Publications

I try to publish open-access where I can; where that isn't possible I try to make preprints available either here or on the arXiv; but if you can't get any of the papers below and would like to, please email me and I'll send you a preprint.

In peer-reviewed journals:

61. R. W. Eyre, T. House, E. M. Hill and F. E. Griffiths, "Spreading of components of mood in adolescent social networks," Royal Society Open Science 4:9 (2017) 170336. [link]

60. D. A. Sprague and T. House, "Evidence for complex contagion models of social contagion from observational data," PLOS ONE 12:7 (2017) e0180802. [link]

59. E. Buckingham-Jeffery, R. Morbey, T. House, A. J. Elliot, S. Harcourt, and Gillian E. Smith, "Correcting for day of the week and public holiday effects: improving a national daily syndromic surveillance service for detecting public health threats," BMC Public Health 17:1 (2017) 477. [link]

58. E. M. Hill, T. House, M. S. Dhingra, W. Kalpravidh, S. Mozaria, M. G. Osmani, M. Yamage, X. Xiao, M. Gilbert and M. J. Tildesley, "Modelling H5N1 in Bangladesh across spatial scales: model complexity and zoonotic transmission risk," Epidemics (2017). [link]

57. E. M. Hill, M. J. Tildesley and T. House, "Evidence for history-dependence of influenza pandemic emergence," Scientific Reports 7:43623 (2017). [link]

56. F. Ball and T. House, "Heterogeneous network epidemics: real-time growth, variance and extinction of infection," Journal of Mathematical Biology 75:3 (2017) 577-619. [link] [arXiv:1601.07415]

55. M. J. Keeling, T. House, A. J. Cooper, and L. Pellis, "Systematic Approximations to Susceptible-Infectious-Susceptible Dynamics on Networks," PLoS Computational Biology 12:12 (2016) e1005296. [link]

54. C. Parra-Rojas, T. House, and A. J. McKane, "Stochastic epidemic dynamics on extremely heterogeneous networks," Physical Review E 94:062408 (2016). [link] [arXiv:1609.08450]

53. T. House, A. Ford, S. Lan, S. Bilson, E. Buckingham-Jeffery, and M. Girolami, "Bayesian uncertainty quantification for transmissibility of influenza, norovirus and Ebola using information geometry," Journal of the Royal Society Interface 13:20160279 (2016). [link]

52. S. Janson, M. Luczak, P. Windridge and T. House, "Near-critical SIR epidemic on a random graph with given degrees," Journal of Mathematical Biology 74:4 (2017) 843-886. [link] [arXiv:1501.05798]

51. D. Sprague, C. Jeffery, N. Crossland, W. Vargas, T. House, G. O. Roberts, J. Ouma, S. Lwanga, J. Valadez, "Assessing delivery practices of mothers over time and over space in Uganda, 2003-2012," Emerging Themes in Epidemiology 13:9 (2016) [link]

50. T. M. Kinyanjui, L. Pellis, T. House, "Information content of household-stratified epidemics," Epidemics 16 (2016) 17-26. [link]

49. T. House, J. M. Read, L. Danon and M. J. Keeling, "Testing the hypothesis of preferential attachment in social network formation," EPJ Data Science 4:13 (2015). [link]

48. T. M. Kinyanjui, T. House, M. K. Kiti, P. A. Cane, D. J. Nokes and G. F. Medley, "Vaccine induced herd immunity for control of Respiratory Syncytial Virus disease," PLoS ONE 10:9 (2015) e0138018. [link]

47. E. Hill, F. E. Griffiths, T. House, "Spreading of healthy mood in adolescent social networks," Proceedings of the Royal Society B. 282 (2015) 20151180. [link]

46. L. Pellis, T. House and M. J. Keeling, "Exact and approximate moment closures for non-Markovian network epidemics An analysis of the open triplet and closed triangle," Journal of Theoretical Biology. 382 (2015) 160–177. [link] [arXiv:1505.03354]

45. L. Pellis, S. E. F. Spencer and T. House, "Real-time growth rate for general stochastic SIR epidemics on unclustered networks," Mathematical Biosciences 265 (2015) 65-81. [link] [arXiv:1501.04824]

44. H. Heesterbeek, R. M. Anderson, V. Andreasen, S. Bansal, D. De Angelis, C. Dye, K. T. D. Eames, W. J. Edmunds, S. D. W. Frost, S. Funk, T. D. Hollingsworth, T. House, V. Isham, P. Klepac, J. Lessler, J. O. Lloyd-Smith, C. J. E. Metcalf, D. Mollison, L. Pellis, J. R. C. Pulliam, M. G. Roberts, C. Viboud, and Isaac Newton Institute IDD Collaboration, ''Modeling infectious disease dynamics in the complex landscape of global health,'' Science 347:6227 (2015) aaa4339. [link]

43. D. De Angelis, A. M. Presanis, P. J. Birrell, G. Scalia Tomba, T. House, ''Four key challenges in infectious disease modelling using data from multiple sources,'' Epidemics 10 (2015) 83-87. [link] (open access)

42. T. House, ''Epidemiological dynamics of Ebola outbreaks,'' eLife (2014) 10.7554/eLife.03908. [link] (open access)

41. F. Ball, T. Britton, T. House, V. Isham, D. Mollison, L. Pellis, G. Scalia-Tomba, ''Seven challenges for metapopulation models of epidemics, including households models,'' Epidemics 10 (2015) 63-67. [link] (open access)

40. L. Pellis, F. Ball, S. Bansal, K. Eames, T. House, V. Isham, P. Trapman, ''Eight challenges for network epidemic models,'' Epidemics 10 (2015) 58–62. [link] (open access)

39. P. A. Hancock, Y. Rehman, I. M. Hall, O. Edeghere, L. Danon, T. House and M. J. Keeling, ''Strategies for controlling non-transmissible infection outbreaks using a large human movement data set,'' PLoS Computational Biology 10:9 (2014) e1003809. [link] (open access)

38. T. Britton, T. House, A. L. Lloyd, D. Mollison, S. Riley, P. Trapman, ''Five challenges for stochastic epidemic models involving global transmission,'' Epidemics 10 (2015) 54–57. [link] (open access)

37. A. Black, T. House, M. J. Keeling and J. V. Ross, "The effect of clumped population structure on the variability of spreading dynamics," Journal of Theoretical Biology 359 (2014) 45-53. [link] [preprint].

36. T. House, "Algebraic moment closure for population dynamics on discrete structures," Bulletin of Mathematical Biology. 77:4 (2015) 646-659. [link] [arXiv:1405.4024]

35. T. House, "For principled model fitting in mathematical biology," Journal of Mathematical Biology 70:5 (2014) 1007-1013. [link] [arXiv:1404.5324]

34. T. House, “Heterogeneous clustered random graphs,” EPL 105 (2014) 68006. [link] (open access)

33. T. House, “Non-Markovian stochastic epidemics in extremely heterogeneous populations,” Mathematical Modelling of Natural Phenomena 9:2 (2014) 153-160. [link] [arXiv:1403.2878]

32. M. Ritchie, L, Berthouze, T. House and I. Z. Kiss, "Higher-order structure and epidemic dynamics in clustered networks," Journal of Theoretical Biology 348 (2014) 21-32. [link] (open access)

31. C. I. Del Genio and T. House, "Endemic infections are always possible on regular networks," Physical Review E. 88 (2013) 040801(R). [link] [arXiv:1310.3128]

30. L. Danon, J. M. Read, T. House, M. C. Vernon and M. J. Keeling, "Social encounter networks: characterising Great Britain," Proceedings of the Royal Society B 280:1765 (2013) 20131037. [link] (open access)

29. N. J. Inglis, H. Bagnall, K. Janmohamed, S. Suleman, A. Awofisayo, V. De Souza, E. Smit, R. Pebody, H. Mohamed, S. Ibbotson, G. E. Smith, T. House, B. Olowokure, “Measuring the effect of influenza A(H1N1)pdm09: the epidemiological experience in the West Midlands, England during the ‘containment’ phase,” Epidemiology and Infection (2013). [link]

28. M. Graham and T. House, "Dynamics of stochastic epidemics on heterogeneous networks," Journal of Mathematical Biology 68:7 (2014) 1583-1605. [link] [arXiv:1304.4763]

27. C. A. Rhodes and T. House, "The rate of convergence to early asymptotic behaviour in age-structured epidemic models," Theoretical Population Biology 85 (2013) 58-62. [link] [arXiv:1303.4201]

26. A. Black, T. House, M.J Keeling, and J. V. Ross, "Epidemiological consequences of household-based antiviral prophylaxis for pandemic influenza," Journal of the Royal Society Interface 10:81 (2013) 20121019. [link] (open access)

25. T. House, J. V. Ross and D. Sirl, "How big is an outbreak likely to be? Methods for epidemic final-size calculation," Proceedings of the Royal Society A 469:2150 (2013) 20120436. [link] [supplementary code] (open access)

24. T. House, N. Inglis, J. V. Ross, F. Wilson, S. Suleman, O. Edeghere, G. Smith, B. Olowokure and M. J. Keeling, "Estimation of outbreak severity and transmissibility: Influenza A(H1N1)pdm09 in households," BMC Medicine 10:117 (2012). [link] (open access) - see also the Commentary on this article.

23. L. Danon, T. House, J. M. Read and M. J. Keeling, "Social encounter networks: collective properties and disease transmission," Journal of the Royal Society Interface 9:76 (2012) 2826-2833. [link] (open access)

22. A. J. Sutton, T. House, V. D. Hope, F. Ncube, L. Wiessing and M. Kretzschmar, "Modelling HIV in the injecting drug user population and the male homosexual population in a developed country context," Epidemics. 4:1 (2012) 48-56. [link]

21. T. House, "Lie algebra solution of population models based on time-inhomogeneous Markov chains," Journal of Applied Probability. 49:2 (2012) 472-481. [link] [arXiv:1111.5533].

20. T. House, "Modelling Epidemics on Networks," Contemporary Physics. 53:3 (2012) 213-225. [link] [arXiv:1111.4875].

19. M. Taylor, P. L. Simon, D. M. Green, T. House and I. Z. Kiss, "From Markovian to pairwise epidemic models and the performance of moment closure approximations," Journal of Mathematical Biology. 64:6 (2012) 1021-1042. [link] [Preprint version]

18. T. House, "Modelling behavioural contagion," Journal of the Royal Society Interface 8:59 (2011) 909-912. [link] [Preprint version]

17. T. House, M. Baguelin, A. J. van Hoek, P. J. White, Z. Sadique, K. Eames, J. M. Read, N. Hens, A. Melegaro, W. J. Edmunds and M. J. Keeling, "Modelling the impact of local reactive school closures on critical care provision during an influenza pandemic,'' Proceedings of the Royal Society B 278:1719 (2011) 2753-2760. [link] (open access)

16. L. Danon, A. P. Ford, T. House, C. P. Jewell, M. J. Keeling, G. O. Roberts, J. V. Ross and M. C. Vernon, "Networks and the Epidemiology of Infectious Disease," (2011) Interdisciplinary Perspectives on Infectious Diseases 2011:284909 special issue "Network Perspectives on Infectious Disease Dynamics". [link] [arXiv:1011.5950] (open access)

15. T. House and M. J. Keeling, "Epidemic prediction and control in clustered populations," Journal of Theoretical Biology 272:1 (2011) 1-7. [link] [arXiv:1012.1974].

14. T. House and M. J. Keeling, "Insights from unifying modern approximations to infections on networks," Journal of the Royal Society Interface. 8:54 (2011) 67-73. [link] (open access)

13. T. House, "Generalised network clustering and its dynamical implications," Advances in Complex Systems 13:3 (2010) 281-291. [link] [arXiv:1006.4531].

12. M. J. Keeling, L. Danon, M. C. Vernon and T. House, "Individual identity and movement networks for disease metapopulations," PNAS 107:19 (2010) 8866-8870. [link] (open access)

11. T. House and M. J. Keeling, "The impact of contact tracing in clustered populations," PLoS Computational Biology 6:3 (2010) e1000721. [link] (open access)

10. J. V. Ross, T. House and M. J. Keeling, "Calculation of disease dynamics in a population of households," PLoS ONE 5:3 (2010) e9666. [link] (open access)

9. T. House, I. Hall, L. Danon and M. J. Keeling, "Contingency planning for a deliberate release of smallpox in Great Britain - the role of geographical scale and contact structure," BMC Infectious Diseases 10:25 (2010). [link] (open access)

8. M. Tidlesley, T. House, M. Bruhn, R. Curry, M. O'Neill, G. Smith and M. J. Keeling, "The impact of spatial clustering on disease transmission and optimal control," PNAS 107:3 (2010) 1041-1046. [link]

7. L. Danon, T. House and M. J. Keeling, "The role of routine versus random movements on the spread of disease in Great Britain," Epidemics 1:4 (2009) 250-258. [link]

6. T. House, G. Davies, L. Danon and M. J. Keeling, "A motif-based approach to network epidemics," Bulletin of Mathematical Biology 71 (2009) 1693-1706. [link] (open access)

5. T. House and M. J. Keeling, "UK household structure and Infectious Disease Transmission," Epidemiology and Infection 137 (2009) 654-661. [link] (open access) [PDF]

4. T. House and M. J. Keeling, "Deterministic epidemic models with explicit household structure," Mathematical Biosciences 213 (2008) 29-39. [link] [Preprint version]

3. T. House and E. Palti, "Effective action of (massive) IIA on manifolds with SU(3) structure," Physical Review D 72 (2005) 026004. [link] [arXiv:hep-th/0505177]

2. T. House and A. Micu, "M-Theory compactifications on manifolds with G2 structure," Classical and Quantum Gravity 22 (2005) 1709-1738. [link] [arXiv:hep-th/0412006

1. T. House and A. Lukas, "G2 domain walls in M-theory," Physical Review D 71 (2005) 046006.[link] [arXiv:hep-th/0409114]

Other publications:

(viii) T. House (2017), "Hessian corrections to Hybrid Monte Carlo". [arXiv:1702.08251]

(vii) T. House, "A general theory of early growth? Comment on: 'Mathematical models to characterize early epidemic growth: A review' by Gerardo Chowell et al." Physics of Life Reviews [link]

(vi) T. House (2015), "Hessian corrections to the Metropolis Adjusted Langevin Algorithm". [arXiv:1507.06336]

(v) M. J. Keeling, M. Tildesley, T. House and L. Danon, "The Mathematics of Vaccination," Mathematics Today 49:1 (2013) 40-43.

(iv) T. House (2010), "Exact epidemic dynamics for generally clustered, complex networks". [arXiv:1006.3483]

(iii) T. House et. al. (2009), "Can Reactive School Closures help critical care provision during the current influenza pandemic?" PLoS Currents Influenza. [link]

(ii) T. House, G. Davies, L. Danon and M. J. Keeling, "Complex network structure and transmission dynamics," Proceedings of the European Conference on Complex Systems (2009). [link to programme]

(i) T. House, "Aspects of Flux Compactification," DPhil thesis, University of Sussex (2005). [PDF]