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ABSTRACT
Often, the task of epidemiological modelling is seen as one of im-
proving biological and social realism, with increasing data availabil-
ity enabling increased realism. Here, we consider ways in which
models designed to support policy have di�erent data and algorith-
mic requirements from those aiming at realism or insight, via a
series of case studies. In particular, calculation and communication
of uncertainty is often more important than re�nement of model
structure without con�rmation of validity.

CCS CONCEPTS
•Applied computing→ Life andmedical sciences; •Comput-
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1 OVERVIEW
Epidemiology is a data-driven science; however, the sources of data
involved are typically observational, since controlled experiments
are seldom practical. This means mathematical modelling has a key
role to play in the �eld, both in terms of inference and of prediction
[17].

Inference is challenging because data is usually scarse and only
indirectly informing our knowledge, as most events involved in
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Figure 1: Representation of an idealised modelling support
cycle for policy.

the transmission process (e.g. infection, or beginning/end of viral
shedding, which does not necessarily correspond to onset/end of
symptoms) are rarely observed. Models o�er an opportunity to
codify our biological understanding (or belief) about the infection
mechanism, but their integration with data requires sophisticated
statistical techniques, particularly those that successfully cope with
missing data.

Models are also key for predictions, as they allow for the repre-
sentation of phenomena such as potential interventions that are not
directly observable. Unfortunately, validation of model predictions
is problematic, as no epidemic is ever identical to any other and
testing alternative control policies is anyway constrained by ethical
or political considerations.

When modelling to inform policy, particularly when a decision
must be made under time pressure, there are particular practi-
cal and theoretical challenges. These are often markedly di�erent
from those that arise in curiosity-driven science. Figure 1 shows
an overall picture of modelling for policy support. A successful
policy-driven model will integrate available data, and propagate
forward the most signi�cant uncertainties to allow interventions to
be optimised, all the while improving methodology. The rest of this
position paper is structured as a set of case studies that illustrate
this point.
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2 TYPES OF MODELS USED
Broadly speaking, there are two classes of models (although these
can be related to each other and embedded in more general frame-
works) that we now present simple examples of for clarity.

The �rst of these is the Poisson process for a non-communicable
disease. Here we imagine that we observe a number of cases of
disease � in a population of size N over a time period of length t.
In the simplest model, we assume that N � � and that cases arise
independently at a rate �, leading to a Poisson likelihood of

Pr(�) = (�t)�e��t
�!

. (1)

This Poisson model, if correct, would allow us to estimate � from
data (for example if 365 cases are observed in a year then we would
estimate the rate to be �̂ = 1 days�1) and on that basis could use (1)
to predict the probability that we observe signi�cantly more cases
than expected, leading to a lack of healthcare capacity, on a given
week.

The second is the SIR model, in which individuals are split into
compartments according to whether they are Susceptible to the
disease, Infectious, or Removed. This model is often represented
through the non-linear system of di�erential equations:

dS
dt
= � �

N
SI ;

dI
dt
=

�

N
SI � � I . (2)

If we know the values S(t = 0) and I (t = 0), as well as the mean
duration of infectiousness 1/� and the basic reproductive ratio
R0 = �/� then this model (and related approaches [23]) can be
used to calculate quantities such as the value of t at which I (t) is
maximised – i.e. the peak time and height – as well as the total
number of individuals infected during the epidemic, N � S(1).

Elaborating on the back-bone of the SIR model (2), a range of
more sophisticated model structures has been proposed to relax
unrealistic assumptions and capture various aspects of human so-
cial patterns, including: multitype models that distinguish between
classes of individuals (e.g. age or risk behaviour); metapopulation
models (e.g. cities connected by �ights); households models, cap-
turing social grouping imposed by household, school and work-
place structures; network models; spatial models, e.g. incorporating
transmission reduction with distance or movements dependent
on population density; and complex individual-based stochastic
simulations, which are �exible but involve many parameters. For
reviews, see Rock et al. [37] and Keeling and Rohani [23].

3 REAL-TIME DECISION MAKING DURING
PANDEMICS

Infectious disease modelling is increasingly used to support deci-
sion making in real-time in order to choose best control strategies.
In 2001, for example, modelling was used to estimate the impact of
potential control strategies during the outbreak of foot-and-mouth
disease in the UK [14, 24]. During the last in�uenza pandemic in
2009, a cost-e�ectiveness analysis involving a transmission model
�tted to incoming data informed the UK government on the likely
impact of alternative vaccination strategies [2]. More recently, dur-
ing the Ebola outbreak in West Africa, models were used to forecast
the likely course of the outbreak [41], evaluate the bene�ts and
risks of introducing Ebola community centres [26], estimate the

impact of new beds [6] and evaluate clinical trials for experimental
treatments [11].

In these situations, trying to develop increasingly more com-
plex models in order to integrate additional parameters relevant
to decision makers is often not possible using traditional methods.
The reason is that traditional methods of evidence synthesis are
based on computationally intensive algorithms poorly adapted to
quick responsive real-time inference. The quality of real-time data
involved integrating additional modelling layers to re�ect poten-
tial censoring and sources of uncertainties. Finally, these models
need to incorporate simple summary outputs which can be handled
during decision making.

A real-time modelling toolbox needs to be developed to provide
a set of modular methodologies which can be picked up to build
a model �exible enough to integrate relevant complexities while
still being �tted in a short amount of time. Such tools could involve
heavily parallelised methods that exploit multi-core computer archi-
tecture such as particle �lters, variational Bayesian approaches, or
approximation [5]. It is, however, possible that any computational
gain could be o�set by approximation error. It would thus also be
necessary to develop, prior to these crises, studies quantifying the
level of bias introduced by using ‘fast’ methods.

4 PREDICTING THE PEAK DEMAND FOR
HEALTHCARE

Prediction of height and timing of peak incidence is crucial to es-
timate the stress on the health care system, and hence to inform
decision-makers on how to allocate resources to manage the out-
break most cost-e�ectively. Hospitals running out of beds during
more severe in�uenza seasons are not uncommon [7, 8], with pa-
tient care severely delayed and other hospital services postponed to
after the winter crisis. Conversely, enough resources in terms of bed
capacity in treatment centres has been shown to have contributed
to controlling the 2014 Ebola outbreak [27].

Given the abundance of studies discussing, comparing and test-
ing methods for prediction of in�uenza epidemics [32, 34, 40, 44],
we focus here on the case of in�uenza, although comments natu-
rally extend to other infections. Among the many epidemiologically
relevant epidemic characteristics [40], peak timing and height are
among the most widely considered [32, 33, 38].

Stochastic simulations of simple epidemic models based on the
‘mass-action’ mixing assumption highlight how peak epidemic tim-
ing can vary widely as a consequence of the random delays in the
early epidemic phase. However, once the epidemic takes o� and the
number of cases becomes large enough to motivate a deterministic
approximation, the explosive nature of exponential growth is such
that uncertainties regarding the size of the population under consid-
eration or the fraction e�ectively susceptible to infection has only
marginal impact on how quickly the peak is reached. Mathemati-
cally speaking, the stochastic counterpart of model (2), if not for
the initial and �nal epidemic phases dominated by random events,
consists of a ‘deterministic’ central phase the duration of which
is O(1) (i.e. independent of the population size N ) [1]. It is unsur-
prising, therefore, that numerous retrospective studies of in�uenza
concluded peak timing prediction can be already accurate weeks in
advance (cited numbers generally range form 4 to 7 [32, 33, 38]), at
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least in those years characterised by a single epidemic wave and
provided enough data is promptly available. Prospective, real-time
forecasts [39, 42] also proved reasonably accurate even up to 9
weeks in advance.

The delays between infections and reliable data on con�rmed
cases becoming available (1-2 weeks [34] or even longer [9]) may
threaten the usefulness of fast prediction methods. Alternatives
using more promptly available data, such as in�uenza-like illness,
acute respiratory infection data or absenteeism, or data surrogates
such as Google ’Flu Trends and search engine queries, unavoidably
inherit the inaccuracies of such data sources. For example, the
wide media coverage during the 2012-2013 epidemic in the USA
has been claimed as a potential cause for the time discrepancy
between Google search activity and the peak in real infections [39].
However, forecast methods based on combinations of social (e.g.
Internet searches) and physical indicators (e.g. absolute humidity)
appear to outperform those based on single indicators alone, and
can be further strengthened by accounting for uncertainty due to
o�cal estimates undergoing revision after publication [9].

If peak timing predictions appear broadly successful, the predic-
tion of peak height is much more challenging [32, 34]. A potential
explanation is that, even when mass-action mixing is a reasonable
assumption, the height of the peak is highly dependent on the exact
speed of epidemc growth [32] and other factors that are hard to
estimate, such as: the distribution of (often partial) susceptibility
in the population, the rate of under-reporting, and the e�ect of
control policies (e.g. vaccination) and behavioural change (e.g. self-
quarantining, reduced mixing, but also “�u parties” [29]).

When the mass-action assumption is not justi�able, models with
a more complex structure might need to be employed, complicating
the matter further. In a metapopulation framework, the height
and timing of peak incidence in the full population results from
the superposition of the subpopulation dynamics. As such, they
depend on subpopulation sizes, but also, crucially, on the times
at which the epidemic jumps between subpopulations, which are
often ‘rare’ events that are hard to predict accurately. However,
because as discussed above peak timing can be predicted in each
subpopulation provided local data is promptly available, the work
of Shaman et al. [39], which ignores a metapopulation structure
and treats di�erent cities as independent of each other, could still
forecast peak timing for many of the 108 cities considered.

Forecasting methods typically involve complex simulation mod-
els and relatively simple statistical �tting procedures [33] or rela-
tively simple models whose potential misspeci�cation is compen-
sated for by sophisticated statistical approaches, such as particle
�lters [32] and data assimilation ensemble approaches originally
adopted in numerical weather prediction [38, 39]. No single method
appears uniformly better than others and even after the peak has
passed there are instances when peak timing forecasts are inaccu-
rate [44]. In particular, all the methodologies tested in [44] struggled
in performing prediction for those years characterised by two (or
even three) separate peaks, as they were the result of separate
outbreaks of di�erent strains of in�uenza that the models were
not designed to capture. Integrating the sophisticated statistical
techniques with more realistic models of seasonal in�uenza is a
challenge for the future, but the lack of accurate and promptly

available data remains one of the main limitations in epidemiology,
especially compared to weather and climate predictions [28].

5 SYNDROMIC SURVEILLANCE FOR
SITUATIONAL AWARENESS

Syndromic surveillance is the monitoring of the number of cases
of illness in a population with a speci�ed syndrome [36]. Priorities
for the algorithms used to monitor real-time syndromic signals are
robustness, speed, and the ability to model signals at di�erent scales
(some signals have many days of zero cases and some have many
cases every day).

Methods used in practice to monitor signals such as vomiting
or in�uenza-like illness at di�erent points in the healthcare sys-
tem include the ‘early aberration reporting system’ developed by
the CDC [21], the ‘moving epidemic method’ [43], and the ‘rising
activity, multi-level mixed e�ects, indicator emphasis’ (RAMMIE)
method developed by Public Health England [31]. These are statis-
tical methods not based on dynamical systems of transmissionthat
are not transmission dynamic. RAMMIE, for example, is based on a
Poisson model (1) with an additional multi-level structure to exploit
signals from hierachical geographies (national, regional, and local
levels) [31].

Such approaches, applied to daily data, can improve situational
awareness during mass gatherings [18], provide support during
environmental problems [13], and detect and follow trends in larger
seasonal in�uenza outbreaks [20]. However, smaller outbreaks, for
example small gastrointestinal outbreaks [10] or anthrax releases
[30], are unlikely to be detected; the possibility of greater sensitivity
therefore remains open.

6 RESPONDING TO DISEASE OUTBREAKS
WITH ENVIRONMENTAL SOURCES

Diseases which arise from environmental sources rather than by
person to person spread – for example anthrax and Legionnaires
disease as opposed to measles or in�uenza – do not have the non-
linearity inherent in SIR-type models. This makes them mathemat-
ically simpler but still have their own modelling challenges [12].
These outbreaks will involve fewer people than expected from a
pandemic in�uenza wave but may be deliberate or arise during high
pro�le events such as the Olympic Games meaning the timescales
for decisions are shorter and uncertainty in data greater.

Aswas shown in [30] traditional syndromic surveillance schemes
are unlikely to detect the atypical emerging disease outbreaks. In-
stead such infections are likely to be detected within hospital set-
tings. This means the key data required to run models must be
collected on the �y from cases. Given the speed of data collection
there is likely to be uncertainty in quality of data. E�cient data
transfer is essential (using electronic data capture software and
transfer formats [15]) and wider adoption of such technology by
responders is key, where practical.

As shown in [16], methods may be adapted on the �y to support
outbreaks. Work between outbreaks can extend methods more
robustly (by allowing for additional delays or multiple sources) but
every outbreak is unique and so the perfect model design and data
demands are di�cult to write down a priori.
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Akey uncertainty is the location of people at the time of infection
and the number of people present that did not get infected. Tra-
ditional epidemiological methods of interviewing observed cases
mean that one can reasonably expect home and work location of
cases. This may be matched to home and work locations of the
general population from surveys or censuses but if infection arises
during travel or leisure activity the infection locationmay bemissed.
Even with more detailed travel history from cases this denominator
population is hard to de�ne. In [19] the authors have looked at
transient movements using novel data set including detailed travel
histories for de�ning denominators but such commercial datasets
are expensive to maintain and often appear as ‘black boxes’ to
eventual model users. To be viable for translation to public health
organisations the tools must be a�ordable and transparent. Emerg-
ing data sources such asmobile phone location datamay be a bene�t
to public health authorities, to de�ne the at risk population, but
access to such data is hard to ensure (particularly ahead of time so
methods can be developed) and accuracy is hard to quantify.

Whilst inferential methods for reverse epidemiology (�nding
exposure locations given cases) exist [12], further methodological
development is required, for example fusing intervention models
[35] with inference tools to ensure realistic modelling of interven-
tions. Futhermore, given that evidence for human dose response
arises from animal studies and for relatively high doses, the infec-
tion of humans receiving low doses of biological agent is uncertain.

Given uncertainty in the models, and their justi�cation, another
challenge is around model selection (in absence of clear nesting
of models) and presentation of key assumptions in an intuitive
way to a lay audience. Models may have challenges in explaining
concepts to such audiences but are critical in such situations to
support outbreak control team work.

7 OUTBREAK CONTROL IN CARE HOMES
Care homes are an integral setting for disease transmission and
control, especially within the context of an ageing population. A
recent modelling study of scabies in care homes [25] suggested that
early detection of an infectious index case is critical in establishing
who and when to treat. Uncertainty in determining the index case
leads to possibly a greater number of residents being infected with
the potential of infecting sta�who maintain frequent links between
the care home and the general population.

Traditionally, the study of transmission of an infectious agent
within such a setting has been studied using either an agent-based
simulation model or a mean-�eld model [23]. For the sake of argu-
ment and without loss of generality, a care home can be regarded
as a large household. These models capture the complete range
of stochastic behaviours using a large set of ordinary di�erential
equations which can be expressed succinctly as

dp
dt
= Qp , p(0) = p0 , (3)

where Q 2 Rn⇥n is the household transition matrix and p is the
probability that a household is in a certain infection con�gura-
tion. For example, if we consider the SIR model as in (2) then we
would have ps,i,r (t) being the probability that a household has
s susceptibles, i infectious and r removed. This is made possible

because we count the number of events of each type that can oc-
cur rather than keep track of the population numbers. For exam-
ple, in the SIR model only two events can occur, namely infection
(S, I ,R) ! (S�1, I+1,R) and recovery (S, I ,R) ! (S, I�1,R+1). For
a detailed overview of this type of models, see [3, 4]. The solution
for (3) involves the exponential of a matrix:

p(t) = exp (tQ)p0 . (4)

To fully achieve the modelling ideal of su�ciently accounting
for uncertainty, in both structure and parameter values, and be-
ing able to propagate it within a modelling framework, computa-
tionally e�cient algorithms for solving the master equation are
needed. Jenkinson and Goutsias [22] have considered an implicit
Euler implementation to approximate the solution of (4). More
recently, Kinyanjui et al. [25] have demonstrated that there exist
computational advantages in solving the matrix exponential us-
ing expansion-based methods for the time-homogeneous case, i.e.
whenQ is time-invariant. The computational advantages gained
allowed for a full Bayesian quanti�cation of scabies transmission
and control within households fully accounting for uncertainty
[25]. However, there is still an open research question as to what
happens when we have interactions between households making
Q temporally heterogeneous.

8 CONCLUSIONS
In summary, we have outlined a series of policy-driven modelling
contexts where data, time pressures and uncertainty limit the detail
that can be incorporated into models, highlighting where further –
particularly methodological – work is needed.
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