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Poisson geometry has three principal sources:
1. It is a more convenient context in which to study many aspects of

symplectic geometry.
2. It is the theory dual to Lie algebra theory and, more generally, Lie

algebroid theory.
3. It is a (semi-)classical limit of quantum theory.

Formally, a Poisson structure on a manifold M is a Lie algebra structure
on the real vector space of smooth functions C(M) such that

{f, gh} = g{f, h}+ h{f, h}

for all f, g, h ∈ C∞(M).

If M is a symplectic manifold with symplectic form ω then each function
f ∈ C(M) defines the Hamiltonian vector field Xf by the condition that
ω(Xf , Y ) = Y (f) for all vector fields Y . In terms of these Hamiltonian
vector fields, the classical Poisson bracket

{f, g} = −Xf (g)

is a Poisson structure on M . That dω = 0 is precisely what is needed for
the Poisson bracket to satisfy Jacobi. Conversely any Poisson structure on a
manifold M foliates it by symplectic leaves.

Many constructions in symplectic geometry destroy the symplectic struc-
ture but preserve the Poisson bracket. Put another way, the only morphisms
in the symplectic category are the symplectomorphisms, which are diffeo-
morphisms, but the obvious concept of Poisson map allows a much greater
flexibility and power.

If g is a Lie algebra then its dual vector space M = g∗ has a natural
Poisson structure. Namely take f ∈ C(M) and any point φ ∈ M . Then the
(directional) derivative of f at φ is a linear map M → R; that is, it is an
element of g. So we can define {f, g} ∈ C(M) by

{f, g}(φ) = φ([D(f), D(g)])
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where D(f) is the directional derivative of f at φ. In this example the bracket
of two linear functions is linear and this characterizes duals of Lie algebras
amongst all Poisson structures. There is a lot of evidence that Lie actually
thought more in terms of these duals than in terms of what we call a Lie
algebra.

In this example the symplectic leaves are precisely the coadjoint orbits of
any Lie group which integrates g.

If we replace g by the tangent bundle to some manifold P and play the
same game with the bracket of vector fields, we get the (Poisson structure
corresponding to the) standard symplectic structure on T ∗P .

I won’t say much about how Poisson structures are a first stage in quan-
tization, except that a Poisson bracket is the first term in the power series
of a deformation quantization. Also, Poisson–Lie groups are very definitely
a good approximation to quantum groups (Poisson groups also arise in com-
plete integrability) and a good intro can be found in Chari and Pressley, for
example.

I hope this is some help — and sounds sufficiently seductive. I will defi-
nitely recall the Marsden–Weinstein reduction at the start of my talk.
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