** Exercise 1

Consider the following three state time homogeneous model for a terminal illness:

\[\begin{array}{ccc}
 & \lambda & \\
\text{h: healthy} & \mu & \text{i: ill} \\
\text{d: dead} & \nu & \\
\end{array} \]

Let \(P(t) = \begin{pmatrix} p_{hh}(t) & p_{hi}(t) & p_{hd}(t) \\
p_{dh}(t) & p_{hi}(t) & p_{hd}(t) \\
p_{dh}(t) & p_{di}(t) & p_{dd}(t) \end{pmatrix} \), \(t \geq 0 \), be the associated homogeneous transition matrix function.

(a) By using Kolmogorov’s forward equations show that \(p_{id}(t) = 1 - e^{-\nu t}, \ t \geq 0 \).

(b) Write down the forward equations for \(p_{hh}(t), p_{hi}(t), p_{hd}(t) \) and solve them.

** Exercise 2

(This exercise more or less provides the proof of Theorem 2.2 in the notes.) Let \(X = \{X_t : t \geq 0\} \) be a Markov jump process with state space \(S \) and denote \(p_{ik}(s, t) = \Pr(X_t = k | X_s = i) \).

Show that for any \(n \geq 1 \)

\[\Pr(X_{t_n} = k_n, X_{t_{n-1}} = k_{n-1}, \ldots, X_{t_1} = k_1 | X_{t_0} = k_0) = \prod_{i=1}^{n} p_{k_{i-1}k_i}(t_{i-1}, t_i), \]

where \(0 \leq t_0 < t_1 < \ldots < t_{n-1} < t_n \) and \(k_0, k_1, \ldots, k_{n-1}, k_n \in S \). (Hint: first consider the case \(n = 2 \) and then with the gained insight prove the general case either directly or by induction.)

** Exercise 3

Prove the Chapman-Kolmogorov equations for an MJP.

** Exercise 4

(This exercise justifies that in order to solve the Kolmogorov forward equations with a fixed backward state \(i \), one can always replace one of the differential equations by the equation...
which says that the ith rowsum of the matrix solution equals one.) Let for each $t \geq 0$, $Q(t) = (\mu_{ij}(t))_{i,j=1}^d$ be a Q-matrix. Fix i and $l \in \{1, \ldots, d\}$ and suppose that $p_{ik}(s,t)$ satisfies for $0 \leq s < t$,

$$\frac{\partial}{\partial t} p_{ik}(s,t) = \sum_{j=1}^d p_{ij}(s,t) \mu_{jk}(t), \quad (*)$$

for all $k \in \{1, \ldots, d\}\setminus\{l\}$. Suppose in addition that $\sum_{j=1}^d p_{ij}(s,t) = 1$. Show that $(*)$ is satisfied for $k = l$ as well.