sigmoidal corner and gradient 80% 5.6 4.8 0.6

Sigmoidal corner and edge † 81% 6.1 5.3 0.8 0.5

Sigmoidal edge † 82% 6.1 5.3 0.8 0.5 0.4

Sigmoidal edge, and gradient 85% 6.7 5.8 0.9 0.6 0.5 0.5

Sigmoidal corner, edge, and gradient 92% 9.5 8.5 2.2 1.7 1.4 1.4 1.2

† Note that the fraction of successful results is rounded down to the next
lowest multiple of 1/n for p-value calculation, causing two rows with slightly
dissimilar success rates to have identical p-values.

We can see that the large improvements between the “intensity” AAM and
the various texture preprocessor AAMs are certainly significant. With the ex-
ception of the “sigmoidal gradient” preprocessor, the differences between the
various texture preprocessors are not significant at the α = 0.01 level. In the
simulated multi-modal experiment, the improvement of the “Sigmoidal corner,
edge, and gradient” preprocessor over the “intensity” AAM, is significant with
p = 5×10−7.

6 Experiment with Faces

To add to the confidence of our results, we repeated the experiments with a face
data set. We have a much larger database of face images. This enables us to build
a face AAM using 100 images, and then test it on the independently collected
extM2VTS[12] database. We have marked up 1817 images of 295 distinct subjects
from this database. The remaining images in the database suffer from extreme
motion blur, and interlace artifacts.

The raw “intensity”, and “sigmoidal gradient” are repetitions respectively,
of the NI and ES cases described by Cootes’s and Taylor’s paper[4]. That paper
only used a 100 image subset of extM2VTS for testing, and did no statistical
analysis of the results.

The results are tabulated in figure 9. The median and 90 percentile errors
are given for all experiments. A search was considered successful when the mean
absolute point to curve error fell below 5% of the inter-occular distance or 5
pixels in the Surrey dataset.

As described before we cannot use all the measurements because they are not
independent. This is especially unfortunate with the faces experiments because
we have a lot of data for which the tests should be largely if not completely



Fig. 9. Comparing point-to-curve errors for different facial AAM texture preprocessors.

Texture Preprocessor Searches Point-Curve error
<2 pixels mean std median 90%-ile

Intensity 55.8% 5.4 2.9 4.6 9.0

Sigmoidal gradient 72.5% 4.5 2.0 3.9 7.2

Sigmoidal edge 68.8% 4.8 2.5 4.0 8.1

Sigmoidal corner 68.0% 4.8 2.3 4.0 7.8

Sigmoidal corner and edge 73.9% 4.5 2.3 3.8 7.6

Sigmoidal corner and gradient 83.6% 3.9 1.4 3.5 5.7

Sigmoidal edge and gradient 80.3% 4.1 1.7 3.6 6.2

Sigmoidal corner, edge, and gradient 83.7% 3.9 1.7 3.8 5.8

independent. In particular AAM searches of different images of the same person
should be mostly independent. However, we again conservatively chose n = 295
as the number of strictly independent measurements.

Fig. 10. Probabilities (p-values) that an experiment could be a random result of a worse
performing facial experiment.

Texture Preprocessor Result − log10 p-value given base % rate
55.8 68.0 68.8 72.5 73.9 80.3 83.6

Intensity 55.8%

Sigmoidal corner 68.0% 3.0

Sigmoidal edge 68.8% 3.2 0.4

Sigmoidal gradient 72.5% 5.0 1.0 0.8

Sigmoidal corner and edge 73.9% 5.7 1.2 1.1 0.5

Sigmoidal edge and gradient 80.3% 10.3 3.6 3.3 2.0 1.6

Sigmoidal corner and gradient† 83.6% 13.5 5.5 5.1 3.4 2.9 0.9

Sigmoidal corner, edge, and gradient† 83.7% 13.5 5.5 5.1 3.4 2.9 0.9 0.3
† See note in figure 8.

7 Discussion and Conclusion

We have shown that using descriptions of local structure for the texture model
of an AAM significant improves the accuracy of the AAM search. Furthermore,
the righthand mode of the distribution of “intensity” AAM results (figure 5) can
be interpreted as convergence failures or false minima. The significant reduction
in these failures using the various local structure preprocessors shows that we
have also improved the reliability of AAMs.

The local structure descriptors are less dependent on the global or sub-global
contrast effects caused by differing imaging parameters. The simulated multi-



modal spinal image experiment shows that the “intensity” AAM needs to devote
so much variance to it’s texture model to cope, that it fails to learn any useful
information about the images. Comparing the results for the “Sigmoidal corner,
edge and gradient” preprocessor in figures 6 and 7 shows that the severe image
corruption has a relatively small effect on a local structure AAM.

Using all the sigmoidally-normalised local structure descriptors gives the best
results on both the spine and face data. This suggests that it may be advanta-
geous to add more local structure descriptors, including parameterised families
of descriptors (provided that they all have magnitude based outputs, and distri-
butions that are compatible with the non-linear sigmoidal function.) Potentially
interesting families include the differential Gaussian invariants (which have been
shown[19] to have high saliency in shape modelling applications) and complex
wavelets[8]. Adding ever more local structure descriptors will inevitably lead to
a case of diminishing returns. More work will be needed to determine if adding
too many descriptors would significantly decrease performance, perhaps though
increased numerical errors in the linear PCA learning.

It may be possible to normalise the statistics of any structure description
(perhaps using the Cumulative Distribution Function (CDF) of the magnitudes
over all or part of the image) and correctly combine non-magnitude (e.g. pixel
intensity) descriptors with the sigmoidally-normalised descriptors. Even with-
out fully solving this problem it should be straightforward to concatenate the
sigmoidally-normalised descriptors from the different planes of co-registered
multi-modal medical images.

This work should extend straightforwardly to 3D images. The calculation of
gradient preprocessor extends trivially to 3D. The joint calculation of the corner,
edge pair in 2D would extend to an analogous calculation of a plane, edge, corner
triplet in 3D. However, it is difficult to do experiments with 3D volume AAMs
due to the sheer size of such models.

Picking one local structure descriptor that is responsible for the majority of
the improvement is possible in either data set. However, the “sigmoidal gradient”
descriptor which is responsible for most of the performance improvement in the
face data set, gives performance which is not significantly different from the
“intensity” AAM in the spine data set. By providing the AAM training algorithm
with all of the local structure descriptors, it can learn which descriptors are most
useful, and adjust the importance of each descriptor on a sample by sample basis
to get optimum performance.
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