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Abstract. We describe an framework that simultaneously segments and registers a set of medical images in an
automatic manner, incrementally constructing a model of the structure and shape deformations of the set. The
framework extends existing groupwise registration and modeling approaches by explicitly modeling the fraction of
each tissue type in each voxel, rather than the expected intensity in each voxel. This decouples the model from the
effects of the imaging sequence and thus imaging modality. When estimating the optimal deformation field between
examples in the set each image is compared to its reconstruction generated from the model segment fractions and
the current estimate of its intensity distributions for each tissue type (i.e. an estimate of how the model would appear
given the imaging conditions for that image). We also present a method to determine the optimal number of tissue
types and fully automate the approach as well as model construction methods that ensure efficient convergeance. We
describe the algorithm in detail and present results of applying it to a set of MR images of the brain.

1 Introduction

This paper proposes a fully automatic approach for analysing, understanding and representing structure in groups of
medical images. Ideally, given a set of images of different examples of a structure, one would like to derive in an
efficient and robust (converging) manner:

e aset of deformation fields defining dense correspondences between the images (registration)
e a classification of the voxels in each image into different tissue types (segmentation)
e astatistical representation of the variability of shape and appearance across the image set (modeling)

There has already been considerable research into techniques that could provide each of these requirements indepen-
dently. Groupwise non-rigid image registration methods derive a dense, spatial correspondence across sets of images
[1-3], segmentation of the brain into tissue types in MR images has been considered in [4, 5], while Statistical Ap-
pearance Models [1] capture and describe the appearance (shape and texture) variation of the modelled structure.

A variety of methods have been proposed combining pairs of techniques such as segmentation and registration with
active countours [6] and maximum a posteriori segmentation using hidden markov random fields and B-spline non-
rigid registration [7]. Models of deformation have been constructed from correspondences estimated by non-rigid
registration [8,9], but it was also shown that by integrating modeling and registration more tightly, by performing them
in parallel [1, 10] quantitatively better models result.

In this paper we describe an algorithm which combines segmentation, registration and model building in a single
iterative framework that incrementally improves the structure analysis to satisfy all the requirements identified above.
The method is described in detail in Section 2 while results of applying it to a set of MR images of the brain are shown
in Section 3.

2 Method

An overview of the algorithm is illustrated in Figure 1. A set of N images T}, ¢ = 1...N, (the training set) is assumed to
have been roughly aligned (either the imaging protocol is sufficient, or for instance by affine registration to one example
using a Mutual Information metric). It is further assumed that the structures in the images consist of M distinct tissue
types whose intensity probability density functions have parameters ;. In the following, W;() represents a spatial
deformation defining correspondence from a reference frame to the image 7;. The segmentation, registration and
modeling proceeds sequentially through the following steps (but see below for more details):

1. Warp each training image 7 into the reference frame using the current estimate of the deformation field. T =
W H(Ty).
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Figure 1. Outline of the algorithm.

2. Compute the intensity histogram of 77, and fit a mixture model to estimate the distributions and proportions of
each pure tissue class (means, SDs and weights encoded in 6; = {5, 05, w;r, }). Use the resulting distributions
to estimate the most probable fraction of each tissue in each voxel, encoded in a set of tissue fraction images

Fi(j ), 7 = 1...M for each training example.

3. Combine the tissue fraction images from all examples to construct a model, {13' SN At )}

4. Synthesize a reconstruction of each training set image using the current estimates of the mean pure tissue class
distributions, y;;, and the current tissue fraction model, S; = Z —1 Mij F)

5. Find optimal number of tissue classes M by evaluating the Description Length (DL) of the modeled training set
representation as a function of M, see [1], and using the one that results in minimum DL (MDL).

6. Update the current estimate of T; to best register .S; onto T;, minimising a suitable similarity measure, Dy, (T, W;(S;)).

During the first pass of the algorithm we apply steps 1 and 2 to all images, then combine them (step 3) into an initial
model of the tissue fractions at each voxel in the reference frame. Steps 2 to 5 are then repeated iteratively until an
optimum M is found. We then apply steps 1 to 6 (exc. 5) to each image in turn multiple times, performing registration
of coarse details in the early stages and progressively finer details as the iterations progresses. The process of shape
model building is excluded from the Figure 1 for the sake of clarity, but is an integral part of step 3 and can further be
used to constrain the deformation field optimisation in step 6 [10].

2.1 Segmentation

We follow Pokric et al. [4] in assuming that the objects in MR images of the brain are constructed from a small number
(M) of different tissue types, and that each voxel contains either a pure tissue or a mixture of at most two different
tissues (partial volumes). If we know the distributions of intensities for these classes, we can construct the distribution
for a particular fractional distribution by convolution. In the experiments described below we assume that the pure
tissues distributions are Normals, p;(g) = N(g : pi,0?), then the distribution for a partial volume with fraction f of
tissue type ¢ and 1 — f of type 7 is given by

pij(glf) = N(g: fui+ (1= flug, foi + (1= foF) (1

The distribution over all partial volumes containing 7 and j is given by (2) where we assume all values of f in the range
[0, 1] are equally likely (p(f) = 1).

f=1 f=1
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If we assume that any voxel contains at most 2 different tissue types, then we need only consider M pure tissue classes
with distributions pg(g), k = 1..M, and M (M — 1)/2 partial tissue classes (enumerated py(g).k = (M + 1)..M; =
M(M + 1)/2). Thus the measured image intensity distribution, h(g), can be approximated as a weighted sum where
0= {ui,oi,wk} (’L = ].M,k = ].Mt)
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We thus perform an optimisation to estimate the parameters § which optimise D,,(p(g : 6), h(g)), where D,(p, q) is
a suitable measure of divergence between distributions. The probability that a voxel with intensity g belongs to class
k is given by Py (9) = wipr(g)/ O wrpr(g)) (see Figure 4). That voxel can then be classified as belonging to class
k. = arg max, P (g). However, we are actually interested in the estimate of the fraction of each pure class tissue
(fist = 1..M), in the voxel, not the probability of each class. If k. < M then the voxel is a pure tissue, so we define
fr. = 1and fizp, = 0. If k. > M then the voxel is classified as a partial volume, containing two tissues, say of type
1 and type j. In this case we wish to find the most likely value of the fractions for each tissue. We define

fi = argmax;p;;(flg) = arg max,p;;(glf)p(f)/p(g) = arg max;p;;(g|f) “4)

where p;;(g|f) is defined above in Equation 1. We then set f; = 1 — f; and fr-; ; = 0. Figure 4 shows an example of
this, demonstrating that tissue probabilities are not the same as estimates of pure tissue fractions. Using this approach
we compute M images, {Fi(l), ...Fi(M)}, recording the fraction of each tissue type at each voxel in the normalised
version of image ¢ (that projected into the reference frame).

2.2 Model Construction

We train a model from the M fractional images from each of the N images. ' Constraints can be imposed on model
construction that would say limit any voxel to a mixture of at most two tissue types but although this directly supports
convergence, we found that even the simple mean is powerful enough to drive the process to convergeance.
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Greater convergence speed is achieved by using a more robust trimmed mean estimation (evaluated by eliminiting
outliers). On a separate data set of 50 synthetic, half light - half dark images that vary randomly in the position
intensity tranistion and levels, we found that using only half the samples in mean estimation considerably improves the
speed of registration convergence. Convergence for this data set is shown as cumulative objective funcion (D) vs. the
registration iteration for the simple mean, half trimmed mean and median on Figure 2.

2.3 Image Reconstruction

In order to align the training set a deformation field is optimised between each T; and the model (reference frame)
embodied in a reconstruction, S; produced using the model tissue fractions and the estimates of intensity distributions
for each tissue type in the current image (i.e. an estimate of how the model would appear given the imaging conditions
for that image). Pure tissue types exhibiting Normal distributions are optimally represented by their mean (y;7) while
partial volume voxels are represented by a sum of pure tissue means weighted by the current model tissue fractions;

M
Si=Y pyFV (6)
Jj=1

For an example, see Figure 5. Ideally .S; is a noise free version of T; but in practice it starts blurred due to missalign-
ments and gets progressively sharper and closer to 7; as alignment and model improve. Deformation parameters W;

n practice, when working on image ¢ we construct the model from all N — 1 other images. Such a leave-one-out approach tends to give more
generalisable models and lead to faster convergence.
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Figure 3. Description Length of modeled training set vs number of tissue classes (/V.) for non-aligned (solid line) and
aligned (dashed line) brain images (left); Distribution of intensities for image in Fig. 4 and result of fitting pure and
partial tissue class PDFs

are optimised with respect to an objective function measuring similarity between 7; and S; in the training image frame
- D (T3, Wi_l(Si)). The deformation is optimised in several stages and at several resolution levels (for the sake of
efficiency) by moving individual or groups of control points across the scene, see [10] for details.

2.4 Number of Segment Classes

To initialise the image analysis automaticaly and avoid explicit prior assumptions about image structure we search for
an optimal number of tissue types M automatically. For this purpose we use the proposed segmentation-registration
algorithm in a Minimum Description Lenght framework, analogously to [1]. We start with the minimum M = 2 and
perform steps 2 to 4 (Fig. 1 for increasing values of M. For each we evaluate the Decription Lenght of transmiting
the training set using the resulting model, given as the cost of the model, model parameters and the residual images
(Rz' = Sz - Tz), Ctotal = Cmodel + Cparameters + Cresiduals-

In practice the residual term dominates the cost and improving the model and reconstructed images explicitly improves
the Decription Length. If adding another class improves and reconstructed images more than it increases the cost of
the model the Description Length decreases. The optimal number of classes is the one that results in a Minimum
Description Length (MDL). Note that as we improve the model by aligning images we can realisticaly expect that the
optimal value for M might change during registration, see Section 3. For details on how to evaluate C, see [1].

3 Experiments and Results

We applied the method to a set of 32 2D slices of MR brain images (choosing equivalent slices from affine aligned
3D datasets) (Figure 4). We used sum of square differences for both the image similarity, D;;, (), and the divergence
between intensity distributions, D), (). Figure 4 shows one of the images from the training set. By fitting pure and
partial tissue class distributions to the image histogram (Figure 3), we can estimate the probability that each voxel
belongs to each pure tissue class (P;(z,y) in column 2) and to a partial tissue class (Ppartiai(2,y)). We can then
estimate the fractions of each tissue type in each voxel (F;(x,y) in column 3). Finally, combining these fractions with
the means of the pure class distributions, we can generate the resconstruction, S(z, y).

Automatic estimation of the number of tissue classes in the data is shown on Figure 3. While the images are not aligned
fewer types are sufficient, in this case M = 3 is optimal. As the images are brought into alignment, the structures are
more coherent accross the examples and further patterns emerge, Figure 3 indicates that four different, consistent tissue
types exist in the registered set. As we have not performed any “’skull-stripping”, this region also contributes to the
intensity distributions, in addition to three types (white and grey matter and CSF + background) identified initially.

Figure 5 shows the mean of the model tissue fractions for the three tissue types at the beginning and end of the
registration, together with an example of the resulting reconstruction using the means of each pure tissue class. As
registration progresses the alignment becomes more accurate, resulting in crisper estimates of the tissue fractions.

4 Discussion

We have demonstrated that it is possible to integrate segmentation, modeling and registration into a single framework
and perform complex object structure analysis in a fully automatic manner. By constructing a model of segment
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Figure 4. MR brain slice and resulting segmentations. Column 2 shows the pure tissue probabilities, column 3 the
estimates of pure tissue fractions.
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Figure 5. Mean tissue fraction estimates £ (2, y) and Fj(z,y) at the beginning and end of registration.

fractions, rather than intensities, we decouple the model from details of the imaging process, and concentrate on
explicitly learning tissue structure in medical images. The final model includes both tissue class information and
statistical models of shape variation. It should be possible to match such a model to new images taken with different
modalities, and we anticipate that such models would have wide application.

We are currently extending the implementation to full 3D data (the extension is natural). Further work will also
concentrate on including spatial consistency in estimating the optimal number of tissue types as well as their intensity
distributions. Further improvements could also be made by including the current estimates of the mean fraction as a
prior when segmenting each image.

References

1.

10.

C. J. Twining, T. E. Cootes, S. Marsland et al. “A unified information-theoretic approach to groupwise non-rigid registration
and model building.” In Proceedings of Information Processing in Medical Imaging (IPMI), volume 3565 of Lecture Notes in
Computer Science, pp. 1-14. Springer, 2005.

K. K. Bhatia, J. V. Hajnal, B. K. Puri et al. “Consistent groupwise non-rigid registration for atlas construction.” Proceedings of
the IEEE Symposium on Biomedical Imaging (ISBI) pp. 908-911, 2004.

B. Zitova & J. Flusser. “Image registration methods: A survey.” Image and Vision Computing 21, pp. 977 — 1000, 2003.

N. A. T. M. Pokric & A. Jackson. “The importance of partial voluming in multi-dimensional medical image segmentation.” In
Proceedings of Information Processing in Medical Imaging (IPMI), volume 2208 of Lecture Notes in Computer Science, pp.
1293-1294. Springer, 2001.

Y. Zhang, M. Brady & S. Smith. “Segmentation of brain mr images through a hidden markov random field model and the
expectation-maximization algorithm.” IEEE Transactions on Medical Imaging 20, pp. 45 — 57, 2001.

A. Yezzi, L. Zollei & T. Kapur. “A variational framework for inregrating segmentation and registration through active contours.”
Medical Image Analysis 7, pp. 171-185, 2003.

D. R. C. Xiaohua, M. Brady. “Simultaneous segmentation and registration for medical image.” In Proceedings of MICCAI
2004, number 3216 in Lecture Notes in Computer Science, pp. 663 — 670. 2004.

A. F. Frangi, D. Rueckert, J. A. Schnabel et al. “Automatic construction of multiple-object three-dimensional statistical shape
models: Application to cardiac modelling.” IEEE Transactions on Medical Imaging 21(9), pp. 1151-1166, 2002.

D. Rueckert, A. F. Frangi & J. A. Schnabel. “Automatic construction of 3D statistical deformation models using non-rigid
registration.” Lecture Notes in Computer Science 2208, pp. 77-84, 2001.

T. Cootes, C. Twining, V. Petrovic et al. “Groupwise construction of appearance models using piece-wise affine deformations.”
In Proceedings of the 16'" British Machine Vision Conference (BMVC), volume 2, pp. 879-888. 2005.



