Statistical Shape Models

- Eigenpatches model regions
 - Assume shape is fixed
 - What if it isn’t?
 - Faces with expression changes,
 - Organs in medical images etc
- Need a method of modelling shape and shape variation

Shape Models

- We will represent the shape using a set of points
- We will model the variation by computing the PDF of the distribution of shapes in a training set
- This allows us to generate new shapes similar to the training set

Building Models

- Require labelled training images
 - Landmarks represent correspondences

Suitable Landmarks

- Define correspondences
 - Well defined corners
 - ’T’ junctions
 - Easily located biological landmarks
 - Use additional points along boundaries to define shape more accurately

Building Shape Models

- For each example

\[\mathbf{x} = (x_1, y_1, \ldots, x_n, y_n)^T \]

Shape

- Need to model the variability in shape
- What is shape?
 - Geometric information that remains when location, scale and rotational effects removed (Kendall)

Same Shape Different Shape
Shape

- More generally
 - *Shape is the geometric information invariant to a particular class of transformations*
- Transformations:
 - Euclidean (translation + rotation)
 - Similarity (translation+rotation+scaling)
 - Affine

<table>
<thead>
<tr>
<th>Shapes</th>
<th>Euclidean</th>
<th>Similarity</th>
<th>Affine</th>
</tr>
</thead>
</table>

Statistical Shape Models

- Given a set of shapes:
- Align shapes into common frame
 - Procrustes analysis
- Estimate shape distribution $p(x)$
 - Single gaussian often sufficient
 - Mixture models sometimes necessary

Aligning Two Shapes

- Procrustes analysis:
 - Find transformation which minimises $|x_1 - T(x_2)|^2$
 - Resulting shapes have
 - Identical CoG
 - approximately the same scale and orientation

Aligning a Set of Shapes

- Generalised Procrustes Analysis
 - Find the transformations T_i which minimise
 $$\sum |m - T_i(x)|^2$$
 - Where $m = \frac{1}{n} \sum T_i(x)$
 - Under the constraint that $|m| = 1$

Aligning Shapes : Algorithm

- Normalise all so CoG at origin, size=1
- Let $m = x_i$
- Align each shape with m
- Re-calculate $m = \frac{1}{n} \sum T_i(x)$
- Normalise m to default size, orientation
- Repeat until convergence
Aligned Shapes

- Need to model the aligned shapes

Statistical Shape Models

- For shape synthesis
 - Parameterised model preferable

 \[\mathbf{x} = f_{\text{shape}}(\mathbf{b}) \quad \text{e.g.} \quad \mathbf{x} = \bar{\mathbf{x}} + \mathbf{P}\mathbf{b} \]

- For image matching we can get away with only knowing \(p(\mathbf{x}) \)
 - Usually more efficient to reduce dimensionality where possible

Dimensionality Reduction

- Co-ords often correlated
- Nearby points move together

\[\mathbf{x} = \bar{\mathbf{x}} + \mathbf{b}_1 \mathbf{h}_1 \]

Principal Component Analysis

- Compute eigenvectors of covariance, \(\mathbf{S} \)
- Eigenvectors: main directions
- Eigenvalue: variance along eigenvector

\[\mathbf{p}_1 \quad \mathbf{p}_2 \]

\[\lambda_1 \quad \lambda_2 \]

Dimensionality Reduction

- Data lies in subspace of reduced dim.
 \[\mathbf{x} = \bar{\mathbf{x}} + \mathbf{p}_1 \mathbf{h}_1 + \cdots + \mathbf{p}_t \mathbf{h}_t \]
- However, for some \(t \), \(\mathbf{h}_j \approx 0 \) if \(j > t \)
 (Variance of \(\mathbf{h}_j \) is \(\lambda_j \))

Building Shape Models

- Given aligned shapes, \(\{ \mathbf{x}_i \} \)
- Apply PCA
 \[\mathbf{x} \approx \bar{\mathbf{x}} + \mathbf{P}\mathbf{b} \]
- \(\mathbf{P} \) – First \(t \) eigenvectors of covar. matrix
- \(\mathbf{b} \) – Shape model parameters
Hand shape model
• 72 points placed around boundary of hand
 – 18 hand outlines obtained by thresholding images of hand on a white background
• Primary landmarks chosen at tips of fingers and joint between fingers
 – Other points placed equally between

Face Shape Model
Varying b_1 Varying b_2 Varying b_3

Brain structure shape model

Example : Hip Radiograph

Spine Model
Distribution of Parameters

- Learn $p(b)$ from training set
- If \mathbf{x} multivariate gaussian, then
 - b gaussian with diagonal covariance
 $$S_b = \text{diag}(\lambda_1, \cdots, \lambda_s)$$
- Can use mixture model for $p(b)$

Conclusion

- We can build statistical models of shape change
- Require correspondences across training set
- Get compact model (few parameters)
- Next: Matching models to images