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Abstract

We consider an optimal underwriting problem where given two insurance portfolios
that generate cash flows according to two spectrally negative Lévy processes of bounded
variation X and Y , one has to underwrite adaptively a convex combination of the two
such that the probability of ruin occurring in the combined portfolio is minimised. This
optimal underwriting problem boils down to an optimal switching problem where one
has to decide, based on the available capital at a given time, whether to go for mode
X or for mode Y at that time. The 1-switch-level strategy with parameter b in [0,∞]
is the strategy where one switches from one mode to the other only at times when the
capital goes above or below the level b. We find a set of sufficient conditions on the two
Lévy measures such that an optimal strategy is formed by a 1-switch-level strategy,
which covers in particular the case where the hazard rates of the two Lévy measures
are decreasing and ordered. An interesting tool in the analysis is a new monotonicity
property regarding quasi-convexity for renewal equations.
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1 Problem statement

By a spectrally negative Lévy process of bounded variation we mean a real-valued process
with stationary and independent increments that has no upward jumps and sample paths
that are of bounded variation and non-monotone. For such a process Z = {Zt}t≥0, we can
write

Zt = cZt−
∫ t

0

∫ ∞
0

zNZ(ds, dz), t ≥ 0, (1)
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where cZ > 0 denotes the drift and NZ(ds, dz) is a Poisson point process on [0,∞)2 with
intensity measure dtΠZ(dz) where the Lévy measure denoted by ΠZ is a measure on (0,∞)

satisfying
∫∞

0
(1 ∧ z)ΠZ(dz) < ∞. By applying Tonelli to

∫ 1

0

∫ z
0

1duΠZ(dz), one can easily
show that ∫ 1

0

ΠZ(z,∞)dz =

∫ ∞
0

(1 ∧ z)ΠZ(dz) <∞. (2)

The notation cZ , NZ and ΠZ will be used throughout the paper for Z a spectrally negative
Lévy process of bounded variation.

In an insurance context Z as in (1) represents the surplus/capital over time of a portfolio
of insurance risks with cZ being the constant premium rate per unit of time and the point
process NZ(dt, dx) standing for the number of claims of size dx appearing in the time period
dt. It is then said that ruin occurs in the portfolio if the process Z ever becomes strictly
negative. In one sentence our optimal control problem of interest can be informally described
as follows: given two such insurance portfolios how to choose adaptively a convex combination
of the two such that the probability of ruin occurring in the combined portfolio is minimised.
In particular one is allowed to hold/underwrite a proportion q ∈ (0, 1) of a given portfolio Z.
What we mean by this is that then one collects the premium rate qcZ and in return has to
cover fully an incoming claim of NZ with probability q and none of it with probability 1− q.
The latter is different from covering a proportion q of the size of each incoming claim; such
a feature appears when considering proportional reinsurance (and is also typical in portfolio
selection problems from the area of mathematical finance that involve Lévy processes) and
gives rise to quite different optimal control problems than the optimal underwriting problem
considered here.

Next we give a rigorous formulation of our control problem which is consistent with the
above description. Given a probability space (Ω,F ,P), let X = {Xt}t≥0 and Y = {Yt}t≥0

be two spectrally negative Lévy processes of bounded variation such that the pair (X, Y )
forms a bivariate Lévy process. Note that the latter condition is satisfied if X and Y are
independent but we also want to allow for dependency. We can write, for t ≥ 0,

Xt =cXt−
∫ t

0

∫
[0,∞)2

xN(ds, dx, dy),

Yt =cY t−
∫ t

0

∫
[0,∞)2

yN(ds, dx, dy),

(3)

where N(ds, dx, dy) is a Poisson point process on [0,∞)3 with intensity measure dtΠ(dx, dy)
where the Lévy measure Π is a measure on [0,∞)2 satisfying Π({0}, {0}) = 0, Π(dx, [0,∞)) =
ΠX(dx) and Π([0,∞), dy) = ΠY (dy). To each point in N we attach an independent and

uniformly on [0, 1] distributed random variable. The resulting marked point process Ñ is
then a Poisson point process on [0,∞)3 × [0, 1] with intensity measure dtΠ(dx, dy)du, see
Section 5.2 in [8]. This marking of the point process by uniform random variables will
be used to introduce a dependent thinning of N in order to determine which claims are
covered. For t ≥ 0, we denote by Ft the smallest σ-algebra such that the random variable
Ñ(A1, A2, A3, A4) is measurable for any A1 ∈ B([0, t]), A2, A3 ∈ B([0,∞)), A4 ∈ B([0, 1]),
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where B(A) denotes the Borel σ-algebra of an interval A. A control Q = {Qt}t≥0 is defined
to be an {Ft}t≥0-adapted process with càglàd sample paths and taking values in [0, 1]. Given
a control Q and a starting point x ≥ 0, the controlled process UQ = {UQ

t }t≥0 is defined as

UQ
t = x+

∫ t

0

(QscX +(1−Qs)cY )ds−
∫ t

0

∫
[0,∞)2

∫ 1

0

(
x1{u≤Qs} + y1{u>Qs}

)
Ñ(ds, dx, dy, du).

(4)
Note that UQ

t is Ft-measurable and P(∆UQ
t = ∆Xt|Ft) = 1−P(∆UQ

t = ∆Yt|Ft) = Qt, where
∆Zt := Zt − lims↑t Zs stands for the jump at time t of a process Z = (Zt)t≥0. We denote

by TQ = inf{t > 0 : UQ
t < 0} the ruin time of a control Q and by ϕQ(x) = P(TQ = ∞) the

corresponding survival probability. Given the starting point x ≥ 0, the drifts cX , cY > 0 and
the Lévy measure Π (with marginals ΠX and ΠY ), the optimal underwriting problem consists
of finding an optimal control/strategy Q∗ such that the survival probability is maximised
and to determine the corresponding maximal survival probability ϕ∗(x),

ϕ∗(x) = sup
Q
ϕQ(x) = ϕQ∗(x).

The above optimal control problem is heavily motivated by the optimal new business
problem of Hipp and Taksar [7]. Their problem corresponds to the case where X = L1

and Y = L1 + L2 with L1 and L2 two independent spectrally negative Lévy processes
of bounded variation (with finite Lévy measures). This matches the situation where an
insurance company has its own existing business/portfolio with surplus process L1 and can
adaptively adjust the proportion of new business, represented by the surplus process L2, it
wants to take on. Another interpretation of this model is that the company can spend some
capital towards the prevention of claims corresponding to L2, see [4]. Note that the pair
(L1, L1 + L2) is a bivariate Lévy process so the optimal new business problem of Hipp and
Taksar [7] is contained in our setting.

It is intuitively clear from the problem statement that an optimal strategy should be
Markovian, i.e. how to choose Qt, the control at time t, should only depend on UQ

t− :=
lims↑t U

Q
s , the state of the controlled process just prior to t. Further, as observed in [7],

the control Q appears linearly in the associated Hamilton-Jacobi-Bellman equation (see also
Equation (14) below) which means that an optimal control should be of bang-bang type,
i.e. it takes values only in {0, 1}. So essentially the optimal control problem boils down to
an optimal switching problem with two modes X and Y and one has to decide when to
switch from one mode to the other depending on the state of the controlled process. This
implies further that the precise dependence structure between X and Y plays no role in the
solution. One rather simple Markovian bang-bang strategy is the one where Qt = 1 (mode
X) if UQ

t− ≤ b and Qt = 0 (mode Y ) if UQ
t− > b for some b ∈ [0,∞]. Such a 1-switch-level

strategy Qb = {Qb
t}t≥0 at level b can be rigorously defined as follows. We let U b = {U b

t }t≥0

be the process defined by

dU b
t = 1{Ub

t−≤b}dXt + 1{Ub
t−>b}dYt, t > 0, (5)

with U b
0 = x. Since X and Y are spectrally negative Lévy processes of bounded variation the

point b is irregular for (−∞, b) (see e.g. p.155-158 in [10]), i.e. X and Y do not immediately
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go below b when hitting the level b. This ensures that for each ω ∈ Ω there exists a
unique solution t 7→ U b

t (ω) to the stochastic differential equation (5) given the sample paths
t 7→ Xt(ω) and t 7→ Yt(ω). This solution can be constructed piece-by-piece in a similar way
as on p.30 in [9] which deals with the specific case where Yt = Xt − δt with δ > 0, see
also Section 1 in [15]. We can now define the threshold strategy Qb by Qb

t = 1{Ub
t−≤b} for

t > 0 and Qb
0 = 1{x≤b}. Note that U b and thus Qb is {Ft}-adapted and that Qb has càglàd

sample paths, so Qb is a control. One can easily show that the corresponding controlled

process UQb
is equal to U b, i.e. UQb

t (ω) = U b
t (ω) for all t ≥ 0 and ω ∈ Ω. Indeed, since∫ 1

u=0
Ñ(dt, dx, dy, du) = N(dt, dx, dy) and {u ≤ Qb

s} = {U b
s− ≤ b} for any u ∈ (0, 1], we get

via (3)-(5),

UQb

t =x+

∫ t

0

(Qb
scX + (1−Qb

s)cY )ds

−
∫ t

0

∫
[0,∞)2

∫ 1

0

(
x1{u≤Qb

s} + y1{u>Qb
s}
)
Ñ(ds, dx, dy, du)

=x+

∫ t

0

1{Ub
s−≤b}d

(
cXs−

∫ s

0

∫
[0,∞)2

∫ 1

0

xÑ(dr, dx, dy, du)

)
+

∫ t

0

1{Ub
s−>b}d

(
cY s−

∫ s

0

∫
[0,∞)2

∫ 1

0

yÑ(dr, dx, dy, du)

)
=x+

∫ t

0

1{Ub
s−≤b}dXs +

∫ t

0

1{Ub
s−>b}dYs

=U b
t .

For clarity we will sometimes denote Qb by Qb(X, Y ). By reversing the roles of X and
Y we can define the (reversed) 1-switch-level strategy Qb(Y,X) for any b ∈ [0,∞]. The
main result of the paper is to show that a 1-switch-level strategy Qb for some b ∈ [0,∞] is
optimal (for any starting point x ≥ 0) under certain easy-to-check conditions on the Lévy
measures ΠX and ΠY . In the next section after going through some preliminaries we will
provide the precise statement and explain how this result relates to the existing literature.
In particular we highlight that the seemingly easy case where E[X1] ≤ 0 and E[Y1] ≤ 0 is
actually non-trivial. As part of the proof we will also in Section 2 establish an apparently
new monotonicity property of renewal equations, which we believe is of independent interest.
The proof of the main result itself will appear in Section 3 whereas some examples are treated
in Section 4.

2 Main result

Before we state the main result we need to briefly introduce some concepts that will appear
in the main theorem. We call a function k : (0,∞)→ [0,∞) log-convex if log k is convex on
(0,∞). It is well-known that k being log-convex is equivalent to,

k(x1 + y1)k(x2 + y2) ≥ k(x2 + y1)k(x1 + y2), 0 ≤ x1 ≤ x2, 0 ≤ y1 ≤ y2, x1 + y1 > 0, (6)
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see e.g. the argumentation in the proof of Lemma 1 in [18]. Note also that if k : (0,∞) →
[0,∞) is log-convex and k(x) = 0 for some x > 0, then k ≡ 0, i.e. k(x) = 0 for all x > 0.

For Z a spectrally negative Lévy process of bounded variation we denote by ΠZ(z) :=
ΠZ(z,∞), z > 0, the tail of the Lévy measure ΠZ . We denote its Laplace transform

by Π̂Z(λ) =
∫∞

0
e−λzΠZ(z)dz, λ > 0, which is well-defined by (2). We set Π̂Z(0) :=∫∞

0
ΠZ(z)dz ∈ (0,∞].
We say that a function f : (0,∞) → R is locally bounded if f is bounded on [a, b] for

any 0 < a < b <∞ and is locally integrable if f is measurable and
∫ x

0
|f(y)|dy <∞ for all

0 < x < ∞. A function f : R → R is said to be in D if f(x) = 0 for x < 0 and f has a
locally integrable and locally bounded right-derivative f ′ on (0,∞) which serves as a density
for f on [0,∞), i.e. f(x) − f(0) =

∫ x
0
f ′(y)dy for all x > 0. The operator AZ acting on a

function f ∈ D is defined by

AZf(x) :=cZf
′(x) +

∫ ∞
0

(f(x− z)− f(x)) ΠZ(dz)

=cZf
′(x)−

∫ x

0

f ′(x− z)ΠZ(z)dz − f(0)ΠZ(x), x > 0,

(7)

where the last line follows by a Fubini argument which can be applied as f ∈ D and (2)
holds. It is easy to verify,∫ ∞

0

e−λxAZf(x)dx =
(
cZ − Π̂Z(λ)

)
λ

∫ ∞
0

e−λxf(x)dx− cZf(0), (8)

for λ > 0 such that
∫∞

0
e−λx|f(x)|dx <∞.

The scale function WZ : R → (0,∞) of Z is defined by WZ(x) = 0 for x < 0 and on
[0,∞) it is characterised as the continuous function whose Laplace transform is given by∫ ∞

0

e−λxWZ(x)dx =
1

λ
(
cZ − Π̂Z(λ)

) , λ > ΦZ(0), (9)

where ΦZ(0) = inf{λ ≥ 0 : Π̂Z(λ) ≤ cZ}, see Theorem 8.1(i) in [10]. From (8.26) in
[10] it follows that WZ ∈ D with the right-derivative W ′

Z being strictly positive and right-
continuous. Hence, AZWZ is right-continuous on (0,∞) as ΠZ is right-continuous. Actually,
since WZ(0) = 1/cZ (see Lemma 8.6 in [10]) it follows via (8) and (9) that the Laplace
transform of the right-continuous function AZWZ is identically 0 and thus,

AZWZ(x) = 0, x > 0. (10)

We also remark that by (1) and the compensation/master formula for Poisson point processes
(see Proposition XII.1.10 in [16]),

E[Z1] = cZ − E
[∫ 1

0

∫ ∞
0

zNZ(dt, dz)

]
= cZ −

∫ 1

0

∫ ∞
0

zdtΠZ(dz) = cZ − Π̂Z(0), (11)
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where the last equality follows by a similar argument as how one can obtain the equality in
(2).

Our main result is the following. Note that terms like increasing and positive are always
meant in the weak sense.

Theorem 2.1. Assume ΠX is log-convex on (0,∞) and x 7→ ΠX(x)

ΠY (x)
∈ (0,∞] is increasing

on (0,∞). Then the following holds with b∗ := inf{b > 0 : AYWX(b) > 0} ∈ [0,∞].

(i) For all x > b∗, AYWX(x) ≥ 0.

(ii) If E[X1] > 0 or E[Y1] > 0, then Qb∗ = Qb∗(X, Y ), the 1-switch-level strategy at level
b∗, is optimal and the maximal survival probability is, for any starting point x ≥ 0,

ϕ∗(x) = ϕQb∗ (x) =


E[Y1](WX(x)−

∫ x
b∗ WY (x−z)AYWX(z)dz)

cY
cX

+
∫ b∗
0 AYWX(z)dz

if 0 < b∗ <∞,

E[Y1]WY (x) if b∗ = 0,

E[X1]WX(x) if b∗ =∞.

(iii) If E[X1] ≤ 0 and E[Y1] ≤ 0, then ϕ∗(x) = 0 for all x ≥ 0, so ruin happens with
probability 1 no matter the control chosen.

Theorem 2.1 gives a very explicit solution to the optimal control problem under conditions
which are fairly easy to check; note also that part (i) says that if 0 < b∗ < ∞, then it is
the point of sign change of a function that changes sign exactly once and so b∗ is relatively
easy to find numerically. The findings of Hipp and Taksar on their optimal new business
problem in [7] are of a very different nature than ours: they focused on showing that in
general a Markovian bang-bang strategy is optimal and in the process could state explicitly
what the optimal mode is when the controlled process is at level 0 (but not at any other
level). The optimal new business problem where X and Y are spectrally positive (instead
of negative) Lévy processes of bounded variation and with finite Lévy measures has been
covered in [14], where it was shown that it is optimal to acquire all the new business all
the time or to never obtain it. Under a mild additional condition one can reformulate the
conditions on the two Lévy measures in Theorem 2.1 in terms of their so-called hazard rates.
Assuming the Lévy measure ΠZ has a density denoted by πZ , we denote rZ(x) = πZ(x)

ΠZ(x)
, x > 0,

and call it the hazard rate of ΠZ . It is easy to see that ΠX being log-convex is equivalent
to ΠX having a decreasing hazard rate and that if ΠX and ΠY both have densities, then
ΠX(x)

ΠY (x)
being increasing is equivalent to rX(x) ≤ rY (x) for a.e. x > 0. Recalling that X

and Y play completely symmetric roles in the statement of the optimal control problem,
we can conclude by Theorem 2.1 that if the hazard rates of ΠX and ΠY are decreasing
and ordered, then an optimal strategy is either formed by Qb(X, Y ) or Qb(Y,X) for some
b ∈ [0,∞], i.e. it is formed by a 1-switch-level strategy (though this includes the degenerate
cases b = 0 and b = ∞ in which there is no switching at all). Sufficient conditions on the
Lévy measure for optimality of simple strategies in optimal control problems for spectrally
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negative Lévy processes have been established before. For instance, a closely related optimal
control problem is the one considered in e.g. [11], which is essentially an optimal switching
problem with X and Y spectrally negative Lévy processes satisfying Yt = Xt− δt, t ≥ 0, for
a given δ > 0 and where the objective is maximising the expected, exponentially discounted
amount of time spent in mode Y instead of minimising the ruin probability. For that optimal
control problem it was shown in [11] that Qb is optimal for some 0 ≤ b <∞ if ΠX = ΠY is
completely monotone, a stronger condition than log-convexity. Theorem 2.1 is the first result
of this kind that deals with two Lévy processes with different Lévy measures. The condition
of a decreasing hazard rate has appeared before in optimal control problems for spectrally
negative Lévy processes (the first time was in [13]) but it is interesting to observe that
ΠX and ΠY both having decreasing hazard rates is not enough for establishing optimality
of a 1-switch-level strategy but one needs in addition the two hazard rates to be ordered.
Indeed, we give an example in Section 4 where the two hazard rates are decreasing but no
1-switch-level strategy is optimal.

Ruin occurs almost surely for a spectrally negative Lévy process Z if E[Z1] ≤ 0. There-
fore, if E[X1] ≤ 0 and E[Y1] ≤ 0, then surely, no matter how we (adaptively) switch between
the two processes X and Y , ruin should happen with probability 1? Well, the answer is
no when E[X1] = E[Y1] = 0. Durrett, Kesten and Lawler [3] have produced examples
where by switching just deterministically between two mean-zero/oscillating random walks,
one can survive with strictly positive probability. One can, in the obvious way, adjust the
two-mode inhomogeneous random walk of Example 1 in [3] to our setting of two mean-zero
spectrally negative Lévy processes with finite Lévy measures where one switches between the
two depending on the number of jumps that have occurred and then mimic the arguments in
Section 2 of [3] in order to show that the resulting process drifts to +∞ a.s. and thus avoids
ruin with strictly positive probability at any positive starting point. Part (iii) of Theorem
2.1 shows that, under the conditions of the theorem, this counterintuitive behaviour cannot
happen. This complements Theorem 1 in [3] where such a result is established for random
walks with finite variances.

As a secondary result to our main theorem we record the following proposition which
gives a sufficient condition for when it is optimal to always be in the same mode. Its proof
will be postponed to Section 3.

Proposition 2.2. Assume ΠX(x)
cX
≥ ΠY (x)

cY
for all x > 0. Then the strategy Q0 (always mode

Y ) is optimal and the corresponding maximal survival probability is given by, for x ≥ 0,

ϕ∗(x) = ϕQ0(x) =

{
E[Y1]WY (x) if E[Y1] > 0,

0 if E[Y1] ≤ 0.

The key tool for proving part (i) of Theorem 2.1 is the following monotonicity property
for renewal equations with log-convex kernels, which we believe has applications beyond
the optimal problem considered in this paper. This result gives conditions under which
the forcing function f in (12) below having one sign-change implies that the solution u has
at most one sign-change, or to be more precise, under which

∫ x
0
f(y)dy being quasi-convex
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implies the quasi-convexity of
∫ x

0
u(y)dy. We have not been able to find this result in the

literature; the closest result we could find is Theorem 3.3 in [6] which provides a monotonicity
property for renewal equations with somewhat similar conditions.

Lemma 2.3. Assume k : (0,∞) → (0,∞) is locally integrable and log-convex. Assume

f : (0,∞)→ R is bounded on sets of the form (0, K], K > 0. Assume in addition x 7→ f(x)
k(x)

is increasing on (0,∞). Let u : (0,∞) → R be the unique locally integrable solution to the
renewal equation,

u(x) = f(x) +

∫ x

0

k(x− y)u(y)dy, x > 0. (12)

Then u has the following property: if u(x0) ≥ 0 for some x0 > 0, then u(x) ≥ 0 for all
x > x0.

Proof. Since k is locally integrable and f is bounded on sets of the form (0, K] for K > 0,
the renewal equation (12) has a unique locally integrable solution which is given by

u(x) = f(x) +

∫ x

0

f(x− y)r(y)dy, x > 0, (13)

where r is the a.e. unique locally integrable solution to the renewal equation r(x) = k(x) +∫ x
0
k(x− y)r(y)dy, x > 0, which is moreover (a.e.) positive since k is positive, see Theorems

2.3.1 and 2.3.5 in [5]. Further, x 7→ u(x) − f(x) =
∫ x

0
f(x − y)r(y)dy is continuous and

bounded on sets of the form (0, K], K > 0, see Corollary 2.2.3 in [5].

Since f(x)
k(x)

is increasing we must have that (i) there exists ε > 0 such that f(x) ≥ 0

on (0, ε) or (ii) there exists ε > 0 such that f(x) < 0 on (0, ε). In case (i) we must have

that f is positive on (0,∞) since f(x)
k(x)

is increasing and thus by (13) u is positive. So the

lemma is proved in case (i). Assume case (ii) and let x0 := inf{x > 0 : u(x) ≥ 0}. Without

loss of generality we can assume x0 < ∞. From (13) we see that x0 > 0. Since f(x)
k(x)

is

increasing and k is continuous (since it is (log-)convex), it follows that f(x) = f(x)
k(x)

k(x) has
a right- and left-limit for any x > 0 and then so does u since u − f is continuous. Denote
u+(x) = limy↓x u(y) and f+(x) = limy↓x f(y), x > 0. Since f(x)

k(x)
is increasing and k is

continuous, we must have limy↑x f(y) ≤ f(x) ≤ f+(x) for any x > 0. Then, because u− f is
continuous, limy↑x u(y) ≤ u(x) ≤ u+(x) for any x > 0. Therefore, u+(x0) ≥ 0. Further, note
that u+ satisfies (12) with f replaced by f+ and that u− f = u+ − f+. So for x > x0,

u+(x) =u+(x) +
k(x)

k(x0)
u+(x0)− k(x)

k(x0)
u+(x0)

=
k(x)

k(x0)
u+(x0) + f+(x)− k(x)

k(x0)
f+(x0) +

∫ x0

0

(
k(x− y)− k(x)

k(x0)
k(x0 − y)

)
u(y)dy

+

∫ x

x0

k(x− y)u(y)dy.
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We see that ũ(t) := u+(x0 + t) satisfies the renewal equation, ũ(t) = h(t)+
∫ t

0
k(t−y)ũ(y)dy,

t ≥ 0, where

h(t) :=
k(x0 + t)

k(x0)
u+(x0) + f+(x0 + t)− k(x0 + t)

k(x0)
f+(x0)

+

∫ x0

0

u(y)

(
k(x0 + t− y)− k(x0 + t)

k(x0)
k(x0 − y)

)
dy.

Since h(t) ≥ 0 for t > 0 due to the assumptions on k and f in combination with (6) and
because u+(x0) ≥ 0 and u(y) ≤ 0 for y ∈ (0, x0) by definition of x0 and since h is further
bounded on sets of the form (0, K] for K > 0, it follows that ũ(t) ≥ 0 for t > 0 by the
general form of the solution of such a renewal equation, see the beginning of this proof.
Hence the lemma is proved for u+ instead of u. To finish the proof, assume there exists
x1 > 0 and x2 > x1 such that u(x1) ≥ 0 and u(x2) < 0. Then u+(x1) ≥ u(x1) ≥ 0 and
limy↑x2 u(y) ≤ u(x2) < 0, which implies that there exists x ∈ (x1, x2) such that u+(x) < 0.
But this contradicts the property we have just proved for u+.

3 Proofs

Like is typical for results of this type, we prove part (ii) in Theorem 2.1 by first establishing
a verification lemma (Lemma 3.1 below) that gives sufficient conditions for a given function
to be un upper bound of ϕ∗. As a second step we derive an analytic representation for the
value function (i.e. the survival probability) of the candidate optimal control (see Lemma
3.2 below), which we then use in the third and final step to show that the aforementioned
value function satisfies the conditions of the verification lemma under the conditions of the
theorem. A notable difference in our approach in comparison to the existing literature like
e.g. [13] and [11] is the following. In those references the third step is executed by using
the monotonicity property of the scale function that is implied by the condition imposed on
the Lévy measure, see Theorem 1.2 and Lemma 4.2 in [13] and Lemmas 2 and 7 in [11]. In
contrast we will pretty much not use the monotonicity property of WX implied by the log-
convexity of ΠX (except to apply Lemma 3.3(i) below in the special case where E[Y1] ≤ 0),
but instead we use this assumption on the Lévy measure (in combination with the second
assumption in Theorem 2.1) directly to complete the third step of the proof. Part (iii) of
Theorem 2.1 will be proved by using the verification lemma to obtain an arbitrarily small
upper bound for ϕ∗.

Lemma 3.1. Let w : [0,∞)→ R be a function such that after extending w to the whole real
line by setting w(x) = 0 for x < 0, we have (i) w ∈ D with w(0) ≥ 0, (ii) lim infx→∞w(x) ≥ 1
and (iii) AXw(x) ≤ 0 and AYw(x) ≤ 0 for all x > 0. Then w(x) ≥ ϕ∗(x) for all x ≥ 0.

Proof. Extend w to the whole real line by setting w(x) = 0 for x < 0. Let Q be an arbitrary
control and denote ∆UQ

t := UQ
t − U

Q
t− and UQ,c

t := UQ
t −

∑
0<s≤t ∆UQ

s . Fix n ≥ 1 and let

T nQ = inf{t > 0 : UQ
t /∈ [0, n]}. Fix ε > 0 and let wε : R → R be given by wε(y) = w(y + ε),
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y ∈ R. Further, fix x ≥ 0. Then, since by (i) wε is on [0, n] absolutely continuous with
a bounded density, we have by an application of the change of variables formula (see e.g.
Proposition 0.4.6 in [16]1) and (4),

wε(U
Q
t∧Tn

Q
) =wε(x) +

∫ t∧Tn
Q

0

w′ε(U
Q
s−)dUQ,c

s +
∑

0<s≤t∧Tn
Q

(
wε(U

Q
s− + ∆UQ

s )− wε(UQ
s−)
)

=wε(x) +

∫ t∧Tn
Q

0

w′ε(U
Q
s−)(QscX + (1−Qs)cY )ds

+

∫ t∧Tn
Q

0

∫
[0,∞)2

∫ 1

0

(
wε

(
UQ
s− − x1{u≤Qs} − y1{u>Qs}

)
− wε(UQ

s−)
)
Ñ(ds, dx, dy, du)

=wε(x) +

∫ t∧Tn
Q

0

(QsAX + (1−Qs)AY )wε(U
Q
s−)ds+Mt,

(14)

where Mt is given by

Mt =

∫ t∧Tn
Q

0

∫
[0,∞)2

∫ 1

0

(
wε

(
UQ
s− − x1{u≤Qs} − y1{u>Qs}

)
− wε(UQ

s−)
)
Ñ(ds, dx, dy, du)

−
∫ t∧Tn

Q

0

∫
[0,∞)2

∫ 1

0

(
wε

(
UQ
s− − x1{u≤Qs} − y1{u>Qs}

)
− wε(UQ

s−)
)

dsΠ(dx, dy)du

and where for the last step we used the identity∫ t∧Tn
Q

0

∫
[0,∞)2

∫ 1

0

(
wε

(
UQ
s− − x1{u≤Qs} − y1{u>Qs}

)
− wε(UQ

s−)
)

dsΠ(dx, dy)du

=

∫ t∧Tn
Q

0

∫ ∞
0

Qs

(
wε(U

Q
s− − x)− wε(UQ

s−)
)

ΠX(dx)ds

+

∫ t∧Tn
Q

0

∫ ∞
0

(1−Qs)
(
wε(U

Q
s− − y)− wε(UQ

s−)
)

ΠY (dy)ds,

which holds by evaluating the integral with respect to u and recalling that ΠX and ΠY are
the marginals of Π. As a process in s the integrand of the first integral above is {Ft}t≥0

adapted and has càglàd sample paths. Further, since by assumption (i) wε is bounded on
(−∞, n] and w′ε is bounded on [−ε/2, n] we can, in combination with ΠX and ΠY satisfying
(2), deduce that the expected value of the two integrals on the right hand side (and thus
the integral on the left hand side) of the last equation is finite. Hence we can use the
compensation/master formula of Poisson point processes (see Proposition XII.1.10 in [16])
to conclude that E[Mt] = 0. Hence by taking expectations on both sides of (14) and using

1In this reference w′ε is assumed to be bounded and continuous but from this case one can extend straight-
forwardly the given formula to the the case where w′ε is merely bounded and measurable. Further note that
we only need w′ε to be bounded on [0, n] since in our application of this formula we stop at time TnQ.
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assumption (iii), we get w(x + ε) ≥ E
[
w(UQ

t∧Tn
Q

+ ε)
]
. Further, since w is right-continuous

on R we have by taking ε ↓ 0 and invoking the dominated convergence theorem,

w(x) ≥ E
[
w(UQ

t∧Tn
Q

)
]
. (15)

Now the process UQ will eventually leave the interval [0, n]. Indeed, fix h > n/(cX ∧ cY ).
Then for k = 0, 1, 2, . . .,

{
UQ

(k+1)h − U
Q
kh > n

}
⊃

 ∑
kh<s≤(k+1)h

∆UQ
s < (cX ∧ cY )h− n


⊃

{∫ (k+1)h

kh

∫
[0,∞)2

(x+ y)N(ds, dx, dy) < (cX ∧ cY )h− n

}
.

Denote the event on the right hand side by Ak. By properties of the Poisson point process
N , the events A0, A1, A2, . . . are independent and P(Ak) = P(Al) > 0 for all k, l ≥ 0 so that∑

k≥0 P(Ak) =∞. Hence by the second Borel-Cantelli Lemma (see e.g. Theorem 4.4 in [1]),

P(UQ
t /∈ [0, n] for some t > 0) ≥ P

(
lim sup
k→∞

{
UQ

(k+1)h − U
Q
kh > n

})
≥ P

(
lim sup
k→∞

Ak

)
= 1.

Hence UQ will eventually leave the interval [0, n], i.e. T nQ < ∞ almost surely and conse-

quently, with T n := inf{t > 0 : UQ
t > n}, we have P(TQ = ∞) = P(∩∞n=1{TQ > Tn}) since

T n → ∞ a.s. as n → ∞. Therefore, by taking limits as t → ∞ in (15), we get via the
dominated convergence theorem in combination with w(x) = 0 for x < 0, w(0) ≥ 0 and UQ

having no upward jumps,

w(x) ≥ E
[
w(UQ

Tn
Q

)
]

= E
[
w(n)1{TQ>Tn}

]
+ E

[
w(UQ

TQ)1{TQ<Tn}

]
≥ w(n)P(TQ > T n).

Finally, by using assumption (ii), Fatou’s lemma and the equality P(TQ =∞) = P(∩∞n=1{TQ >
Tn}),

w(x) ≥
(

lim inf
n→∞

w(n)
)(

lim inf
n→∞

P(TQ > T n)
)
≥ P(TQ =∞) = ϕQ(x).

Since the control Q and x ≥ 0 were chosen arbitrarily, the conclusion of the lemma follows.

Lemma 3.2. For any x ≥ 0,

ϕQb(x) =


E[Y1](WX(x)−

∫ x
b WY (x−z)AYWX(z)dz)

cY
cX

+
∫ b
0 AYWX(z)dz

if 0 < b <∞ and E[Y1] > 0,

E[Y1]WY (x) if b = 0 and E[Y1] > 0,

E[X1]WX(x) if b =∞ and E[X1] > 0.
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Proof. For a strong Markov process Z = (Zt)t≥0 we use the notation τ−0 (Z) = inf{t > 0 :
Zt < 0} and τ+

a = inf{t > 0 : Zt > a}. In what follows we will frequently use the following
identity when Z is a spectrally negative Lévy process: for a > 0,

P(τ+
a (Z) < τ−0 (Z)|Z0 = x) =

WZ(x)

WZ(a)
, x ≤ a, (16)

see e.g. (8.11) in [10] for a proof of this statement. Recall from the end of Section 1 that
UQb

= U b where U b is defined by (5) and so we need to compute P(τ−0 (U b) = ∞|U b
0 = x).

If b = 0, then U b = Y and the second case of the lemma follows then from the well-known
identity for the ruin probability of a spectrally negative Lévy process, see e.g. (8.10) and
p.231 in [10]. Similarly, the third case of the lemma follows since U b = X when b = ∞.
Now assume 0 ≤ b <∞. Since the bivariate process (X, Y ) has stationary and independent
increments, it follows that U b is a strong Markov process. Fix a > b and denote p(x, b, a) :=
P(τ+

a (U b) < τ−0 (U b)|U b
0 = x). If x ≤ b, then (Ut)0≤t≤τ+

b (U) = (Xt)0≤t≤τ+
b (X) and so we have

by the strong Markov property of U b and (16), for x ≤ b,

p(x, b, a) = P(τ+
b (X) < τ−0 (X)|X0 = x)p(b, b, a) =

WX(x)

WX(b)
p(b, b, a). (17)

Similarly, since for x ≥ b, (Ut)0≤t≤τ−b (Ub) = (Yt)0≤t≤τ−b (Y ), we have by the strong Markov

property of U b, for b ≤ x ≤ a,

p(x, b, a) =P(τ+
a (Y ) < τ−b (Y )|Y0 = x) + E

[
1{τ−b (Y )<τ+

a (Y )}p(Yτ−b (Y ), b, a)
∣∣∣Y0 = x

]
=
WY (x− b)
WY (a− b)

+
p(b, b, a)

WX(b)
E
[
1{τ−b (Y )<τ+

a (Y )}WX(Yτ−b (Y ))
∣∣∣Y0 = x

]
=
WY (x− b)
WY (a− b)

+
p(b, b, a)

WX(b)

{
WX(x)−

∫ x

b

WY (x− z)AYWX(z)dz

− WY (x− b)
WY (a− b)

(
WX(a)−

∫ a

b

WY (a− z)AYWX(z)dz

)}
,

(18)

where we used (17) in the second equality and Corollary 3 in [12] with f̃ = WX in the last
one; note that the required smoothness condition in this reference is satisfied since WX ∈ D.
Since WY (0) = 1/cY > 0, we deduce from (18) with x = b,

p(b, b, a) =
WX(b)

WX(a)−
∫ a
b
WY (a− z)AYWX(z)dz

.

Plugging the last equality into (17) and (18) yields, for all x ≤ a,

p(x, b, a) =
WX(x)−

∫ x
b
WY (x− z)AYWX(z)dz

WX(a)−
∫ a
b
WY (a− z)AYWX(z)dz

.
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In order to finish the proof we need to take limits as a → ∞. To this end note, since the
last equality holds for b = 0 and p(0, 0, a) = WY (0)

WY (a)
by the fact U0 = Y and (16), we have

WX(a)−
∫ a

0

WY (a− z)AYWX(z)dz =
WY (a)WX(0)

WY (0)
= WY (a)

cY
cX
, a ≥ 0. (19)

Consequently, if E[Y1] > 0, for 0 ≤ x ≤ b,

ϕb(x) = lim
a→∞

p(x, b, a) =
WX(x)−

∫ x
b
WY (x− z)AYWX(z)dz

lima→∞

(
WY (a) cY

cX
+
∫ b

0
WY (a− z)AYWX(z)dz

)
=E[Y1]

WX(x)−
∫ x
b
WY (x− z)AYWX(z)dz

cY
cX

+
∫ b

0
AYWX(z)dz

,

where we used that limx→∞WY (x) = 1/E[Y1] if E[Y1] > 0 (this can be seen from the second
case of the lemma) in combination with the dominated convergence theorem in the last
line.

We need the following lemma to deal with the case where E[X1] ≤ 0 or E[Y1] ≤ 0.

Lemma 3.3. (i) If WX is concave on (0,∞), then lim supx→∞
AYWX(x)
W ′X(x)

≤ E[Y1].

(ii) If E[X1] ≤ 0 and E[Y1] > −∞, then limx→∞

∫ x
0 AYWX(z)dz

WX(x)
= cY − Π̂Y (ΦX(0)) ≥ E[Y1].

Proof. (i). If WX is concave on (0,∞), then W ′
X is decreasing and so by (7), for x > 0,

AYWX(x)

W ′
X(x)

=cY
W ′
X(x)

W ′
X(x)

−
∫ x

0

W ′
X(x− z)

W ′
X(x)

ΠY (z)dz −WX(0)
ΠY (x)

W ′
X(x)

≤cY −
∫ x

0

ΠY (z)dz.

Hence by (11), lim supx→∞
AYWX(x)
W ′X(x)

≤ cY −
∫∞

0
ΠY (z)dz = E[Y1].

(ii). We first prove that WX(x−z)
WX(x)

increases monotonically to e−ΦX(0)z as 0 < x → ∞ for

a.e. z > 0. By (16) we have P(τ+
x (X) < τ−0 (X)|X0 = x − z) = WX(x−z)

WX(x)
for x > z ≥ 0.

Hence x 7→ WX(x−z)
WX(x)

is increasing in x > 0 for any z ≥ 0 and thus the limit L(z) :=

limx→∞
WX(x−z)
WX(x)

∈ [0, 1] exists. If E[X1] = 0, then ΦX(0) = 0 and X is recurrent and thus

oscillating, i.e. lim supt→∞Xt = − lim inft→∞Xt =∞, see e.g. Theorem 36.7 in [17]. Hence

L(z) = limx→∞ P(τ+
x (X) < τ−0 (X)|X0 = x − z) = 1 = e−ΦX(0)z. If E[X1] < 0, then WX(x)

eΦX (0)x

is a bounded function on (0,∞) (see e.g. p.236 in [10]) and ΦX(0) > 0, which implies
L(z) = e−ΦX(0)z. So the claim at the beginning is proved. Now let

FX,Y (x) =
cY
cX

ΠX(x)− ΠY (x), x > 0. (20)
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We have by (7) and (10), for x > 0,∫ x

0

AYWX(z)dz =

∫ x

0

AYWX(z)dz − cY
cX

∫ x

0

AXWX(z)dz =

∫ x

0

WX(x− z)FX,Y (z)dz.

Hence by the monotone convergence theorem and the claim at the beginning, we have,
provided E[Y1] > −∞,

lim
x→∞

∫ x
0
AYWX(z)dz

WX(x)
=

∫ ∞
0

e−Φ(0)zFX,Y (z)dz

=
cY
cX

Π̂X(ΦX(0))− Π̂Y (ΦX(0))

=cY − Π̂Y (ΦX(0)),

where the last equality follows by the assumption E[X1] ≤ 0 in combination with (11) and
the definition of ΦX(0). The required inequality is due to (11).

Proof of Theorem 2.1. (i). By (7), (10) and the fact WX(0) = 1/cX ,

cXAYWX(x) =cXAYWX(x)− cYAXWX(x)

=

∫ x

0

W ′
X(x− z)

(
cY ΠX(z)− cXΠY (z)

)
dz +WX(0)

(
cY ΠX(x)− cXΠY (x)

)
=FX,Y (x) +

∫ x

0

FX,Y (x− z)cXW
′
X(z)dz,

(21)

where FX,Y is defined in (20). We further have that cXAYWX(x) satisfies the renewal
equation,

cXAYWX(x) = FX,Y (x) +

∫ x

0

ΠX(x− z)

cX
cXAYWX(z)dz, x > 0. (22)

Indeed by taking Laplace transforms on both sides of (22) and using (8) and (9) one sees
that (22) holds for a.e. x > 0. The right-continuity of AYWX(x) then yields (22) for all

x > 0. By assumption ΠX(x)

ΠY (x)
is increasing, which implies

FX,Y (x)

ΠX(x)
is increasing. Also ΠX is

log-convex by assumption which implies further that ΠX is strictly positive since ΠX 6≡ 0
because otherwise X does not have non-monotone sample paths. Since FX,Y is not in general
bounded on sets of the form (0, K], K > 0, but merely locally bounded, Lemma 2.3 does not
apply. However, given (22) the proof of Lemma 2.3 after the first two sentences goes through
verbatim for u(x) := cXAYWX(x) once we replace (13) by (21) and note that the integral
term in (21) is continuous on (0,∞) because FX,Y and W ′

X are locally integrable and locally
bounded on (0,∞). Hence the conclusion of Lemma 2.3 holds for u(x) = cXAYWX(x). This
proves part (i) of the theorem.

(ii). Assume E[X1] > 0 or E[Y1] > 0. If E[Y1] ≤ 0 then E[X1] > 0 which means that WX

is bounded on (0,∞) (see the third case of Lemma 3.2). Since moreover W ′
X is log-convex
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as ΠX is log-convex (see Theorem 1.2 in [13]) it follows that W ′
X is decreasing, i.e. WX is

concave. So, if E[Y1] < 0, then by Lemma 3.3(i), AYWX(x) < 0 for x sufficiently large,
which implies by part (i) of the theorem that AYWX(x) < 0 for all x > 0. If E[Y1] = 0,
then Y − δ = (Yt − δt)t≥0 where 0 < δ < cY , is a spectrally negative Lévy process of
bounded variation and by what we have just proved, AY+δWX(x) < 0 for all x > 0. Hence
AYWX(x) = limδ↓0AY+δWX(x) ≤ 0 for all x > 0. We can conclude that b∗ =∞ if E[Y1] ≤ 0.
If E[X1] ≤ 0, then E[Y1] > 0 and by Lemma 3.3(ii),

∫ x
0
AYWX(z)dz > 0 for some x > 0,

which implies b∗ < ∞. Denote for convenience ϕb := ϕQb . Given Lemma 3.2 and what we
have just showed, we can now conclude that once we show that w = ϕb∗ satisfies the three
conditions of Lemma 3.1, part (ii) of the theorem follows by Lemma 3.1. For a Lévy process
Z = (Zt)t≥0, E[Z1] > 0 implies limt→∞ Zt = ∞ a.s by the strong law of large numbers, see
e.g. Theorem 36.5 in [17]. So limx→∞ ϕb∗(x) = 1 since b∗ <∞ implies E[Y1] > 0 and b∗ =∞
implies E[X1] > 0. Hence condition (ii) of Lemma 3.1 is satisfied. Since WX ,WY ∈ D,
condition (i) of Lemma 3.1 is satisfied if b∗ = 0 or b∗ =∞. If 0 < b∗ <∞, then by (19) we
can write, for x ≥ b∗,

ϕb∗(x) =
E[Y1]

cY
cX

+
∫ b∗

0
AYWX(z)dz

(
cY
cX
WY (x) +

∫ b∗

0

WY (x− z)AYWX(z)dz

)
. (23)

Note that by (19) and since WY (y) = 0 for y < 0 we can show that (23) actually holds for
any x ≥ 0. So the right-derivative of ϕb∗ on (0,∞) exists and is given by

ϕ′b∗(x) =


E[Y1]

cY
cX

+
∫ b∗
0 AYWX(z)dz

W ′
X(x) if 0 < x < b∗,

E[Y1]
cY
cX

+
∫ b∗
0 AYWX(z)dz

(W ′
X(b∗)−WY (0)AYWX(b∗)) if x = b∗,

E[Y1]
cY
cX

+
∫ b∗
0 AYWX(z)dz

(
cY
cX
W ′
Y (x) +

∫ b∗
0
W ′
Y (x− z)AYWX(z)dz

)
if x > b∗,

which is clearly locally bounded and forms a density of ϕb∗ on [0,∞). Hence condition (ii)
of Lemma 3.1 is also satisfied if 0 < b∗ <∞.

It remains to show that condition (iii) of Lemma 3.1 is satisfied. Assume b∗ = 0. Then
AYWX(x) ≥ 0 for all x > 0, which implies by (21) that for all ε > 0 there exists 0 < x < ε

such that FX,Y (x) ≥ 0. Since ΠX(x)

ΠY (x)
is increasing by hypothesis, we therefore have that

FX,Y (x) ≥ 0 for all x > 0. This implies FY,X(x) ≤ 0 for all x > 0, which implies by reversing
the roles of X and Y in (21) that AXWY (x) ≤ 0 for all x > 0. Hence AXϕ0(x) ≤ 0 for all
x > 0 and since AY ϕ0(x) = 0 by (10) for x > 0, we conclude that condition (iii) of Lemma
3.1 is satisfied if b∗ = 0. Further, for any x > 0, AXϕ∞(x) = 0 by (10) and AY ϕ∞(x) ≤ 0
if b∗ =∞ by definition of b∗. Hence condition (iii) in Lemma 3.1 is also satisfied if b∗ =∞.
Now assume the remaining case 0 < b∗ < ∞. For 0 < x < b∗, we have AXϕb∗(x) = 0
by (10) and AY ϕb∗(x) ≤ 0 by definition of b∗. For x = b∗, AXϕb∗(x) ≤ 0 by (10) and
since AYWX(b∗) ≥ 0, where we note that the latter holds by definition of b∗ and the right-
continuity of AYWX on (0,∞). It is easy to check that for x = b∗, AY ϕb∗(x) = 0. For
x > b∗, we have AY ϕb∗(x) = 0 by (23) (which recall holds for all x ≥ 0) and (10); note that
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it is straightforward to show that one can take the operator AY inside the integral in (23).
It remains to show that AXϕb∗(x) ≤ 0 for x > b∗ which is the key part of the proof in the

case 0 < b∗ <∞. To this end, we can write, for x > b∗, with K = E[Y1]
cY
cX

+
∫ b∗
0 AYWX(z)dz

> 0,

1

K
AXϕb∗(x) =−

∫ x−b∗

0

d

dx

(∫ x−y

b∗
WY (x− y − z)AYWX(z)dz

)
ΞX(dy)

=−
∫ x−b∗

0

(∫ x−y

b∗
WY (x− y − dz)AYWX(z)

)
ΞX(dy)

=−
∫ x

b∗
WY (x− du)

(∫ u−b∗

0

AYWX(u− y)ΞX(dy)

)
=−

∫ x

b∗
WY (x− du)

(
FX,Y (u)−

∫ u

u−b∗
AYWX(u− y)ΞX(dy)

)
=−

∫ x

b∗
WY (x− du)

(
FX,Y (u) +

∫ b∗

0

AYWX(z)ΠX(u− z)dz

)
,

where for the first equality we used Lemma 3.2, (10), (7),
∫ x
b∗
WY (x− z)AYWX(z)dz = 0 for

x ≤ b∗ and the notation ΞX(dy) = cXδ0(dy) − ΠX(y)dy where δa(dy) stands for the Dirac
mass at a, in the second equality we differentiated the convolution (see e.g. Lemma 2.4 in
[2]) and used the notation WY (a−dz) := W ′

Y (a− z)dz+WY (0)δa(dz), for the third equality
we used Fubini and the change of variables u = z + y, in the fourth equality we used (22)
and finally we used a change of variables for the last equality. Now define

h(x) = FX,Y (x) +

∫ b∗

0

AYWX(z)ΠX(x− z)dz, x ≥ b∗.

We are done if we show h(x) ≥ 0 for all x ≥ b∗. By (22), the definition of b∗ and the
right-continuity of AYWX , h(b∗) = cXAYWX(b∗) ≥ 0. Therefore, for any x ≥ b∗,

h(x) ≥ h(x)− ΠX(x)

ΠX(b∗)
h(b∗) =

∫ b∗

0

AYWX(z)

[
ΠX(x− z)− ΠX(x)

ΠX(b∗)
ΠX(b∗ − z)

]
dz

+
ΠX(x)

ΠX(b∗)
ΠY (b∗)− ΠY (x).

By the assumptions of the theorem in combination with (6) and since AYWX(z) ≤ 0 for
z ∈ (0, b∗) by definition of b∗, it follows that h(x) ≥ 0 for all x ≥ b∗.

(iii) We can assume without loss of generality E[X1] = E[Y1] = 0 because otherwise one
can increase cX and/or cY in order to get to this case without lowering the maximal survival
probability. We first show that WX(x) is concave for x > 0 and increases to infinity as
x → ∞. Since E[X1] = 0, we have lim supt→∞Xt = − lim inft→∞Xt = ∞ a.s. and thus by
(16),

0 = lim
x→∞

P(τ+
x (X) < τ−0 (X)|X0 = 1) = lim

x→∞

WX(1)

WX(x)
.
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Hence limx→∞WX(x) = ∞. Consider the spectrally negative Lévy process X + δ = (Xt +
δt)t≥0 where δ > 0. By (19),

WX(x)− δ
∫ x

0

WX+δ(x− z)W ′
X(z)dz = WX+δ(x) +

δ

cX
WX+δ(x), x > 0,

from which we see that WX+δ(x) increases monotonically to WX(x) as δ ↓ 0 for any x > 0.
As argued in the beginning of the proof of part (ii), WX+δ(x) is concave for x > 0 since
E[X1 + δ] > 0. Because the pointwise limit of a convergent sequence of concave functions is
concave, it follows that WX is concave on (0,∞). Now fix ε > 0 and let w(x) = εWX(x).
Then w satisfies condition (i) of Lemma 3.1 and, since limx→∞WX(x) =∞, condition (ii) of
Lemma 3.1 is also satisfied. Further, for any x > 0, AXw(x) = 0 by (10) and since WX is still
concave if E[X1] = 0 we can use the same arguments as in the beginning of the proof of part
(ii) to show that AYw(x) ≤ 0 for any x > 0. So by Lemma 3.1, εWX(x) = w(x) ≥ ϕ∗(x) for
all x ≥ 0. Since ε > 0 was chosen arbitrarily, it follows that ϕ∗(x) = 0 for all x ≥ 0.

Proof of Proposition 2.2. By assumption FX,Y as defined in (20) is a positive function
or, equivalently, FY,X is a negative function. Then by reversing the roles of X and Y in
(21) we deduce that AXWY (x) ≤ 0 for all x > 0. By following the b∗ = 0 case of the
proof of Theorem 2.1(ii) it is then straightforward to show, without using the assumptions
of Theorem 2.1, that w(x) = E[Y1]WY (x) satisfies the three conditions of Lemma 3.1 if
E[Y1] > 0. This implies Q0 is an optimal control if E[Y1] > 0. Similarly, if E[Y1] ≤ 0 we can
easily show that, for any ε > 0, w(x) = εWY (x) satisfies the three conditions of Lemma 3.1;
in particular limx→∞WY (x) =∞ follows by the same arguments as in the proof of Theorem
2.1(iii). This implies, as in the proof of Theorem 2.1(iii), that ϕ∗(x) = 0 for all x ≥ 0 if
E[Y1] ≤ 0.

4 Examples

Theorem 2.1 allows us to determine the optimal strategy and value function of the optimal
underwriting problem for a wide class of examples. Regarding computing the objects ap-
pearing in Theorem 2.1, there are plenty of examples of spectrally negative Lévy processes
where closed-form expressions exist for the scale function WX , see e.g. Chapter 9 in [10] and
the references therein. Otherwise, WX and AYWX can be computed by numerical Laplace
inversion via (9) and (8) or by solving numerically renewal equations, recall (22) and note
that WX itself is the unique locally integrable solution to the renewal equation (12) with

kernel k(x) = ΠX(x)
cX

and constant forcing function f(x) = 1
cX

. In the rest of this section
we will work out one example satisfying the conditions of the main theorem and cover an
example that shows that the condition of the two hazard rates being ordered in Theorem
2.1(ii) is sharp. So an optimal strategy can consist of multiple switch levels and the earlier
mentioned Example 1 in [3] suggests that there are cases where an optimal strategy must
have infinitely many switch levels.
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Example 4.1. We assume the tail Lévy measures of X and Y are respectively given by
ΠX(x) = λXe−rXx and ΠY (x) = λY e−rY x with λX , λY , rX , rY > 0. So the jump parts of X
and Y are compound Poisson processes with exponentially distributed jumps. The hazard
rates of ΠX and ΠY are constants given by rX and rY respectively and so they are decreasing
and ordered. Hence, for any choice of the parameters cX , cY , λX , λY , rX , rY , a 1-switch-level
strategy (i.e. Qb(X, Y ) or Qb(Y,X) for some b ∈ [0,∞]) is optimal by Theorem 2.1. If
rX = rY , then by Proposition 2.2 we can conclude that if λX

cX
≥ λY

cY
then an optimal strategy

is to always be in mode Y whereas if λX
cX

< λY
cY

then an optimal strategy is to always be in
mode X. Since the case rX > rY can be dealt with by symmetry we assume without loss of
generality rX < rY for the rest of the example. We further assume E[X1] = cX −λX/rX > 0
or E[Y1] = cY − λY /rY > 0 so that ruin is not certain when the control is chosen optimally.
For β > ΦX(0) = λX

cX
− rX ∨ 0,

1

β
(
cX − λX

β+rX

) =
β + rX

cXβ2 + (cXrX − λX)β
=


1

cXβ
+ rX

cXβ2 if E[X1] = 0,

1
cXE[X1]

(
cX
β

+ E[X1]−cX
β+

rX
cX

E[X1]

)
if E[X1] 6= 0,

so by (9), for x ≥ 0,

WX(x) =

{
1
cX

(rXx+ 1) if E[X1] = 0,
1

cXE[X1]

(
cX + (E[X1]− cX)e

− rX
cX

E[X1]x
)

if E[X1] 6= 0.
(24)

Of course WY (x) can be expressed similarly. Hence, for x > 0, for both E[X1] = 0 and
E[X1] 6= 0,

AYWX(x) =
λX
c2
X

(
cY −

λY
rY − rX

cX
E[X1]

)
e
− rX

cX
E[X1]x

+
λY
cX

(
λX

cX(rY − rX
cX
E[X1])

− 1

)
e−rY x.

Since rX < rY we know by Theorem 2.1(ii) that Qb∗ is optimal. Next we find explicit
expressions for the optimal switching level b∗. Recall that we assume E[X1] > 0 or E[Y1] > 0.

• If λX
cX
≥ λY

cY
, then limx↓0AYWX(x) ≥ 0 and E[X1] < E[Y1] so that E[Y1] > 0 and by

Theorem 2.1(i), b∗ = 0 and by Theorem 2.1(ii), ϕ∗(x) = 1− λY
cY rY

e
− rY

cY
E[Y1]x

, x ≥ 0.

• If λX
cX

< λY
cY

and cY ≤ λY
rY −

rX
cX

E[X1]
, then we must have E[X1] > 0 (as otherwise E[Y1] ≤ 0

as well) and as rX
cX
E[X1] = rX − λX/cX < rY , we have AYWX(x) < 0 for x sufficiently

large, which implies by Theorem 2.1(i), b∗ = ∞ and so ϕ∗(x) = 1 − λX
cXrX

e
− rX

cX
E[X1]x

,
x ≥ 0.

• If λX
cX

< λY
cY

and cY > λY
rY −

rX
cX

E[X1]
, then we must have E[Y1] > 0, limx↓0AYWX(x) < 0

and AYWX(x) > 0 for x sufficiently large, which implies that b∗ is the unique root of
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Figure 1: Displayed are three survival probabilities as a function of initial capital x asso-
ciated with Example 4.1 for the parameter choices cX = cY = λX = 1, rX = λY = 2 and
rY = 4. Blue/bottom line: ϕ∞(x) corresponding to always mode X; black/middle line:
ϕ0(x) corresponding to always mode Y ; red/top line: ϕ∗(x) = ϕb∗(x) where b∗ = 2

3
log(2)

corresponding to optimal strategy.

AYWX(x), x ∈ (0,∞), so

b∗ =
1

rX
cX
E[X1]− rY

log


λX
cX

(
cY − λY

rY −
rX
cX

E[X1]

)
λY

(
1− λX

cX(rY −
rX
cX

E[X1])

)


and an explicit expression for ϕ∗(x) = ϕb∗(x) can be found via Theorem 2.1(ii) or (23).
Figure 1 illustrates that there can be quite a significant advantage in having the ability
to switch as opposed to always stick to mode X or always stick to mode Y , especially
when initial capital is close to 0.

Example 4.2. Let X be as in Example 4.1 with cX = 1, λX = 29/10 and rX = 52/10. By
Lemma 3.2 and (24) it readily follows that the survival probability corresponding to always
choosing mode X is given by

ϕ∞(x) = E[X1]WX(x) = 1− 29

52
e−23x/10 for x ≥ 0.

For the process Y , let cY = 1 and ΠY (x) = 1
3
e−3x + 8

3
e−6x, which implies rY (x) = 3 + 24

e3x+8
.

It is easy to verify, via (9) and Lemma 3.2, that the survival probability corresponding to
always choosing mode Y is given by

ϕ0(x) = E[Y1]WY (x) = 1− 4

9
e−2x − 1

9
e−4x for x ≥ 0.

Note that ϕ∞ and ϕ0 are not ordered in this case: we have that ϕ∞(0) < ϕ0(0) while for all
x large enough ϕ∞(x) > ϕ0(x). Now, since E[X1] > 0, E[Y1] > 0 and both rX and rY are
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decreasing, all assumptions of Theorem 2.1(ii) are satisfied with the single exception that
rX and rY are not ordered, as is easily verified. It turns out that the conclusion of Theorem
2.1(ii) does not hold in this example: none of the 1-switch-level strategies Qb(X, Y ) and
Qb(Y,X) for any b ∈ [0,∞] are optimal. To see this we eliminate them all. First, since
ϕ∞ and ϕ0 are not ordered, it is immediately clear that the choices b = 0 and b = ∞
cannot be optimal. Second, suppose that Qb(X, Y ) were optimal for some b ∈ (0,∞) i.e.
ϕ∗ = ϕb = ϕQb(X,Y ). Denoting τ−b (Y ) = inf{t > 0 : Yt < b}, we have for any x > b that

ϕ∗(x) = Ex
[
1{τ−b (Y )=∞} + 1{τ−b (Y )<∞}ϕ∗

(
Yτ−b (Y )

)]
≤ Ex

[
1{τ−b (Y )=∞} + 1{τ−b (Y )<∞}ϕ∗(b)

]
= ϕ0(x− b) + ϕ∗(b) (1− ϕ0(x− b))
= 1− (1− ϕ∗(b)) (1− ϕ0(x− b))

where the first equation uses the definition of Qb(X, Y ) and the strong Markov property of
the associated controlled process U b and the inequality uses that ϕ∗ is an increasing function
due to optimality. It follows that, for x > b,

1− ϕ∗(x)

1− ϕ∞(x)
≥ (1− ϕ∗(b))

1− ϕ0(x− b)
1− ϕ∞(x)

.

It is readily checked from the above expressions for ϕ∞ and ϕ0 that the right hand side
of this inequality tends to ∞ as x → ∞, and hence it follows that ϕ∗(x) < ϕ∞(x) for all
x large enough. However by optimality ϕ∗ ≥ ϕ∞ and we have arrived at a contradiction.
Finally, suppose that Qb(Y,X) were optimal for some b ∈ (0,∞). Consider the strategy

Q̂h informally described as picking mode X until the first time the controlled process goes
strictly above h and afterwards follows the assumed optimal strategy Qb(Y,X), i.e. mode Y
when the controlled process is below b and mode X when above b. We refrain from defining
this strategy rigorously but this can be done in a similar way as for the strategy Qb in Section
1. Recall the notation τ+

h (Z) = inf{t > 0 : Zt > h} and τ−0 (Z) = inf{t > 0 : Zt < 0} for
a process Z. By the strong Markov property of the controlled processes associated with
Qb(Y,X) and Q̂h and since a non-trivial Lévy process does not stay in any finite interval
forever, we have for any 0 < h < b,

ϕ∗(0) = ϕ∗(h)P0(τ+
h (Y ) < τ−0 (Y )) and ϕQ̂h(0) = ϕ∗(h)P0(τ+

h (X) < τ−0 (X)).

For a spectrally negative Lévy process Z with ΠZ continuous we have by (16) and a Taylor
approximation,

P0(τ+
h (Z) < τ−0 (Z)) =

WZ(0)

WZ(h)
=

1

1 + ΠZ(0)
cZ

h+ o(h)
,

where o(h) is a function such that o(h)
h
→ 0 as h ↓ 0 and where we used that WZ(0) = 1/cZ

and limx↓0W
′
Z(x) = ΠZ(0)/c2

Z where the latter follows from the former, (10) and (7). Since
ΠX(0)
cX

< ΠY (0)
cY

, we can conclude that for all h > 0 small enough P0(τ+
h (X) < τ−0 (X)) >

P0(τ+
h (Y ) < τ−0 (Y )) and hence ϕQ̂h(0) > ϕ∗(0), which is again a contradiction.
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