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Synopsis

This paper is concerned with the response of floors to loading
produced by dancing and aerobics, especially where the dancing
involves jumping. Its purpose is to provide an analytical method
for determining the response of floors to these loads. The
characteristics of the load time history are dealt with initially,
and, for calculation purposes, the load is expressed in terms of
Fourier series. An analytical solution of the forced vibration of
simply supported floors is developed, using plate theory and
considering several modes of vibration. The number of Fourier
terms that should be considered in the analysis is determined. The
solution is then extended for other structures with different boundary
conditions. It is predicted that significant accelerations may occur
on relatively stiff floors induced by higher Fourier components of
the load. (Verification of the method is provided in ref 6.)

Notation

a, b, r, are Fourier coefficients

a is the acceleration (m/s?)

A; is the generalised co-ordinate of the ij th mode (m)

B\, is the structural factor corresponding to the fundamental mode

d,, is the generalised displacement of the fundamental mode
corresponding to static and uniform load G (m)

D is the flexural rigidity (kg.m)

Dy is the dynamic magnification factor of the ij th mode for
displacement

Dey is the dynamic magnification factor of the ij th mode for

acceleration
Dy, D4y, are the n th component of D;; and D, respectively
D, D, are peak values of the n th component of the dynamic
magnification factors
fi = ;27 is the ij th natural frequency (Hz)
fr= @,/27 is the load frequency (Hz)

iy is the load-time function (N/m?)

G is the weight load of dancers per unit area (N/m?)
G, is the weight load of a single person (N)

k* is the modal stiffness

K, is the dynamic impact factor

L L, are the lengths of a floor along its x and y directions (m)
m is the mass of a bare floor per unit area (kg/m?)
m is the mass of people per unit area (kg/m?)

M is the mass matrix

R is the energy dissipated due to damping (N.m)

Sii is the mode participating factor of the ij th mode
t is the time (s)

t, is the contact duration (s)

T, is the period of dance-type of load (s)

U is the total strain energy (N.m)

Vv is the total kinetic energy (N.m)

W (x,y) is the assumed #j th vibration mode

w (x,,1) is the displacement function

w is the external work (N.m)

a is the contact ratio

B is the ratio of excitation frequency to the i th natural

frequency
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g is the critical damping ratio

| is the floor side ratio

6, is the phase lag relating to the ij th mode and the » th load
component

[ is the phase lag of the nth sinusoidal term

Introduction

The dynamic behaviour of long-span lightweight floors is becoming
increasingly important for two different forms of loading. First, vibrations
produced by people walking on the floor can prove annoying to other users
of the floor. Although this is a serviceability problem, it may be a limiting
design criterion and hence can be significant. Secondly, loads from dancing
or organised keep-fit exercises may be significant and, if resonance occurs,
it may lead to excessive movements of the floor, hence it may become a
safety problem as well as a serviceability problem. Either the designer can
try to avoid problems of resonance by producing a floor with a sufficiently
high fundamental frequency or he can calculate how the floor will respond
under a given load and check that it is satisfactory. This paper provides a
method of calculating the response of a floor to loads arising from dance-
type activities.

Dance is movement with rhythmic steps and actions, usually to accompanying
music. Similar movements include jumping, stamping, and aerobics. The
loading is thus related to the dance frequency or the beat frequency of the
music and is periodical. These loads are here termed dance-type loads. The
maximum response produced by dancing occurs when jumping is involved,
and it is this situation which is covered here.

The current recommendations concerning design loads for floors in the
UK are given in BS 6399: Part 1'. For dance floors the equivalent static
design load is given as 5 kN/m?, but it is stated that this does not allow for
dynamic loads due to crowds. Obviously, the loads produced by dancing and
aerobics have a significant dynamic component, and, with functions like pop
concerts which have large numbers of people crowded together and dancing
to music, an extreme loading case can result. For these cases the current
guidance does not make clear what loading to take. However, one thing that
is clear is that a static analysis is not sufficient, simply because the dynamic
nature of the load must be considered.

The main body of information on the response of floors to these loads is
attributable to a group of research workers in Canada, and it is instructive
to review the developments of the National Building Code of Canada for
dealing with floor vibration. In 1970 the NBC recommended a minimum
natural frequency of 5 Hz for floors subject to rhythmic activities. This
recognises that people cannot dance at frequencies greater than 3.5 Hz and
thus sets a minimum frequency of the floor to avoid resonance. Later, it
became evident that energy was not restricted to the dance frequency but
could be input at multiples of the dance frequency; hence, in 1975, NBC
recommended a minimum of 10 Hz for floors subject to repetitive activities
such as dancing. In 1985, NBC introduced a new clause requiring a dynamic
analysis for floors with a fundamental frequency less than 6 Hz which may
be subject to rhythmic activities>?, thus giving an alternative to the simplistic
approach of avoiding resonance.

The supplement to the NBC* provides a method of calculating floor
response to dance-type loads. The method is based on beam theory and
models the floor as a single degree-of-freedom system (i.e. it considers
only the fundamental mode). It is perhaps obvious that not all floors behave
like simple beams, and it has also been suggested® that it is not sufficient to
consider just the fundamental mode. In the following sections these ideas
will be examined in some detail.

In order to explain the calculation of the response of floors to various
dynamic human loads, it is useful to split the problem into its constituent
parts:

(1) Characterisation of the load. This requires a knowledge of the number
and weight of people, their distribution across the floor, the specific type of
dance, the beat frequency, the crowd effect, and the load model.

(2) Evaluation of the characteristics of the floor vibration. This requires
knowledge of the basic flooring system, including its stiffness, mass, support
conditions, assumed behaviour, and the effect of the involvement of people.
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Fig 1. Load-time history for jumping

(3) Calculation of the response of the floor to the dancing loads. This
calculation is based on the information from (1) and (2).

This paper deliberately does not define the number (or density) of people
to be considered or the range of beat frequencies, as these will be defined
by appropriate Codes of Practice when they are written, What the paper does
is to provide an analytical model for dance-type loads and develops a
method of calculating floor response induced by the loads. The procedure
for calculating floor response is summarised in Appendix A. Experimental
and numerical verification of the method is provided in a separate paper®,
together with a comparison with the NBC recommendations and other
published data.

Characterisation of dance-type loads

In order to assess the response of a floor to a particular type of dancing in
which jumping is involved, it is necessary to know what loads will be
produced. This requires an estimation of the number and weight of people
who will be dancing in the area of concern, or the load density. (Information
on this topic can be found in refs 2 and 7). Also, there are many different
types of dancing and a wide range of beat frequencies for music; however,
dancing frequencies tend to be in the range 1.5-3.5 Hz.

There are a number of different dances but, for analytical purposes, it is
convenient to split them into two categories. The first is when the dancer is
always in contact with the floor and the second involves jumping when
contact with the floor is not maintained. The first type of dancing is simple
to model and is primarily a sinusoidal load at the dance frequency*. The
second type of dancing is more complex and potentially much more severe
because energy is input at the dance frequency and also at multiples of the
dance frequency, which means that many more floors could be excited at
resonance under this type of dancing. It is this type of loading which will
be dealt with here. In fact, the first type of dancing is a special case of the
second one when the duration of jumping reduces to zero and a single
forcing frequency is encountered.

The load time history of the jump dancing can be described by a high
contact force for a certain time #, (contact duration) followed by zero force
when the feet leave the floor. It has been proposed that the load time function
for running can be expressed by a sequence of semi-sinusoidal pulses. The
load time histories for other activities that involve jumping or aerobics are
somewhat similar. The function within one period is given’ by

[ K,Gsin (mtlt,)
Fi= 0 L,<1<T, (D)
where

K, i$ Fna/G, impact factor

Fax.  1s the peak dynamic load/unit area

G is the weight of dancers/unit area
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I is the contact duration
T, is the period of dancing load

The contact duration t, can vary from 0 to 7, corresponding to different
movements and activities. The contact ratio a is defined as follows:

t
a=-L-<10 (2)

T,

Thus different contact ratios ¢ characterise different rhythmic activities. For
analysis purposes, it is useful to express eqn. (1) in terms of Fourier series

F(t)= G[ao +2(1,, cos———t+z net bp sm—t]

n=1 p n=| l’

= G{aa + zr sm[ t+9, H ...(3)

n=1

where the Fourier coefficients and phase lags are determined as follows:

2K o 1] a
oy = £ = \)ai +b3 (pn = tan ==
T bn

when 2no =1 n=12.73,..
then a, =0 b, =ak,
otherwise

_ K [cos(Zn(x -Dz—1 cos2na+hm— 1}
T 2na -1 2no+ 1

_ K,o {sin(Znoc -Dr  sinQno+ l)n}
b4 2na -1 2no+1

It had been observed experimentally? that the mean value of the time history
of a vertical load corresponding to bouncing to music on toes or to rhythmic
jumping was always equal to the weight of the performer. This was
confirmed during the experiments undertaken for this investigation®.
Expressing this observation analytically gives

fKGsm( }d; G o
\t/’

which reduces to

K - (5)
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The impact factor K, corresponding to the different contact ratios or
activities, could also be determined experimentally®.
Substituting eqn. (5) into eqn. (3) yields

"" 2 - 2
= G[I.0+ Za,, cos 22 14 an sin—{l—EtJ
n=| 7;7 n=| 7;7

=G 1.0+2r,, sin(zn—"t + zpn] -.(6)
n=1 TP

a,2, +bf [’ =tan”'| L
bn
when 2na =1 n=123,..
then a, =0 b,=ml2
otherwise (T

-0 5[cos(2n0(—l)7r—l _cos(2na+ l)n:—l}
"o 2no -1 2na +1

b =0 5[sin(2not— Dr  sinQna + l)n}
, =0. _

2na -1 2no+1

Fig 1 displays the normalised load calculated using eqn. (1) with o= 0.5 and
f»,=1/T,=2.33 Hz. For comparison, the load calculated using eqns (6) and
(7) is also displayed, for examples adopting the first three and six terms of
the Fourier series. In the figure the normalised load of 1.0 corresponds to
the static weight of the dancer. It shows that using either three or six Fourier
terms produces a reasonable representation of the load defined by egn. (1).

The form of eqn. (6) is the same as that adopted in refs. 10 and 11, except
that

(1) the Fourier coefficients are determined from measurements in refs. 10
and 11, while here they are calculated using eqn. (7);

(2) the Fourier coefficients were affected by the excitation frequency and
different activities in refs. 10 and 11, but the effect from the frequency was
ignored in their final presentation, while here they are a function of the
contact ratio o corresponding to different activities and indirectly related to
the excitation frequency;

(3) the analytical expression provides the phase lag ¢, for each sinusoidal
component.

Further comparisons between refs. 12, 10 and 11 and the present work can
be found in ref. 6.

Table 1 lists the first six Fourier coefficients and phase lags for different
contact ratios. It can be seen that, to describe the load to a given accuracy,
more terms are required as o decreases. The number of terms of Fourier
series which should be included in analysis is determined in the next section,
based on the induced response. The contact ratio o corresponding to different
activities, can be evaluated from observations'>!%!!, and examples are given
in ref. 6.

Another factor which should be considered is the dynamic crowd effect.
When a crowd of people attempt the same repetitive movement, perfect
synchronism is unlikely, thus the peak structural response produced by the
group movement is smaller than it would be if the movement of all the
individuals was perfectly synchronised, i.e. the load is attenuated due to the
dynamic crowd effect. A method of determining this effect is presented in
ref. 13 and a simple factor is suggested to modify the dynamic part of the
proposed load characterisation (eqn. (6)).

Response of the floor to dance-type loads
Basic assumptions
For the initial analytical investigation, it is assumed that

(1) the floor is rectangular with uniform thickness and is simply supported
along its four edges;

(2) the material works within its linear elastic region;

(3) the mass of the bare floor is uniformly distributed;

(4) the loads are uniformly distributed in the spatial domain but vary in the
time domain as defined by eqn. (1);

(5) the human mass is not involved in the floor vibration for this type of
loading®.

Solutions for other floors and boundary conditions are developed later, based
on the findings from the initial case.
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TABLE 1 - Fourier coefficients and phase lags for different contact ratios

n=1 n=2 n=3 n=4 n=5 n=6
a=2/3 r,| 1.28571 | 0.16364 | 0.13333 | 0.03643 | 0.02302 | 0.03175
- .| -m/6 /6 ~T/2 -t/6 /6 —/2
=12| T 1.57080 | 0.66667 | 0.00000 | 0.13333 | 0.00000 | 0.05714
e=s o a2 0 Y3 0 2
a=1/3 r.| 1.80000 | 1.28571 | 0.66667 | 0.16364 | 0.09890 { 0.01333
- o.| w6 ~Tt/6 -1/2 /6 -n/6 -n/2
o=1/4 r.| 1.88562 | 1.57080 | 1.13137 | 0.66667 | 0.26937 | 0.00000
- 0. w4 0 -n/4 -1/2 /4 0

Plate equation of motion
The formulation of the equation of motion of a dynamic system can be
established from the Lagrange equation

d| ov oU oW R
_-—|t—=——— -(8)
dA; ) O0A; oA, A

if ij
where

is the kinetic energy of the system

is the strain energy of the system

is the external work done by the load

is the energy dissipated due to the damping effect
i is the generalised co-ordinate of the system

is the time

o<

- >%

The form of the solution depends on the distribution of the load and the
boundary conditions, and here the displacement of the floor is assumed to
be in the Navier form!4.

wix,y,t) = ZZAU t)sm—sm 7y (9)

i=] j=I

where L, and L, are the lengths of the sides of a rectangular floor and A;(¥)
is the generalised co-ordinate of the i, j th mode.

The total kinetic energy of the system is

LoeLf ow )
O.Smjo Jo [EJ drdy
2
OSm.[ I 22[ 5 s1nm—r51nT)J dxdy ..(10)

i=l j=1

<
1]

]

—mL L, ZZAU(t)

i=1 j=1

where m is the uniformly distributed mass of the floor.

The total strain energy is

U= osuj J' [aw awadxdv=—7tLLD22A,j[ —j

i=1 j=1
(1)
where D is the flexural rigidity

3
p=_Eh (12)

12(1 - ,u2)
The external work done by the load (eqn. (1)) is found to be

A

2y

..(13)

L, ¢L, 4L, L F(t) s
W:JO fo FOw(x, y,nydxdy = ——2—~ 12

oo
i= L Jj=13

where A; exists only when subscripts i and j are odd numbers.
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The energy dissipated by the system damping is

2

R= OSI J ZZCU[ sm—sm%] dxdy

=l =1

:_LAL\ZZ(’I/AU (f) (]4)

i=1 j=1
where C;; is the damping factor corresponding to the generalised co-ordinate
A[j.

Substituting eqns. (9-11, 13, 14) into eqgn. (8) gives

Ay +28,0,A; + 0F Ay = 1, F(1) (15)
2
4 ;2 -2
D
wl=212| L A16)
’ m Ly L;.
. 16
20, =Cyilm  py=— A1)

jrm
Thus the continuous vibration model is transformed into a series of inde-
pendent single degree-of-freedom equations. The solution of A of eqn. (15)
is null when either 7 or j is an even number. F(7) is defined by eqn.s (6) and (7).

Solution of forced vibration

Eqn. (15) can be solved using the available theory for single degree-of-
freedom systems's, and the solution can be arranged into the following
form:

16G (1+’12)2 1()+2 r, sin(na) pt =0 +0,)

= R N
matwp G +jTn7) el '(1—” 2B +2ng,By)’

>

=d,,5,,{1.0+21),.j” =dy,5;(1.0+Dy) .(18)
n=1
similarly, the acceleration is
LN 2,2
=—dS; > n° 2Dy,
n=1
=—ay,S; Y Dyjy = —ay,S; D (19
n=1
where
16 G 16m 1| 2n8;By
d“:—2—2 a“=?’g 9,-j,l=lan ! —%
T mo, Tom 1-n"f;
L fr @, 2
n=—= == w, =2nf, =— w; =21
L-\‘ ﬁ i flj wzj P fl’ Tp g f’/
1+1?)?
§;=—ar ) ij=135,.. 20)

ij(i2 + jZUZ )2

ad r,sin(nw,t~ 0, +,)
= ZDU” Dijn = " Z p7 i ¢n .2
a 2 2
n= \j(] - n“ﬁé) + (Zné‘,jﬁ,j)

oo

rnt B sin(na,t - 0;, +¢,)
Ds =2Dl(lln Di[jl" = ll e +(22)

=l ( B+ (208, )

Eqns. (18) and (19) give the steady state response which excludes transient

TABLE 2 — Mode participating factors of rectangular plates

i j | Sim=10) | Ss,m=1/2) | S;n=113) | S,(n=1/4)

1 1 1.0000 1.0000 1.0000 1.0000

1 3 0.0133 0.0493 0.1029 0.1541

3 1 0.0133 0.0061 0.0050 0.0046

3 3 0.0014 0.0014 0.0014 0.0014
40

terms, because the transient response decays quickly in a damped system and
generally is of little interest'>. In eqn. (18) d,, indicates the generalised
displacement of the fundamental mode corresponding to the static load; the
phase angle 6;, by which the response lags behind the applied load relates
to the factors in the ij th mode and the order of the Fourier term n, while the
phase angle 6, only concerns the Fourier coefficients used to describe the
load. a, in eqn. (19) represents a scaled acceleration that relates to the ratio
of the human mass m, and the floor mass m. a;, is a relatively big acceleration
—e.g. if the mass ratio‘is 1/4, a,,=0.4g. There are two parameters — the mode
participating coefficient (S;) and the dynamic magnificatton factors (D; for
displacement and D, for acceleration) — which differ from the conventional
single degree-of-freedom vibration system under a single excitation
frequency. These are discussed in the ncxt two subsections.

Mode participating factor. S;; indicates the contribution of each mode of
vibration to the overall response without considering the dynamic
magnification factor, and relates to the order of modes (i,j) and the aspect
ratio (1) of the floor. S, always equals 1. For higher order modes S; can be
evaluated for different aspect ratios; examples are presented in Table 2. It
can be seen from Table 2 that

(1) §; reduces quickly as the subscript i or j increases;

(2) the bigger the aspect ratio (0 < n < 1.0), the quicker S; reduces as either
subscript { or j increases;

(3) the first mode participating factor S;, is much bigger than others.
(Considering the mode participating factor only, the contribution from the
fundamental mode would represent over 90 % of the whole response when
the aspect ratio n > 1/3, or 97% when 1 =1).

Dynamic magnification factor. The dynamic magnification factors of the ij th
mode for displacement and acceleration are defined by eqns. (21) and (22),
respectively. They are functions of time ¢, the contact ratio « (through r,),
the frequency ratio f3;, the damping {;, and the number of Fourier terms n.

The value of peak dynamic magnification factors of the n th Fourier
component for displacement and acceleration for any mode can be defined
as follows:

D, = ————2 (23)

rn’B?

I a2y 2

=-n"B")" +(2
\'U n B ] +(2n¢h)
Figs 2 and 3 show a number of graphs relating D, and D%, (n =1,2,3,.... 10)
to 1/f(=a/w,) for various values of o (= 2/3, 1/2. 1/3, 1/4) with a selected
damping factor {=0.02.

It can be concluded from these figures that

DY = ..(24)

(1) resonance can occur when the natural frequency of the floor is equal to
the dance frequency, or when it is equal to integer multiples of the dance
trequency.

(2) for resonant excitation (nf =1), D, = D*,, i.e. D, and D*, have the same
peak values.

(3) for displacement, the first Fourier term always provides a significant
contribution to the magnification factor for every frequency ratio when n >
3 —e.g., when a = 2/3, it provides a dominated contribution when n > 3.
(4) The factor for the acceleration for each component is dominated by
resonant response (i.e. when nf3 =1). Unlike the factor for the displacement,
the factor of each component has little effect on its neighbouring components
—c.g. when o = 2/3, this ctfect is negligible for n >3.

For dance floors, the fundamental frequency f, is usually higher than the
excitation frequency f,, but situations where f,; equals f,, 2f, or 3f, should
be avoided. This situation has been observed in practice'*!” and coincides
with the first conclusion. However, oy, is a relatively big-scaled
acceleration, thus even a relatively small dynamic magnification factor D¢,
when nf, = fi; (n=4,5,6....). can produce significant accelerations.
Consequently, more Fourier terms may need to be taken into account in
order to calculate acceleration.

Determination of the number of the Fourier terms required. As it is not
desirable to use all the terms in the Fourier series to describe the load, it is
necessary to select how many terms of the series should be used in an
analysis. The number should be selected according to the significance of the
resulting response rather than the accuracy of the load description.
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Fig 2. Dynamic magnification factors for displacements

Examining the characteristics of the dynamic magnification factors, the
number of Fourier terms to be taken into account depends on their contribution
to the response, including any possible resonance. It is suggested that the
first I Fourier terms should be included in the analysis, where [ is defined
as the first integer bigger than @./w,, i.e.

I=Int(e,,/®,)=In(1/ B) (25)

30

251 a=2/3
n=1
201

D, (1B)

45
40
%1 a=1/3
304
o
20-

D (1/8)

10~‘

2 4 yg 6 8 10

Fig 3. Dynamic magnification factor for accelerations
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25 ] a=1/2
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DS(18)

1B

45

a=1/4

D(1/8)

This ensures that any resonant excitation of the fundamental mode will be
considered. For instance, when 1/8 = 2.5, I =3, and the first three Fourier
terms should be used in the analysis. Eqn. (25) implies that, the stiffer the
floor, the more Fourier terms need to be considered.

Simplification of the solution
For the simply supported floor under a symmetric load, no antisymmetric
mode is involved in the floor vibration. Therefore, the first higher mode

35

30 a=1/2

35 | a=1/4

D, (1/8)
3
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involved in the floor vibration is the second symmetric mode with the
frequency @;;. The frequency ratio of the first mode and the second
symmetric mode can be expressed using eqn. (16) as follows:

5 when =1
D13 _ 1+9n° T

p P =43.46 when n=2/3 ....(26)
T 8 when n=1/3
Therefore, for floors where @y, > f;,, which is the usual case,
|D|1|max > |D13|max |D1al max > ‘D{z} max ..27)

where |D,,- | max and |D”,, | max Mean the maximum absolute magnification
factors of the ij th mode for displacement and acceleration, respectively. The
values for other higher modes are even smaller than | D)3 | max and | Doy | max-
It has been shown earlier that

Si>>813 ...(28)
Substituting eqns. (27) and (28) into eqns. (21) and (22) gives
| Apy |max >> |A13|max lAlal max > | Ala3 max ~(29)

which indicates that the floor response is dominated by the contribution of
the fundamental mode and the response from the higher modes is negligible
for a symmetric dance floor with simply supported boundary conditions
under a symmetric dynamic load. Therefore, only the response from the
fundamental mode needs to be considered.

Extension of the solution

The simplification discussed previously can be applied to other structures
with different boundary conditions. The difficulty encountered is in choosing
suitable displacement functions. However, the simplified solution for the
simply supported floor is applicable for a floor under other symmetric boundary
conditions since, under a uniformly distributed load, no antisymmetric modes
are involved in the floor vibration. Therefore, only the fundamental mode
needs to be considered, and the shape of this mode is relatively easy to
choose with sufficient accuracy for many common cases. The response of a
floor or other structure can be approximated by the contribution of the
fundamental mode

w (xy,0) =A@ Wi (xy) ....(30)

where W, (x,y) is the dimensionless fundamental mode with unit peak value

TABLE 3 — Approximate structural factors for several common cases

and A, is the generalised co-ordinate corresponding to the first mode. Using
the procedure shown in the last subsection, the solution has the following
form

Ay =dy 1.0+ Dy)) = By —2—(1.0+Dy,) 31
maoy;

. m

A=a)Df) =B ,—n[gDﬁ ..(32)

where D,, and D¢, are the dynamic magnification factors for the
displacement and acceleration defined in eqns. (21) and (22); B,, is defined
as the structural factor which relates to the fundamental mode and depends
only on the type of structure (beams, plates or shells) and boundary
conditions (free, simple and clamped supports). Comparing eqns. (31) and
(18) it can be seen that B,;=16/x2 for simply supported plates. If the dynamic
load is only a function of time, and the floor mass is uniformly distributed
in space, the structural factor can, according to the solution procedure, be
defined as follows

J’LW, | (. y)dxdy

Bu= J‘J:lel (x,y)dxdy

--(33)

Sometimes the mode shape W), (x,y) is difficult to find, but an assumed one
that satisfies the boundary conditions can be used as an approximation, such
as a normalised deflection under uniform static load. Table 3 provides
approximate structural coefficients for several symmetric structures.

Using dynamic measurements in the analysis
For checking the safety and serviceability of existing dance floors, it is
desirable to perform dynamic tests on the floors. This will provide feedback
from the actual structure, including accurate values of the fundamental
frequency, damping, modal stiffness, and mode shape. The fundamental
frequency of a bare floor is relatively easy and inexpensive to measure's. On
the other hand, it may prove difficult or inconvenient to measure the actual
response when a crowd of people is involved.

Eqns (31) and (32) can be expressed in the following form to accommodate
the measurements

G”_Wl 1 (x, y)dxdy
s =

Goyy JL“G 1 (x, y)dxdy
k *

Ay = 1.0+ D) ...(34)

A = D, (35)

To use the above equations the measured modal stiffness k*, frequency

Structures and boundaries Assumed fundamental mode Approximate fundamental frequency (®) Structural factors

y A

S
Plate . 2 2y, 72 2
s s sin(zx/ L) sin(zy/ L) 7 A1+n7)/ L 4/7) =162

s »X
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S - simply supported boundary C ~ clamped boundary A= (D/m)”?
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D - flexural rigidity

m ~ floor mass n=LJLy
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wi, and mode shape W, (x,y) are required. Alternatively, eqns. (31) and (32)
can be used where the floor mass density needs to be estimated, but the
mode shape W), (x,y) is not required. It is also preferable to use the measured
damping value.

If one person jumps at the centre of a floor or a beam, the response can
be obtained from eqns. (34) and (35)

G,
Ay =25 10+Dy) . (36)
. Gw?
A= 2—*” D}, (37

where G; is the weight of the person. These two formulae are particularly
useful for comparing calculation with measurements, and are used in ref. 6.

Resonance caused by higher Fourier components

An example is provided here to demonstrate a possible resonance induced
by higher Fourier components of the load, and the importance of selecting
the appropriate number of Fourier terms to describe the load when calculating
acceleration. The basic data for a square floor clamped at its four edges are
summarised:

dimension of the floor: L, =L,=80m

damping ratio: £, =0.02

floor material: reinforced concrete (2400 kg/m?)
floor thickness: h=0.15m

frequency of excitation load:  f,=2.33 Hz

frequency of the bare floor:  f;, =13.99 Hz

dancing load: G =1177.2 N/m?

contact ratio: a=05

The load frequency is chosen to be one-sixth of the floor frequency. In the
following calculation using eqns. (31) and (32), three Fourier terms, N = 3
(according to refs. 16, 19 and 10) and six Fourier terms, N = 6 (according to
eqn. (25)) are adopted, respectively, for comparison. The corresponding loads
are described in Fig 1. Fig 4 shows the displacements and accelerations at
the centre of the floor. The upper figure shows the response calculated when
the load is described using the first three Fourier terms (N = 3). The lower
figure shows the response to the load described by the first six Fourier
terms (N = 6). The following observations can be made:
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Fig 4. Resonance caused by the sixth Fourier component of the load
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(1) Displacement

The maximum displacement calculated using N = 6 is approximately 30 %
bigger than that using N = 3. However, the values are so small that the
difference would not affect the safety criterion, since it is a relatively stiff
floor.

(2) Acceleration

The acceleration using N = 6 is over 10 times that using N = 3. The significant
difference is due to the resonance caused by the sixth Fourier component
of the load (i.e. w¥/f = 6). This resonance produces accelerations as high as
0.88 g.

(3) Load and response

There is little difference between the loads described using the first three or
six Fourier terms (Fig 1). However, significant differences can result in the
calculated accelerations.

This calculation suggests that it is possible for resonance to occur on a
relatively stiff dance floor ( f;, > 10 Hz).

Conclusions

This paper presents a method for calculating the response of floors to loads
from dancing involving jumping or aerobics-type exercises. The conclusions
to be drawn from this study are:

(1) Dance-type loads where jumping is involved can be expressed analytically
using Fourier series in which the Fourier coefficients, or dynamic load factors,
are a function of the contact ratio o which relates to the dance activities and
dance frequency.

(2) For the vibration of a simply supported rectangular floor under symmetric
dynamic loads, the response of the fundamental mode can represent the
whole response reasonably accurately. Furthermore, by defining the structural
factor (eqn. (33)), the solution can be applied to other structures with
different boundary conditions.

(3) A possible resonance, due to higher Fourier components (r > 3) of the
load, is predicted which is particularly important if calculations of floor
accelerations are required. This resonance can occur on a relatively stiff
floor (£, > 10 Hz).

(4) The number of Fourier terms required in an analysis can be determined
using eqn. (25) and is dependent on the load frequency and the fundamental
frequency of the floor.

The results from the proposed method, including the prediction of a
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possible resonance, are verified by experimental measurements, numerical
analysis and published data in a separate paper®. Further theoretical work is
required to develop the proposed method to deal with the case where the
dance-type loads are non-uniformly distributed and other structures, such
as grandstands, where dance-type loads are encountered.
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Appendix A. The procedure for calculating the response of a floor
to dance-type loads

The procedure required for calculating the response at the centre of a floor is
summarised here. The calculated displacements are likely to provide information
for safety assessments, whereas the accelerations provide information for
serviceability.

(1) Evaluation of the characteristics of the bare floor
This includes

— the fundamental frequency @, (or 27 f))

— the structural coefficient By,

— the mass m (excluding the mass of the dancers)
— the damping value {

Table 3 gives typical values of the first two items for floors with symmetric
boundary conditions. Alternatively, for an existing floor, measurements could
be used.
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(2) Evaluation of the loads
This requires the following:

(a) The load density G, or the number and weight of dancers in a given area.

(b) The dance frequency f,. which is likely to be in the range 1.5-3.5 Hz.
Several dance frequencies may need to be evaluated, with the dance period
(1/f,) which is integer number multiple of the floor period likely to produce
the largest accelerations.

(¢) The contact ratio e, for each dance activity. This may be chosen from
Table 1 inref. 6 for different activities, and several values may need to be
evaluated.

(d) The dynamic crowd effect. The likely attenuation of loading due to the
crowd effect should be considered'?

(3) Calculation of the dynamic response

Having determined the structural characteristics, the response can be calculated
for each load condition in turn. The following items enable the response time
history to be calculated over a period 1, and considers only the fundamental mode.

(a) Determine the number of Fourier terms to use in the calculation from eqn.
(25).

(b) Determine the dynamic magnification factors for displacement D,, and
acceleration D«;, using egns. (21) and (22).

(¢) Calculate the displacement and acceleration time histories of the centre of
the floor using eqns. (31) and (32). If test results are available, either
eqns. (31) and (32) or eqns. (34) and (35) can be used.
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