NUMERICALLY STABLE FORMULAS FOR A PARTICLE-BASED EXPLICIT
EXPONENTIAL INTEGRATOR *
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Abstract. Numerically stable formulas are presented for the closed-fanalytical solution of the X-IVAS
scheme in 3D. This scheme is a state-of-the-art particlecbagglicit exponential integrator developed for the Par-
ticle Finite Element Method. Algebraically, this scheme imes two steps: 1) the solution of tangent curves for
piecewise linear vector fields defined on simplicial meshes2irite solution of line integrals of piecewise linear
vector-valued functions along these tangent curves. Heheestable formulas presented here have general appli-
cability, e.g. exact integration of trajectories in pdeibased (Lagrangian-type) methods, flow visualization and
computer graphics. The Newton form of the polynomial intesioh definition is used to express exponential func-
tions of matrices which appear in the analytical solutiorhef X-IVAS scheme. The divided difference coefficients
in these expressions are defined in a piecewise manner, ieepriescribed neighbourhood of removable singulari-
ties their series approximations are computed. An optimaésepproximation of divided differences is presented
which plays a critical role in this methodology. At least tégnificant decimal digits in the formula computations
are guaranteed to be exact using double-precision flogtif-arithmetic. The worst case scenarios occur in the
neighbourhood of removable singularities found in fourttlev divided differences of the exponential function.
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1. Introduction. The particle finite element method], 16] (PFEM) is a versatile
numerical method in which each fluid particle is followed irLagrangian manner. It is
shown to successfully simulate a wide variety of complexiregying problems, e.g. free-
surface/multi-fluid flows with violent interface motionsplpmer melting and burning sim-
ulations, multi-fluid mixing and buoyancy driven segregatproblems, etc. A recent de-
velopment within the framework of the PFEM is the X-IVAS (dKijt Integration along the
Velocity and Acceleration Streamlines) scherif]] Its development was motivated in the
need for a faster and more accurate time integrator for ipcessible flows.

The X-IVAS scheme targets the explicit time integration loé kinematics of the fluid
particles using large time steps. The equations of motierobtained from the incompress-
ible Navier—Stokes equations subjected to a second-ordssgre segregation method. In
the Lagrangian formulation the segregated momentum balaguations define the acceler-
ation of the fluid particles. The adopted hypothesis is thatt@amline in the configuration
at the start of the time step (reference configuration) is@lgpproximation to the pathline
of the fluid particle for a relatively large time step. For asén time step each fluid particle
is advected along the streamline passing through its paositi the reference configuration.
The patrticle velocity is updated for this time step by doirfma integral of the acceleration
existing in the reference configuration along the streaemlit is expected that the explicit
time integration of the particle position and velocity aahe streamline yields a better and
more stable approximation than doing so via standard firfiterdnce time integrators.

The X-IVAS hypothesis has been testdd,[9] by successfully simulating some bench-
mark CFD and FSI examples using very large time steps, e.g15l@mes the standard
Courant—Friedrichs—Lewy stability limit. Further, thensilation results of multi-fluid flows
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were comparedd] with those obtained using OpenFOAM][and for similar accuracy the
PFEM+X-IVAS method took nearly half the simulation time ¢akby OpenFOAM.

In the PFEM+X-IVAS method the data is stored in a discretemsayi.e. all the essential
variables are stored as intrinsic properties with the glagi To perform the explicit time
integration we need a spatially continuous descriptiorhefuelocity and acceleration. For
this purpose a fixed auxiliary simplicial mesh is used torjméate the variables of interest
in a piecewise linear manner. Thus, the integration of thetijom and velocity of the fluid
particles is actually driven bgpproximate piecewise linear vector fieldsevertheless, the
higher-order fine-scale details of the initial solution afitche integration results are retained
with the particles. This is essential for the accuracy ofdbleeme and avoids the so-called
erosion artefact associated to the Eulerian formulations.

Despite the possibility to compute analytically the pasii and velocities of the parti-
cles, numerical sub-stepping methods based on simple-fiffesence schemes (e.g. forward
Euler) were used for this purpose in the original proposdliarthe subsequent developments
until now. On the one hand, this introduces an additionateof numerical error and the
repercussions of the same are not well understood. One hasdfully choose an appro-
priate sub-time-step for stability. On the other hand, nicaé sub-stepping might weaken
the X-IVAS hypothesis. For instance, a situation originalted to motivate the X-IVAS hy-
pothesis is that the streamlines of a flow never cross fixe@impable domain boundaries
(e.g. vortices near corners of wall bounded flows). The X$Wypothesis guarantees that
the material points never leave impermeable domain boigslaNumerical sub-stepping
procedures clearly compromise this guarantee.

Diachin and Herzog reported][ that analytical solvers provide faster more accurate
results for streamline calculations on a linear tetrah#dha the forward Euler and the fourth-
order Runge—Kutta methods. The matrix functions were cdetptherein using a procedure
based on matrix decomposition methods. The singular vadwerdposition was used to
determine the matrix rank which in turn was used to class$ié/dalculation procedure into
four cases in 3D. Using a Schur decomposition the matrixtfans were transformed to
equivalent functions of upper triangular matrices. Thewlaltion of the latter was done using
a recursive relation proposed by Parlé][ Nielson and Jung presentet] formulas in 2D
and 3D to compute the closed-form analytical solution o§#art curves for linearly varying
vector fields over tetrahedral domains. We infer from theltgic structure of these formulas
that the matrix functions were expressed therein using #wdnge form of the polynomial
interpolation definition. The analytical solution of thaggent curves were classified into five
cases in 2D and nine cases in 3D which depend on the eigeavaltiee system matrix.

Idelsohn et al. presented(]] a procedure to compute the analytical solution of the X-
IVAS scheme in 2D. The matrix functions are expressed tharsing the Jordan canonical
form definition. The solution in 3D was omitted pointing ohat the extension to 3D is
straightforward. Unlike in 2D where the procedure to expmasitrices in the Jordan canon-
ical form is straightforward, in 3D (and for matrices of largdimensions) this procedure
is arduous as repeated eigenvalues with different Jordark®imight exist. As the Jordan
structure of a 3D matrix involves multiple cases, we beg ftedivith Idelsohn et al. 10|
that it is not trivial to derive and implement (code) theipapmach to compute the analytical
solution of the X-IVAS scheme in 3D.

Moreover, using finite precision arithmetic the iscomputation of the analytical solu-
tion procedure of Idelsohn et alL(] and the formulas of Nielson and Jurif] are condition-
ally stable. Errors creep into the computations in the rgiginhood of removable singulari-
ties where subtractive cancellations in finite precisigtharetic are brought to prominence.
This leads to agradual loss of significant digits (errors gradually build up) in tbempu-
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tations as we approach the points of removable singulsritie the absence of numerically
stable formulas/computational techniques, the accuremyise of analytical solvers is lost
and what is worse, the loss of significance will go unnoticechisdiagnosed. In the afore-
said papers]o, 15 we find expressions with removable singularities, éegp(At) — 1]/A,
which are typical examples used to demonstrage §] loss of significance in finite precision
arithmetic.

The conditional stability issue also extends to the anaysolution procedure presented
by Diachin and Herzogd. Although matrix decompositions are robust/stable wéhkprect
to rounding errors, the recursive algorithm used to comghgexponential function of block
upper triangular matrices breaks down in certain situatioMoreover Parlett]8, p. 199]
warned that implementations in finite precision arithmetald be expected to give inac-
curate results in particular situations. The message & cleespective of the choice of the
solution procedure, issues related to numerical instglgkist and they need to be addressed.

Further, once such instabilities are identified, it is oftentrivial to localize the terms in
these formulas that participate to obtain a finite limit ahosable singularities. Identifying
such terms is crucial to control numerical instabilitiesl dound the loss of significant dig-
its. We discuss these issues here and present algebraiqailyalent yet numerically stable
formulas for the X-IVAS scheme in 2D and 3D.

2. Preliminaries. Here we describe briefly the convention used in the desoripif the
flow. The independent variables in Lagrangian kinematies(grt), wherey represents a
label to identify particles (material points) ahdepresents the time elapsed after labeling.
The primary dependent variable is the fluid particle trajactienoted a¥X(,t). The initial
particle positions denoted %P := X(x,0) are assumed to be given. A natural choice for the
label x is the ordered triplX°. The Lagrangian velocity and acceleration, denotedast)
and)"((x,t), respectively are defined as follows.

2
@) X(x.0) 1= SXO00, X000 = X ()

On the other hand, the independent variables in Euleria@nkdtics argx,t). Herex
denotes the spatial coordinate. The primary dependerdblaris the fluid velocityu(x,t).
The so-called fundamental principle of kinematid$][states that the velocity(x,t) and
acceleratiora(x,t) at a given time and fixed positiorx (Eulerian description) is equal to the
velocity X(x,t) and acceleratioD'K(x,t) of a particle that is present at that position and at
that instant (Lagrangian description). Thus,

2

@22 wx= SX| L axn = Xy
XOrH=x X(x.t)=x

As a corollary we have the following exact but implicit eqoas of particle motion.

d d? d,
(23) aX(X7t) = U(X(X,t)ﬂ), PX(th) = ax(th) = a(X(X7t)7t)

3. The X-IVAS scheme.

3.1. Introduction. The explicit time integration of the particle position anelacity
along the streamline results in the following equations ofion.

d

@) XOCO =00, 2XO0H =aX (0.
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Recall that the data corresponding to the dependent vasabbktored with the particles
which form a sufficiently large yet finite set. In other wordlse data at any given time is
available as discrete samples at the spatial locationspeextipy the particles. Data inter-
polation is inevitable to have spatially continuous vedtelds and to solve for the particle
motion. Hence in the equations of motiafx,t") anda(x,t"), which are unknown for an
arbitraryx are replaced by the interpolated counterpafix,t”) anda"(x,t"), respectively.
The superscriph represents the discretization size associated to thepoitgion. It follows
that the trajectory obtained from these interpolated vefieétds needs to be represented as
X"(x,b).

In the following we describe the X-IVAS scheme to integrdte equations of particle
motion from timet" tot"+1 as a four step process.

Step 1: Projection This step involves the projection of vector fields storethvihe
particles onto a simplicial mesh. Consider a simplicial imeger the problem domain and
a set of characteristic domains corresponding to every mbdbe mesh. LetZ' be an
operator that projects data onto a mesh node with indexm a set of sample points in the
corresponding characteristic domain. Using this projectiperator we calculate the velocity
U (t") and acceleratiod (t") vector fields at the mesh nodes as follows.

(3.2) U(th) = 2X(x.t")], &) =2 X(x.t")]

This projection step is unnecessary whnr= 0 where we can obtaid' (0) anda'(0)
directly from the prescribed initial conditions.

Step 2: Interpolationin this step we do a piecewise linear interpolation of vetitdds
projected onto the mesh nodes. Using the veladity”) and acceleratioa! (t") vector fields
at the mesh nodes we construct a piecewise linear interpolat these vector fields as fol-
lows.

(3.3) u(x,t") ;=N (U (t"), a'(xt"):=N'(x)a ")

In the above equation'kk) represents the piecewise linear shape function correppnd
to the nodd. Letx! denote the spatial coordinate of noge ); denote the average operator
over the indexj and 4" denote the Kronecker delta. For a given simplex, we can espre
N'(x) in terms of its gradienf]N' (which is constant within the simplex) and the spatial
coordinatex as follows.

(3.4) N(x) := ON'(x— (%)) + 55

Using the above equatiasf(x,t") anda”(x,t") can be expressed within each simplex as
follows.

(3.5) u(x,t") = [@'(t") @ ON'] - (x— (X)) + (W (t")); = A"-x+b"
(3.6) a"(xt") = [@ (t") @ ON'J- (x— (x))}) + (@ (t")); = C"-x+d"

Here® denotes the tensor product. Furth&?, b", C" andd" are constant tensors eval-
uated for each simplex at timte and are defined as follows.

(3.7) A= U
(3.8) ch:=[a
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Step 3: IntegrationHere we describe the time integration of the approximategons
of particle motion. The approximate equations of motiontfeg particles in the X-IVAS
scheme can be written as follows.

d dh
(3.9) XD =u X000, Xt = (X (x,1),t")

Recall that the above equations are expressed in a piecewiseer as bot” anda”
are defined in this manner. To be precise, within each simjpleyarticle motion is driven
by the following equations which vary from one simplex to ta.

@10 DX =ATXO) +b, SXTO0) =€ X+

Likewise, the time integration of these equations shoutt &le done in a piecewise
manner. In other words, if a particle tends to exit the cursemplex prior to the end of the
time step, its subsequent motion is driven by the equatiaiitew for the simplex in which it
tends to enter and so forth until the end of the time step.

Further, certain relationships that existed between tipemigent variables in the exact
equations of motions no longer hold for the correspondingttes in the approximate equa-
tions of motion. That is,

2

@11 X0 # X0, X0 i= X000 # HX00,

Tt dt2
Nevertheless, the X-IVAS scheme is consistent in the sdreethiese relations are re-
covered as the discretization stze» 0. The analytical solution to the pair of equations given
in Eq. 3.10 can be written within each simplex as follows.

n n t n
(3.12) XP(x.t) = e AT XNy ") + [/ e ‘“} o
tn
. . t
(3.13) X"(x.t) = X"(x,t") +C"- [/ X“<X,r)dT} +(t—tNd"
tn

Note that the particle motion is restricted to the tangenteofu”(x,t") (i.e. the stream-
line) on which it was located at timt® and is accelerated along this curve up to tirfre'.

Note that the solution for the particle velocﬁyh(x,t) is given as a line integral along the
curveXh(X,t). This integral is left heras isfor compactness and its evaluated form will be
given in the following section.

Equations3.12 and 3.13justify the classification of the X-IVAS scheme agparticle-
based explicit exponential integratddnlike classical exponential integrato8s 17, 2] which
integrate a global system of equations, the X-IVAS schentegnates analytically a small
and fixed-size local system of equations for the particldéss & an innovative approach that
combines concepts of exponential integrators with theigdarpercept. On the one hand,
it inherits the stability properties of exponential intetprs which allow us to choose larger
time steps. On the other hand, the associated algebra isutatigmally intensive, i.e. it
is not memory bound. This conceptual setting is ideal foalb@ircomputation which is an
important strategy for faster simulations.

Step 4: Update In this step we update the dependent variables at tfifeand repeat

the process. At the end of the time step we obdéliy,t"1) andXh(X,t“+1) which are

governed by the kinematics of the flow. The staté'(gtx,t”“) is governed by the dynamics
of the internal and the external force terms that appeardmtbmentum balance equation of
the flow.
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3.2. Remarks on the analytical solution.In this section we simplify the analytical
solution given in Eq. .12 and Eqg. 8.13 and identify relationships among the terms that
appear therein, if any. Consider three matri&e® and R which in turn are defined as
functions of a given matriA and a scalar as follows.

3.14)  P(1,A) =™, Q(T,A)::/

T T N
eAdE, R(1,A) ::/ / A dEdn
0 0 JO

As it can be seen from the above equation, the considereitemare exponential func-
tions of the given matriXA. The matrixP is usually called the propagatet][ The following
relationships can be identified between the matrizasdQ.

(3.15) Q(T,A) = /OT P(§,A)dE = [eTA - |] [inv(A) = [P(T,A) —1]-inv(A)
(3.16) = P(1,A)=Q(T,A)-A+]

Likewise, the matrice® andR satisfy the following relationships.

(3.17) R(T,A) :/OTQ(E,A)dE = [(equ) Jinv(A) — 11| -inv(A)
(3.18) R(1,A) =[Q(1,A)—1l]-inv(A), = Q(1,A)=R(T,A)-A+Tl

In the above equations i) denotes the matrix inverse &f. Further, the products
involving inv(A) and A in these equations are commutative, i.e. the order in whiely t
appear are irrelevant. Using these definitions, we can egphe analytical solution of the
equations of motion in the X-IVAS scheme as follows.

(3.19) X"(x,t) =Pt —t" A" - X"(x,t") + Q(t —t", A") . b"
X"(x,t) = X"(x,tN) + (t —tMd"

(3.20)
+CN[Q(t—t" AN - X (x,t") + R(t —t",A") - b

Recall that a nodal projection of the data carried by theiglagt onto the background
mesh is done after every time step and the ten&8rb", C" andd" have to be recalculated
for each element using the projected data. It follows thatnttatricesP, Q andR also need
to be recalculated for each element after every time step.

Note that we need the exit points of the particles on the smpbundary to perform
the piecewise integration of particle motions describetieran the paragraph following Eqg.
(3.10. To find the exit points we need to solve the intersectionheirttrajectories with
the simplex boundary. A procedure to solve for the exit ourging Newton linearisation
was presented by Kipfer et all3]. In this procedure the matricdd and Q have to be
evaluated at every iteration as the time increments neetienaniform. Should one decide
to useanalytical sub-stepping procedures to arrive at the exit point and ibrastantsub
time step is used for all the particles throughout the sebghg procedure, then we need
to compute these matrices for each element just once. Thenmental method1] for
computing tangent curves and the analytical time steppliggrithm called ANTS 8] are
based on this idea.

4. Functions of matrices.

4.1. Introduction. Functions of matrices can be defined in various yet equivalags,
a comprehensive presentation of which is made by HighgmlLlet the size ofA benx n
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and assume that a given scalar functigh)ftakes well-defined values (including values as-
sociated with derivatives where appropriate) at the eigleies ofA denoted by the sequence
Z:={A1, A2,..., An}. We will use the Newton form of the polynomial interpolatidefini-
tion for f(A). The coefficients in the Newton form of the interpolatingypmmial have the
algebraic structure of divided differences.

We denote théth divided difference of (A ) on the subsequen(ﬁ( = {Ai, Aty
Aisk} as fAi; Aiva; - - -5 Aisk] and define it using the following recurrence equations.

4.1) fAi] :==f(A)
AL Airos o Aigk] = FIAG At - - Ak
(4.2) f[)\i;)\i+1;-~~;)\i+k] — [|+1 i+2 |+.k] [-I i+1 i-+k l]
A|+k—/\|
(4.3) Ai=Aipr = = Ak = fA At A }-—likf(/\)
. i = Ni+1 — = Ni+k A1y - -y Aitk] -— KI (9Ak

A=A

It is a well-known result that the value ofXf; Ai11;...; A1« does not depend on the
order ofAj, Aj+1,. .., Ajk in Zi". The Newton form of the polynomial interpolation definition
for f(A) is

n-1
(4.4) fA) =[]l + 5 flA1iA2;- A (A — A (A= Aal) - (A= Al)
=]

The computation ohearly confluentivided differences are known to suffer from sub-
tractive cancellations in floating point arithmetic. Thtiss definition givesa priori warning
about thegradual loss of significance in the computation @i in the neighbourhood of
removable singularities. By grouping terms prone to lossighificance (as divided differ-
ences) it also paves way to systematically design procedorethe stable computation of
f(A). Moreover this definition is independent of the Jordan stmacof A [7, p. 6] which
makes it convenient to implement in a computer program.

Itis possible to write théth divided difference[fA1; Az;. . .; A1,«] as follows.

1+k f(AI)

(4.5) fAs A2 A = Zm
i=1 I 1j#i\N

j€e{1,2,...,1+k}

Using the above identity we can transform the formulas ginethis article to compute
tangent curves to the ones presented by Nielson and 15hgylgebraic rearrangements us-
ing this identity do not avoid existing issues related tsloksignificance and makes matters
worse by obscuring them. The exampl& il drives this point home.

To express the closed-form solution of the X-IVAS scheme eedto consider the cases
wheren = 2 (2D) andn = 3 (3D). Forn = 3, we can expresgA) as follows.

(4.6) f(A) = f()\1)| +f[/\1;)\2] (A — /\1| ) Jrf[)\l;/\z;)\g] (A — /\1| )(A 7)\2|)

Without loss of generality we assume that the eigenvaluées a real number and the
eigenvalues\; and A, might be complex numbers. Complex eigenvalues will alwaygio
in conjugate pairs, i.e{A1,A2} = {Ac,Al}. The subscript c indicates that it is a complex
number and the superscriptndicates that it is a complex conjugate.

Although Eq. @.6) holds for all eigenvalues, this form is convenient to inmpét in a
computer program when the eigenvalues are real numbetse trase of complex eigenvalues
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Eg. @.6) can be simplified to evaluatéA) as follows.

Im[f(Ac)]
Im[Ac
f(A3) Im(Ac) — AzIm[f(Ac)] — Im[f*()\c))\c]} [AZ —2ReAc)A + | Ad)?

Im[A¢] A% —2ReAc) A3+ [Acf?

I+ A

@.7) f(A)= ([

+

Here, the functions R&¢) and Im(A¢) return the real and imaginary parts of a complex
argumenti¢, respectively.

4.2. Formulas for exponential functions of3 x 3 matrices. In this section we consider
the case when(fA) := exp(1A) and write the expressions for the matri¢gs,A), Q(1,A)
andR(t,A) which were defined earlier in Eq.3.(4. It is straightforward to verify the
following results.

e —1

(4.8) /OT e dE = = Texp0;TA]

T et —1-12
EA _e - 1-1r_ > 0
(4.9) /o/oe dédn = 32 1°exp0;0;TA]

Following this line we define two auxiliary functiong>q and i(x) which are divided
differences of the exponential function.

ee—1 .
(4.10) q(x) := exp0;x] = { it x#0,
1 if x=0.
H if X0,
(4.11) r(x) == expl0;0;x] = q[0;x] = ¢ 1 x2
> if x=0.

Using these auxiliary functions we can expre$s,A),Q(7,A) andR(t,A) as follows.

(4.12)

P(1,A) = ™1 + TexpTA1; TA2) (A — Aql) + T2expTA1; TA2; TA3|(A — A1l ) (A — Aal)
(4.13)

Q(T,A) = Tq(TAL)l + T2q[TA1; TA) (A — A1l) + T3q[TA1; TA2; TAZ(A — A1l ) (A — Aal)
(4.14)

R(T,A) = T2r(TA)l + T3r[TAL; TA) (A — Aql) + TH[TAL; TA2; TA3] (A — A1) (A — Aal)

The expression fdP(1,A) is a trivial specialization of Eq4(6) for f(A) :=exp(tA). We
obtainQ(1,A) by integrating the terms iR(&,A) with respect t&; cf. Eq. 3.15. Likewise,
R(t,A) is obtained by integrating the terms@{ &, A) with respect tc£; cf. Eq. 8.17). We
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have used the following results to arrive at these equations

@15 [ Eexierenjag = (ZROTAZOROTN o,
JO 2—\1
T2 - [T o expéAz; EAz] —expéAr; €A
@16 /0 £ eXp[E/\l,fAz,f}\s]df—./o £ = dE

= 13q[TA1; TA2; TA3
2exp0; 0;TAz] — exp0; 0;TA1]

(4.17) /OT /0” EexpéAn EA]dEdn = T o — Br[tA T
(4.18)
/ /’7 Ezexp[fx\l;fx\z;é)\g}dédn:/ /nEexp[f)\z;f)\)\g}—jxp[f)\l;q‘)\zl dE dn
0 JO 0 Jo 3—/M

= T4r[TA1; TA2; TAS]
Let a, B be real numbers and consider a complex numbers defined below.
(4.19) ii=v-1, Ac=a+if, =A=a-if

The cardinal sine function sifx) is defined as follows.

sin(x) .
(4.20) sing) =4 x_ TX70,

1 if x=0.

Further, define two auxiliary functiong(x,y) andad(x,y) as follows.

(4.21) W(x,y) := cogy) — xsindy)

e —Y(—x, .

o [FEY ik £ 00)

(4.22) D(x,y) = expl—iy;iy; ] = ¢ 4 Xty

In the case of complex eigenvalues, {3, A2} = {A¢,A$} we can evaluatB(t1,A),Q(T,A)
andR(1,A) as follows.

(4.23) P(1,A) = " [W(ta,1B)! + TSINATB)A + T2 (TA3 — T, TB)[(A — al)?+ B2]]
Q(1,A) =1e"[sinTB)l + Td(—Ta, TB) (A —2al)
(4.24)
+120(%, 1B) [~ T1a; TAs — Ta][(A — al )+ B2]]
(4.25)

R(T,A) = 126" [@(—Ta, TB)| + Td (%, 1B)[—Ta; —Ta](A - 2al)

+20(*, 1) [~1a; —Ta; TAs — Ta][(A — al )2+ B21]]

The expression foP(1,A) is a trivial specialization of Eq.4(7) for f(A) := exp(TA)
and the choice of the auxiliary functioN$(x,y) and®(x,y) is motivated by the structure of
the same. The notatioh(*, y)[x1; X2] means that the divided differences are to be taken with
respect to the variable in whose place the symiagpears. The rest of this section describes
some results which were used to arrive at the expressior@(forA) andR(7,A) from the
expression foP(1,A).
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The following integrals are straightforward.

(4.26)

/Orefacoifﬁ)df _ era[acos(rg)z—:_légln(rﬁ)] -a _ 16" [sing(1B) — 10 d(—Ta, 7B)]
@an) [ eesinep)d = em[“'s'”“’f}i%‘;°w”+ B _ 1286 o(—1a,18)
(4.28) = /OT e W(&a,EB)dE = 1e"[sing1B) — 2Ta d(—Ta, TB)]

Using Eqs. 4.27) and @.28 we obtain the following result.
[(W(&a,éP)+EAssindEB)]

T T ef)\3 _ eEa

fag2 _ —

#29) [ es20(Ers—Ea.Ep ot = [ e d
_ _[a(tAs) —e"[sinq(1B) + 1(A3 — 2a) (-1, TB)]
(4.30) =T { (ha—a)2+ B2 }
o | € — 16T — 1A3[sing(TB) + T(A3 — 2a) d(—Ta, TP)]

(4.31) =Te [ sl s — @)t B ]

a | €T —(ta — TAs, 1B) — T2[(A3 — )2+ B & (-1, TP)
(4.32) =Te el a2+ B2 ]

d(tA3—10,10) — d(—10,1P)
(TAs—10a)— (—T0)
The results given in Egs.4(27), (4.28 and @.33 are used to obtai(7,A) from
P(t,A). Substitutinghs = 0 in Eq. @.33 we get the following result.

(4.33) =13 { = 13" o(x,1B8)[-Ta, TA3 — 10]

(4.39) | ez o(-2a,6p)dg = %6 o(x, 1) -tai—Ta]
Using Egs. 4.33 and @.34 we arrive at the following result.
(4.35)
/OTeEaE3CD(*7EB)[_Ea;EA3_Ea]df _ /OTeEaEZq)(E)\3_Eavfil_m(_fc{7fﬁ) dg
(4.36) _ 3t {cb(*, 1B8)[—10;TA3—Ta] — P(*, TB)[-Ta;—TQ]
. As
(4.37) = 1% O(, 18)[-Ta; —Ta; TA3 — 10]
The results given in Egs. 4(27), (4.34 and @.37) are used to obtaiR(7,A) from
Q(T,A).

REMARK: Note that the equations fé(1,A), Q(7,A) andR(7,A) are expressed (3D
problems whera = 3) as the sum of three terms. Due to the properties of the poijad
in the Newton’s form, the corresponding equationsrfet 2 (2D problems) can be obtained
from the equations fan = 3 by dropping out the third term.

4.3. Formulas for the eigenvalues 08 x 3 matrices. Let de{A) and t{A) denote the
determinant and trace of the matix respectively. When = 3, the characteristic equation
of the matrixA is given by the following.

(4.38) detA—Al)=0
tr(A)2 —tr(A2?)

(4.39) = A3 tr(A)A%+ 5

A —detfA)=0
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The solution of the above cubic equation can be found by @ardanethod (see2]).
The calculation steps of the same are summarized below.
tr(A) (BZ)

(4.40) B::Af?l, Q= Ri=

@a)  n="N R R @eiem Ji on3
4.42) A= @ + \S/Ri an/3) 4 \/m (47/3)
A3 \/R RZ—Q3+€/R+\/R2—Q3

We follow the convention that the cube roots that appeararatiove expressions are real
and single valued. The three admissible solutions to the codit function are already taken
into consideration in the above formula.

Note that when the discriminafiR’ — Q3) > 0, we obtain complex eigenvalues. In this
case, the formulas are already in a suitable format for imphgation. WherfR®> — Q3) < 0
we obtain real eigenvalues and the formulas for the sameesamitien in a form better suited
for implementation as follows.

det(B)

(4.43)

R
(4.44) 9::arcco$ﬁ), An —+2\/6 05(
where arccog denotes the inverse cosine function whose range is definbé the

closed intervalQ, . The formula for the real eigenvalues given in E4.4¢) guarantees
A1 < A2 < Ag. This can be verified using the following results.

1< os(2”+9)<;l @fz\ﬁgmgwﬂ@

=72
(4.45) O<9<7T:>71< s(4n+9)§% =N ”(3A) JO<a< TR +\F
pecor <1 A, Qs&s%ﬂ@

Note that in the case of two equal eigenvalues, it will beegithh = A; or Ao = A3z. In all
the situations the eigenvaludg is always a real number.

5. Stable computation of formulas using finite precision.

5.1. Introduction. The issue with stable computation of formulas is best erpliiby
an example. The example consists in théveacomputation of the second-order divided
difference exfl; 1+ €; 1+ 2¢]. We denote byFormulal the as isexpression of the second-
order divided difference.

(5.1) x1=1 Xo=1+¢, Xxzg=1+42¢

1 [ee—eg2 ee—ea
X3—X1 | X3—X2 X2—X1

(5.2) expixe; Xz; X3] =

Using Eg. @.5) the above equation can be rearranged in an algebraicallyagnt form
which we denote aBormula2.

el n ek n e
(X1 —X2)(X1—X3)  (X2—X1)(X2—X3)  (Xa—X1)(X3—X2)

(5.3) expxa; Xo; X3] =
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TABLE 1
Loss of significant digits in the i\&e computations afxp(1; 1+ €; 1+ 2¢].

€ Formulal computation  Exact 16 digits Formula2 computation

109 mW503335165186B20 .303335165136325 5083835165136 292
1092 872811947550 877 .372811947550820 MB72811947550 871
10°°° mB860500848424467 .360500848315854 M360500848 386436
1094 mB59276824430971 .359276836249607 WB59276:831 150054
109 mB59152790283402 .359154505717948 MI859151 840209960
109 mB859135026857928 .359142273371229 M859375

1097 mB32267628772320 .359141050143621 MB59375

1098 2220446084949470 .359140927820931 4

10799 0 1.359140915588663 256

1010 0 1.359140914365436 O

101 —2220445681810107 1B59140914243114 —4194304

1012 _222005131B996447 1359140914230881 —268435456

108 0 1.359140914229658 17179869184
1014 222399981598822  1359140914229536 4398046511104
101 o 1359140914229523 0

All the expressions that appear in the formulas given by dieland Junglb] are ex-
pressed in the above simplified form.

Tablel illustrates the results of e computations of both formulas using double pre-
cision floating point arithmetic as — 0. The exact values up to 16 digits of precision are
given in the third column. The significant digits in both farta computations that coincide
with the exact values are highlighted in green colour. Wesplesa gradual loss of significant
digits in both formula computations which deterioratesas 0. Fore < 10~ we lose all
the significant digits in both formula computations.

This example demonstrates two features: 1) algebraicamegements using Eg4.6)
does not avoid loss of significance fiermula2 and 2) the bad fame of nearly confluent di-
vided differeces is a blessing in disguise as it gives a priarning about loss of significance
in Formulal. In other words, due to the algebraic structurd-efmula2 the loss of signifi-
cance in the computations might go unnoticed or misdiaghose

In the analytical solution of the X-IVAS scheme, the follagiexpressions might suffer
from cancellation errors in a straight-forward &) computation of the same using finite
precision arithmetic.

(5.4) exgrA1;TA2], expTA1;TA2;TA3], q(TA1), q[TA1;TA2], Q[TA1;TA2;TAg),
r(tA1), r[TA1;TA2], r[TA1;TA2;TAs], ®(—1a,1fB), d(TAz—T10,103),
P+, 106)[-10a;—10a], D(x,1B)[-T0a;TAz—Ta], D(*,T1B)[—Ta;—T1d;TA3—TQ]

The above expressions can be identified as the elements @ilkving nested set of
divided differences.

(5.5) {{ expix1; Xz],q(X) }, { expixe; x2; Xa], o[x1; X2], 1(X), d(X,Y) },

{ alxa; x2; Xa], F[X1; X, D (x, Y) [X1; X2] }, { F[Xe; X2; Xa], D (%, Y) [Xa; X1; X2] }}
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The order of the divided differences gradually increasmffinst-order in the first subset
to fourth-order in the last subset. All elements of a subsetparticular cases of the first
element of that subset. For instance,

(5.6) Oxa;x2) = explO;xa; 2],  r(X) =exp0;0;X], d(Xy) =exp—iy;iy;X

Following this line, it is possible to express all the dividdifferences in Eq. §.5) as
the divided differences of the exponential function; Theads of the same are given §5.5.
As € — 0, the rate of loss of significant digits in aima computation of divided differences
is generally equal to the order of the same. In the considexadhple, i.e. exXp;Xo;X3]
we loose significant digits at a second order rate. Followiig line, ndve computation of
the third and the fourth subsets in Ecb.5) are meaningless fog < 10°° ande < 1074,
respectively.

An algorithm for the accurate computation of divided diffieces of the exponential func-
tion was presented by McCurdy et.&4]. Following this line, a similar algorithm for the ac-
curate computation of divided differences of the auxilfanyctions ) and 1(), cf. Eq. @.10
and Eq. 4.11), was presented by Caliard]} These algorithms have a wider scope, i.e. they
were designed to evaluate functiongiof n matrices appearing in exponential integrators for
large systems of equations (ordinary or differential). Arusho already has these algorithms
implemented, might just invoke them to evaluate the dividéf&rences listed in Eq.5(4)
and use them in the formulas f&(t,A), Q(1,A) andR(1,A) given in§4.2 This would
address the numerical stability issues in the formula cdatjmns.

In what follows, we present a simple yet stable piecewiseniigfins for divided differ-
ences. The methodology used to arrive at these piecewisetiefs is of limited scope, i.e.
this approach is not suitable for arbitrakth order divided differences. Nevertheless, it is
well suited for the at most fourth order divided differenéesnd in the formulas foP(1,A),
Q(1,A) andR(1,A).

5.2. Optimal series approximation of divided differences.In this section we establish
optimal series approximation of divided differences of @egi function {x). Consider the
sequencéxi, Xy, ..., X, } and some definitions related to this sequence.

10 _ S .
(5.7) xa::ﬁ_;xi, X i=X—Xa X ={X,%,...,%}

(2)
(5.8) 2y = choose(Z,2), (E) = k'(nnlk), X5 :_.Zﬁﬁ”p(i,j)
! ! &l

whereXx, is the mean value of the sequence aqds the fluctuation ofx; about the
mean. The functiorhoose(2",2) returns a sequencg,, consisting of pair-combinations
(2— combinations) of elements frotd". In Z(i, j) the indexi points to a combination and
index j points to an element within this combination. The sum of thadpct of the pairs in
2pis stored as the square of the auxiliary variableThe resultis stored ag to highlight the
fact that it is a second order term. Likewise, the triple,dtuale and quintuple combinations
of 2" are denoted ag;, Zq and 2y, respectively. Further, the sum of the product of the
triples, quadruples and quintuples are storefing andx;, respectively. Followingg, the

superscripts (which are ordinary powers)q"mxa1 andx] highlight the fact that they are third,
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fourth and fifth order terms, respectively. Thus,

(5.9)  Zi:=choose(Z,3), Zq:.=choose(Z,4), Zy:.=choose(Z,5)

- (3 3 . '(2)4 . . (5) 5 .
(5.10) t-=i;]]:|1%(l,1), ><3-=i;ﬂ%(w>7 Xv-=i;J|:|1%v(l,J)

Using the above definitions, we can defitke following identity for the divided differ-
ences of fx). The mean value theorem guarantees the existencé of the smallest interval
containing{xi, Xz, ..., X, } such that,

n o (n)
. gy = 90 ¢y fx.) — f . nf(€)
(5.11) (&)= ol )A:E, (Xn) (€>+n;(x )" —
T A CA N A C O IS ) £3) (%)
512) thaixei- ] = <=5, % (n+1)! % iz TR
’ f(n+4)(E)
+ (6 = 24x) (n44)!

Note that the first term in the above series expansion prevddeecond-order approxi-
mation to fxg;x;...;X]. If the series is expanded with respect to any point othar iha
the first-order terms are resurrected. Thus, the approiaméa optimal for the choice,.

For the first-order divided differencéd; xz], the above equation can be simplified and easily
extended to any number of terms as shown below.

(5.13) h::xz;le, R=-h, =0 X2=0 R=0
f(3) (Xa) f(2nfl) (Xa) f(2n+1)(5)

. _ (1 2 . 2n—2 2n
(5.14) fix1;x2] = (xa) +h T +h Zn=1 +h Zni 1)

Likewise, for the second-order divided differende fxo; x3], Eq. 6.12) can be simpli-
fied to the following.

2,2, R
2 3. 2. K TX+X3

(5.15) = —oX Xoi= a2, X =Xk, X5=0, X=0
1 X2 x3 X3 (&)
1 f . — 7f<2) a f(4) t f(s) g f(G) 2

wherexg is the standard deviation of the considered sequence. tssilge to relate
Xp andxg for all n and in this work we exploit this relationship as it reduces tlumber of
arithmetic operations.

n
(5.17) X5 = —Ex’g’,

5.3. Double precision floating point numbers.We briefly describe how double pre-
cision floating point numbers are stored in a computer astpetEEE 754 standard. Any

1As the algebra involved is overwhelming and error-prone, exehused the computer algebra systeaple
to perform the simplifications and verifications. Thus, hum#erivention is dedicated to identify patterns and to
discover abstract expressions suchkas, Xg, etc.
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decimal floating point number within the range of the doulale lbe written in the normalized
form as follows.

(5.18)  Decimal form- (~1)°2°1.f ~[ s[ (e+ 1023 | 0., | « Binary form
1 11 52 <« No. of bits stored

In the above equation the booleas {0,1} is called thesign bit the integere is called the
exponent—1022< e < 1023 and the fractiof is called thesignificand The numbers with a
subscript b are expressed in the binary format. When theyo@xgression (f, is not exactly
representable using 52 bits, it is rounded to the nearestseptable number.

5.4. Piecewise definition of divided differencesTo control (bound) the loss of signif-
icant digits in the computations of the divided differenae&q. (6.5), we present piecewise
definitions for the same. In this approach, we switch the agatfons to the corresponding
series expansions of the same should the difference of tlepéndent variables be less than
some threshold. These threshold values are chosen suclédlratain as many significant
digits as possible. This methodology (technique) is sinaplé systematic. It is explained in
full detail using an example by means of which we answer theetlquestions raised in this
context by Kahan and Darcyt?]: 1) What value should be assigned to the threshold in this
technique? 2) How many terms in the series approximatioaldhhbis technique retain? and
3) How accurate is this technique?

The elements of the first subset of E§.5) can be computedLfl] to machine precision
by rearranging them to the following functional fotm

sinh(x) .
(5.19) sinhx) = it x#0,
1 if x=0.
(5.20) expxy; xp] = etatx2)/2 sinhc<)(2;)(1> . qx)=e/? sinhc(g)

We now explain the methodology used to arrive at piecewidi@itens of divided dif-
ferences using exXpr; x2; X3] as an example. This term can be written as

|— et (X3 —X2) — (X1 — X2)

(5.21) expxy; Xz; Xa] = €2 expxg — X2; 0;X3 — X2
X3 —X1

where the function () is evaluated as shown in Ecp.20. Without loss of generality,
we assume; < xo < X3. Consequently we have,

(5.22) V& e [X]_,Xg], |E —X2| < (X3—X1)
(5.23) X5 < (e—x)% 6] < (6—x)°

In the computations of divided differences, the loss of ificgnce is due to the subtrac-
tive cancellations that occur in the dependent variabldsiwis brought to prominence after
a division by the difference of the independent variablesmti€ularly, in Eq. b.21) the loss
of significant digits is due to the cancellations that ocauthie term gxz — X2) — q(X1 — X2).
This term admits the following series expansion.

X3—X1
2

(5.24) Xz —X2) —q(X1 — X2) = [14 (Xa—X2) +- -]

2In this form the difference of the independent variablesempsymbolically as input to a function that could
be evaluated to machine precision
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Let x3 —x; = 2-™wherem > 1 is an integer. Then, Eq5@22 implies that the higher
order terms in Eq.X.24) tend to zero ag — . Thus,

Xg—xg=2"

(5.25) X1 < X2 < X3

} = OI(Xs—Xz)—q(xl—xz):o(zf(m+l))

When written in the normalized decimal form (cf. E§.18), the exponent of s — X2)
and gx; — x2) will be 0 and—1, respectively. This can be inferred using E82@Q) as shown
below.

(5.26) 0<x<2 M= <qgx) <2, —2"<x<0=21l<qx)<2°
(5.27) 0< (x—%) <2 ™= qxs—x) = (-1)°2°1.f~ 0] 1023, | 0.F, |
(5.28)  —2™<(x1-X) <0=qku—x) = (-1)°2*1.F~| 0] 1023 | 0., |

where f and f denote the significands ofxs — x2) and qx; — Xo), respectively. The
subtraction ¢xs — x2) — (X1 — x2) can be described schematically as follows.

(5.29) oXa—X2) —q(x1—X2) = (—1)°2°1.F — (-1)°27 1. f

z’ 0| 1023, | 0.%p H O| 1023, | 0.f, ‘ normalized form

:’ o| 1023, | 0.f, H 0| 1023, |0.1ﬂ,‘ align radix points

~[0] 1023 [ 0.{0}mify | O(2~ (M)

:’ 0| (1022— m), | 0.y ‘ normalized form

The notation{0}n means that the bits within the braces are repeat¢idnes. We see
that among the stored 52 bits ﬁ;‘ and ﬂj, the firstm bits are lost due to cancellation. After
subtraction, the unit bit at the+ 1" place will become the implicit bit of the result which is
not stored, cf. Eq.5.18. The exponent of the result will becomdm+ 1). The significand
of the result will become the remaining bits denoted in BER9 as f, of which only 51— m
bits are significant.

We see that if exjp; x2; X3] is evaluated using Eq5(21) we loose significant bits at a first
order rate. We will call this form of computation as tiiieect computation If x; < xp < X3
andxz — x; = 2-™ then in the direct computation of eg; xo; x3] we are left with 51- m
significant bits in the significand.

Using Eg. 6.16) we can write the series expansion for pgpxo; x3] as follows.

A

oy €R . Xt o
(5.30) eX[@Xl,XZ,)%]—?y, =+ T+ et a0t Ba0 T

The above form to evaluate exp; Xo; x3] will be called as theeries computatiarClearly,
in the series computation we do not find removable singiganivhich imply that subtractive
cancellations (if any) are not brought to prominence. Hawethe truncation of the series
will introduce an error which will limit the number of signifant digits in the series compu-
tation that match those in an exact computation. When thesséfiis truncated after the
first n terms it will be denoted as”,. As exg(xa)/2 can be evaluated to machine precision,
the number of significant digits in the series computatioasisentially limited by the term
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“n. The series? when written in the normalized decimal form has a zero expbwnden
X1 < X2 < xg andxz —x; = 2-™. This can be inferred using Eq%.16 and 6.23 as follows.

e X %3 e X2
(5.31) Hée[xl,x3]suchtha,t7 L+ T et | =5t 1%
X2 X R -
2
(5.33) <1y %‘fef—Xa <142 @MYZTM ot

It follows that all terms except the first one contribute te #fignificand of. Thus,

(5.34) 7 =(-1)°2°1.1 =[ 0] 1023 | 0. |

Hence, when? is replaced by¥;, the associated truncation error can be understood
as to limit the number of significant digits in the series camagion. The truncation error
associated t07; is denoted ag},. From Egs. .23 and 6.30 we infer,

2
(5.35) & =0 (Xg) <02 ™3 H=0 (;‘%) < O(2~(B3mto))

(5.36) & =0 ﬁ <O(2 M8y & =0 @ < O(2-(6m+10))
' >~ 7\160) - ’ 840) =

Expressing,, = . — &y in the double storage format we get,

(5.37) ylz]o| 1023, | 0.y Ho| 1023, | 0.{0}2ms21... \
(5.38) #2~|0[1023 | 0.f, || 0] 1023 | 0{O}ams1... |
(5.39) ygm] o| 1023, | 0.y H o| 1023, | 0.{0}am71. .. \
(5.40) S4~|0[1023 | 0.fy || 0] 1023 | 0{O}smiol... |

whered;, is written after the alignment of radix points and the renrgrdigits in the
significands are denoted by ellipsis. This implies that weet{@m-+ 2), (3m+5), (4m+7)
and(5m+ 9) significant digits inv1,.7%,.73 and.#4, respectively.

For each¥, we solve form by matching the accuracy of the series computation with
the one obtained in the direct computation. In this way, wkiobthe threshold value of
(x3—x1) =2 ™ and the lower bound for the number of significant digiel in a piecewise
computation of exfxs; xz; X3]. Thus,

(5.41) %: bBl-m=2m+2 = m=16, nsd= 34 bitsx 11 decimal digits
(5.42) S%: 5l-m=3m+5 = m=12 nsd= 39 bitsx 12 decimal digits
(5.43) S3: Bl-m=4m+7 = m=9, nsd = 42 bits~ 13 decimal digits
(5.44) S : Bl-m=5m+9 = m=7, nsd = 44 bits~ 14 decimal digits

In the above equations, the solution faris rounded to the nearest integer. Using this
roundedm we estimatensd as the minimum of the number of significant digits found in the
direct and the series computations. As the loss of signifidigits is bounded, the piecewise
computation of exxy; xp; x3] is stable.
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TABLE 2

Loss of significance controlled in the piecewise computatimfexp1; 1+ €;1+ 2¢].

£

Formula3 computation

Exact 16 digits

Formula4 computation

10701
10—02
10703
10—04
10—05
10—06
10707
10—08
10709
10—10
10711
10712
10—13
10714
10715

1503335165136
1.37281194755[91
1.360500 848 36010
1.35927683653229
1.359154 50691532
1.359142273 37116
1359141050143 @
1.359140927820931
1.359140915588663
1.359140914 365436
1.359140914243114
1.359140914230881
1.359140914229658
1.359140914229536
1359140914229

1.503335165136325
1372811947550820
1360500848315854
1359276836249607
1359154505717948
1359142273371229
1359141050143621
.359140927820931
.359140915588663
.359140914365436
.359140914243114
.359140914230881
.359140914229658
.359140914229536
1359140914229523

8033351651363

.37281194755[91

.360500848315854
359276 836249607
.359154505717948
.359142273371229
359141050143 2

.359140927820931
.359140915588663
.359140914 365436
359140914 243114
.359140914230881
359140914 229658
359140914 229536
359140914229

The numerical test presented§b.1is repeated here and the computations of the piece-
wise definitions are shown in Tabk The piecewise definitions considerirg and.7 for
the series computations are callgstmula3 andFormula4, respectively. The significant dig-
its in both formula computations that differ from the exaatues are highlighted in green
color. The lower bounds for the number of significant digiigeg in Eqs. 6.41) and 6.44)
are reproduced in this test feormula3 andFormula4, respectively.

5.5. Stable formulas for exponential divided differences.Following the methodology
described in the previous section we present stable pisealeifinitions of all the expressions
that belong to the subsets in E§.%). In the series computation of each piecewise definition,
we consider the first four terms in the corresponding seriparsion. Recall that the expo-
nential function is its own derivative. This result alongiwthe abstraction (e.gp, % etc.) in
the optimal series expansion permits us to use multiplegénrthe series expansion without
incurring substantial computational cost.

The elements of the first subset in Ef.5) can be evaluated to machine precision without
resorting to a series computation, cf. E§.20. The first element of the second subset, i.e.
expxi; X2; X3] was used as an example to describe the details of the pieceaisputation
technique in the previous section. The stable piecewisaitlefi of the same wher; <
X2 < X3 can be summarized as follows.

o0 40X —X2) — A(x1 —X2)

if (X3 7X1) >27

(5.45) X0 23 ] S
. EXPX1; X2; X3| =
T e 1+ﬁ+§+§ else
2 8 60 160

It is essential to sort the arguments lest the series contipritshould incur a significant
truncation error. The variation in the number of significdigits nsd in exp[Xy; xp; 3] with
respect tan, where(xs — x1) = 2~ ™, is denoted aasd(expxi; X2; 3], m). Using the above
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stable formula for exjxi; x2; 3] we obtain,

(5.46)
nsd
52
51-m ifm<7 50
nsd(expXi;Xg;X3),m) = ¢ 5m+9 if7<m< 8.6,
52 ifm> 8.6
44
m
1 79 15

Recall that ¢x;; x2] = expx1;0;xz], r(x) = exp[0; 0;x] andd(x,y) = exp—iy;iy;x]. Let
sort be a sorting function ang; < X, < X3. Then, using Eq. §.45 a stable formula for
q[X1; X2] is

(5.47) {X1,%2,%3} = sort({x1,0,%2}), q[Xq;%2] = expXy; X2; X3];
Likewise a stable formula for(x) is
(5.48) {X1,0,%3} = sort({0,0,x}), r(x)=expXi;0;X3;

As exg—iy;iy;X] involves complex numbers we give it special attention. Réeleat the
exponential function is holomorphic, i.e. it is complexfdientiable in a neighbourhood of
every point in its domain. This implies that it is infinitelyffgdrentiable and is equal to its
own Taylor series. Thus, the optimal series approximatfaivided differences presented in
§5.2 naturally extends to eXpiy;iy;X|. Following this line, a stable formula fap(x,y) can
be obtained as shown below.

(5.49) Z:=X+1iy, za::§, zf,::Zzg—gyz, Z=22(Z2+Y)

3
/2 - _ -
€ smhc(z*éZ) sinqy) it 12> 27
(5.50) Pd(x,y) = exp—iy;iy; x| =
e 1+é+§+§ else
2 8 60 160

The above definition assumes the availability of a complethriilrary which provides
an interface for stable computation of common arithmetierapions, elementary and tran-
scendental functions. This assumption holds for@he programming language which is
equipped with the standard math libratyomplex>.

The divided difference exgi; Xo; X3; X4] is a template for the elements of the third subset
in Eq. 6.5). The proposed piecewise definition of @xpx; X3; Xa] whenxy < xp < X3 < X4
is

exp{Xz; X3; Xa] — €XP{X1; X2; X3]
X4 —X1
el % X %N

3 (1 20" 120" 820

if (Xg—x1) >27°
(5.51) exixa; Xg; Xa; Xa] =
else
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For the above piecewise definition of éxpX2; x3; X4] we obtain
(5.52)
nsd
521
43—m ifm<6
nsd(expXq; X2; Xa; Xa],m) = < 5m+10 if6<m< 84,

. o
52 ifm>84 40! \
371

m
1 6 9 12

Itis straightforward to verify thatof ; X2; X3] = exp[0; X1; X2; Xa], [X1; X2] = exp0; 0;X1; X2]
andd(x,Y)[x1; %] = exp—iy;iy; X1;%2]. Using Eq. 6.51) a stable formula for [of1; X2; 3] is

(5.53) {X1,%2,%3,%Xa} = sort({0,X1,X2,X3}), q[X1;X2; X3] = exp[X1; X2; Xa; Xa;
Likewise a stable formula forxy; x| is
(5.54) {X1,%2,%3,%a} = sort({0,0,X1,%2}), r[Xq;%2] = exp[Xy; X2; X3; Xal;
The proposed piecewise definition®f{x,y)[x1; Xo] is
4
(556) Zi=y+%u%—6%, 7 =2z -X%+4B), Zi=(+7) (%33
[exp[il; %o] — €4/2sinhdz; /2)
5

eZa[ 5, 2z 23—23]

(5.55) {X1,%} = sortabs({x1,X2}), z1:=X1+iy, Z:=X+iy, z:=

—qn(il,y)] 21; if |zo] > 26
(5.57) d(x,y)[x1;%2] =

1- S+ 4= else

20 120 840

3!

wheresortabs is a function that sorts its arguments with respect to itokibs value,
i.e. x| < |%| in Eq. 6.59. The termd(X1,Y) is evaluated using the stable formula given in
Eq. 6.50.

The divided difference exXgi;x2; X3;Xs;Xs] is a template for the elements of the third
subset in Eq. §.5). The proposed piecewise definition of @xpxo;Xs;Xa;xs] whenx; <
X2 <X3 < X4 < X5 iS

exXp[Xz; X3; X4, X5] — EXP[X1; X2; X3; X4]
X5 — X1
(558) eXQXl,XZ,)@,,M,XS] = exa X2 X3 X4_Xal

if (xg—xq) >274

D I O A T &
a1 |17 30" 210" 1680 else
For the above piecewise definition of €xf)Xo; X3; X4; Xs] we obtain
(5.59)
nsd
52
36—-m ifm<4
nsd(expXy; X2; Xa; X4; Xs], M) = ¢ bm+12 if4<m< 8,
52 if m>
ifm>8 35
32
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Itis straightforward to verify thatxy; Xo; x3] = expl0; 0;Xq1; X2; X3] andd (*, y) [X1; X2; X3] =
exp—iy;iy; X1;X2; X3]. Using Eq. 6.58 a stable formula for[ky; xo; 3] can be written as,

(5.60) {X1,%2,%3,%a, %5} = sort({0,0,X1,X2,%X3})
(5.61) F[X1; X2; Xa] = expXy; X2; X3; X4; X5;

The proposed piecewise definition®fx,y)[x1; X2; X3] is

(5.62) {X1,%2,%3} = sortabs({X1,X2,Xa}), Z3:=Xz+liy

X+ +R3 . 1 2,2, R o <o
(5.63) zai=——p Zy =624+ é[11251— (2 + 8+ %)](Y> + 32) — 2z%1%%3
(5.64)

z = %[2y2+525— (R+%B+5)], 7= 2[4y - 352+ 3% + 58+ 38)] + XueXe
(5.65)

SRS oyl 5 il > 2
3

Z3
D(*,Y) [X1; X2 %3] =
e, %5 7 3%
o [1—304-2104— 1680] else

where the termp(x,y)[X1; %] is evaluated using the stable formula given in Eg59.
Note that in the stable formula fap(x,y) [X1; X2], just the direct computation of efip; X1 ; X2]
is sufficient as the threshold value |@| to switch to a series computation is larger for the
former than the latter. This means that the series compatafi exgiy; X1; X2] will never be
used in the stable computation @fx,y)[X1;%X2]. On the contrary, in the stable computation
of d(x,Y)[X1; X2; X3] the switch to the series computation is governed by somstibte value
of |z3| which includes the possibilityz| — 0. Therefore, in Eq. §.65 it is necessary to
evaluate the term eXiy; Xi1;X2] in a piecewise manner.

Following Eqgs. 6.45 and 6.50, a stable formula for exXjy; X1;%2] can be obtained as
follows.

(5.66) Z1 =X +iy, 2z i=Xo+iy, za::w%“y, Z1i=iy—2zy
(5.67) 7 =R —7a, 73:=%o—7a z?,::zii?fﬁ%, Z =77
expXi; X2 —e;;/Zsinhqz{/Z) i 22 > 27
(5.68) expliy; X1, Xo] = & 1+§+§+i o
2 8 60 160

6. Examples. We present two examples to validate the numerical staliilithe com-
putation of the proposed formulas for the X-IVAS scheme hlese examples the eigenvalues
of the matrixA gradually tends to zero. The symbolic computation of thenfdes for the
chosen eigenvalues are done using Maple and the first 18isagnidecimal digits are stored
as reference solutions. These reference solutions ardaseeasure the relative error in the
formula computations using double precision floating panithmetic.

6.1. Example 1. Consider the case when two of the eigenvalues of the mAtrixe
complex numbers. Lef := 10" and choosen € {1,2,3,...,15}. For eache define the
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TABLE 3
Relative errors in the usual and stable computation when {€ +i2¢,4¢}.

|IRU=R]| [RS-RY| 1Q“-Q| 1Q°-Q [PU—P] [PS—P]|
TR TR TQl Il PT PT

109 61101 74101 531016 1110 11101 261016
1092 67101 481018 6910 7510 11101 9710V
1098 57109 43101Y 611012 0010 11101 9910Y
1094 4910% 69101 52101 00100 98101 0.010t%
10% 9410% 12101 10109 0010 18101 2110%
109 24107 21101 26109 59101 491012 9910V
1097 2810t 30101 30109 83101 57101 9910
10% 2810t% 0010 30109 83101 57101 9910
1099 221079 30101 24100 59101 45109 9910Y
1010 721011 00109 771091 0.0107%° 1410°% 0.010t9
1011 72108 0010t 7710192 12102 14109 20107
1012 19108 21101 2010% 591017 3810% 9910
1018 27102 21101 2910 591017 54109 9910Y
101 691012 62103 74100 0010 1410% 191030
101 691002 30101 741019 14103 1410% 0.0109

matrix A and a corresponding auxiliary matizxas follows.

at+e —2¢ b
(6.1) A:=]| 2 a+e¢ c | =eigs(A):=
0 0 a-+de

afif| |at+efi2e
A3 - a-+de

) 0 0 b(d-1)+ce ZA = (a+de)eZ
(6.2) Z:=(A-al)*+p1=¢|0 0 cd-1)+be|=_, 5
0 0 dd-2)e+5¢| ZA°=(atde)%ez

whereeigs(A) represents the eigenvaluesfafWe can drive all the eigenvalues and/or
the gap betwen them to zero by appropriately choosing trenpeters andd. For eachA we
computeR(7,A) using the stable formulas summarized in the previous sectibe matrices
P(1,A) andQ(t1,A) are computed fronR(1,A) using the relationships given in EqS.16
and @.19.

Table3 illustrates the relative errors in the computations of tterivesP(1,A), Q(1,A)
andR(1,A) choosingt = 1,a=0,b=c=1 andd = 4. ThereinR" andR* denotes the usual
(naive) and the stable (piecewise) computations of the m&yibespectively. The Frobenius
norm is used ifj|R||. The relative error§Ps—P||/||P||, ||Q°— Q||/||IQll and||R%—R]|/||R]|
are found to be within the guaranteed computation accisastablished for the same and
reflect the robustness of the stable formulas. The gradsal dé significance as — 0 is
reflected as a gradual increase in the relative error (froochina epsilon to values intolerably
high) in the usual computations of the considered matrigdé® maximum relative error in
the computations d?', QU andR" are of the order of 1%, 10!° and 1G°, respectively. As
£ — 0 we observé||PY—PJ|/||P|) is O(¢) times smaller tha|Q" — Q||/||Q||) which in turn
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TABLE 4
Relative errors in the usual and stable computation when {¢,2¢,3¢}.

e |RU—R] [RS-RY]| 1Q“-Q| 1Q°-Q [PU—P] [PS—P]|
TR TR TQl Il PT PT

109 3910 71101 17101 32101 54101 401016
1092 10101 71101 121018 2110 10101 2110715
109 11109 13101 68101 78101 66101 111016
109 3810% 13101 14109 79101 93101 8210
10% 35109 52101 42109 0010 81101 0.010t%
10°% 80107 00100 44109 55101 58101 0.010t9
109 45109 17101 67109 79101 78101 8210
109 401097 52101 4710° 0010 7510% 8210
109 4010t° 00100 551091 55101 10109 821071
1019 34109 30101 83109 00100 15109 (.0210t%
1011 34109 30101 83109 0010 1510°% 0.010t9
1012 4010™° 30101 551097 79101 1010% 8210%
1018 401012 00109 55109 55101 1010% 821071
1014 8010t%® 30101 55101 0.010%° 80109 82101
101 80102 42101 55101 0010 61109 111016

is O(¢) times smaller tha]|RY — R||/||R||). The following results explain this behaviour.

(6.3) ZA =4£°7, ZA%?=16¢%Z
(6.4) RY— R~ (@"(x,2¢)[—¢; —€;3¢] — d(x,2¢)[—€; —€;3¢]) Z
(6.5) QY-Q=(RY-R)A, P'—P=(RY—R)A?

Equation 6.4) holds because(x, 2¢)[—¢; —¢; 3¢] is the highest-order divided difference
term in Eg.4.25and its computation error dominantes over the rest. Théwvelarror in the
usual (néve) computation ofp(x,2¢)[—¢; —¢; 3¢] is approximately 1# whene = 10715,
Recall that the matriceB(7,A) andQ(T,A) govern the evolution of the particle positions.
Likewise, the matrice®(7,A) andR(t1,A) govern the evolution of the particle velocities.

6.2. Example 2. Here the details differ from the previous example only in deéni-
tions of the matrices\ andZ.

ate b c A1 a+e
(6.6) A=| 0 a+2¢ d | =eigs(A):=|A2| = |a+2¢
0 0 a+3¢ A3 a+3¢
0 0 bdtchl  7a —(a+3¢)z
(6.7) Z=A-M)A-Al)=1[0 0 Ah |= )
00 212 ZA :(a+3£)Z

By construction, all the eigenvalues and the gap between taa be driven to zero with
decreasing values affor appropriate choice of the parameter

Table4 illustrates the relative errors in the computations of ttegrivesP(1,A), Q(1,A)
andR(1,A) choosingt =1, a= 0 andb=c=d = 1. The behaviour of the usual and
stable computations are similar to what is observed in teeipus example. The maximum
relative error in the usual computationsiRf, QU andRY are of the order of 1%, 10' and
1078, respectively. As befor€|PY—P||/||P||) is O(¢) times smaller thar||Q" — Q||/||Q|)
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which in turn isO(¢g) times smaller thaf||R" — R||/||R||). The following results explain this
behaviour.

(6.8) ZA =3¢Z, ZA?=9¢’Z
(6.9) RY— R~ (r'[e;2¢;3¢] —r[e; 2¢; 3¢]) Z
(6.10) QY-Q=(RY—R)A, P'—P=(RY—R)A?

Equation 6.9) holds becaus€g; 2¢; 3¢] is the highest-order divided difference term in
Eg. @.14 and its computation error dominates over the rest. Theivelarror in the usual
(naive) computation ofg; 2¢; 3¢] is approximately 1€f wheng = 10715,

7. Conclusions. Formula computations in the neighbourhood of removablgLdarities
suffer loss of significance when they are done using finiteipien arithmetic. Formulas for
the solution of the X-IVAS scheme involve many removableysiarities. Hence, the use of
numerically stable formulas for the same is a criteria ftnuginess.

We have proposed numerically stable formulas for the cldesad analytical solution of
the X-IVAS scheme. Therein, the Newton form of the polyndrimigerpolation definition is
used for the functions of matrices which appear in the foemuln this definition, removable
singularities and the terms/expressions that particiftaigeld a finite limit at these points
are grouped together as divided differences. In other sgeddly equivalent forms, these
terms/expressions get dispersed. The poor reputationesfyneonfluent divided differences
with respect to the loss of significance in floating point catagions is a blessing in disguise.
We geta priori warning about possible numerical instabilities in formatanputations. To
control the loss of significance, we have presented pieeedédinitions for these divided
differences. The piecewise definitions switch the computatto the respective series ap-
proximations of the divided differences should the gap keetwthe independent variables
be less than a specified threshold. These divided diffeeeame expressible as the divided
difference of the exponential function of an appropriatdeniess than or equal to four. For
the terms involving the second, third and fourth order dididiifferences, the double preci-
sion floating-point computation of their piecewise defonit guarantee at least 14, 12 and 10
significant decimal digits to be exact, respectively. Thelamentation of these piecewise
definitions is simple and the computations are stable.

8. Acknowledgement. | thank Mr. Guillermo Casas-Goalez for reading the manuscript
in draft form and suggesting improvements.
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