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Abstract. Numerically stable formulas are presented for the closed-form analytical solution of the X-IVAS
scheme in 3D. This scheme is a state-of-the-art particle-based explicit exponential integrator developed for the Par-
ticle Finite Element Method. Algebraically, this scheme involves two steps: 1) the solution of tangent curves for
piecewise linear vector fields defined on simplicial meshes and2) the solution of line integrals of piecewise linear
vector-valued functions along these tangent curves. Hence, the stable formulas presented here have general appli-
cability, e.g. exact integration of trajectories in particle-based (Lagrangian-type) methods, flow visualization and
computer graphics. The Newton form of the polynomial interpolation definition is used to express exponential func-
tions of matrices which appear in the analytical solution of the X-IVAS scheme. The divided difference coefficients
in these expressions are defined in a piecewise manner, i.e. ina prescribed neighbourhood of removable singulari-
ties their series approximations are computed. An optimal series approximation of divided differences is presented
which plays a critical role in this methodology. At least ten significant decimal digits in the formula computations
are guaranteed to be exact using double-precision floating-point arithmetic. The worst case scenarios occur in the
neighbourhood of removable singularities found in fourth-order divided differences of the exponential function.
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1. Introduction. The particle finite element method [11, 16] (PFEM) is a versatile
numerical method in which each fluid particle is followed in aLagrangian manner. It is
shown to successfully simulate a wide variety of complex engineering problems, e.g. free-
surface/multi-fluid flows with violent interface motions, polymer melting and burning sim-
ulations, multi-fluid mixing and buoyancy driven segregation problems, etc. A recent de-
velopment within the framework of the PFEM is the X-IVAS (eXplicit Integration along the
Velocity and Acceleration Streamlines) scheme [10]. Its development was motivated in the
need for a faster and more accurate time integrator for incompressible flows.

The X-IVAS scheme targets the explicit time integration of the kinematics of the fluid
particles using large time steps. The equations of motion are obtained from the incompress-
ible Navier–Stokes equations subjected to a second-order pressure segregation method. In
the Lagrangian formulation the segregated momentum balance equations define the acceler-
ation of the fluid particles. The adopted hypothesis is that astreamline in the configuration
at the start of the time step (reference configuration) is a good approximation to the pathline
of the fluid particle for a relatively large time step. For a chosen time step each fluid particle
is advected along the streamline passing through its position in the reference configuration.
The particle velocity is updated for this time step by doing aline integral of the acceleration
existing in the reference configuration along the streamline. It is expected that the explicit
time integration of the particle position and velocity along the streamline yields a better and
more stable approximation than doing so via standard finite difference time integrators.

The X-IVAS hypothesis has been tested [10, 9] by successfully simulating some bench-
mark CFD and FSI examples using very large time steps, e.g. 10–15 times the standard
Courant–Friedrichs–Lewy stability limit. Further, the simulation results of multi-fluid flows
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were compared [9] with those obtained using OpenFOAM [5] and for similar accuracy the
PFEM+X-IVAS method took nearly half the simulation time taken by OpenFOAM.

In the PFEM+X-IVAS method the data is stored in a discrete manner, i.e. all the essential
variables are stored as intrinsic properties with the particles. To perform the explicit time
integration we need a spatially continuous description of the velocity and acceleration. For
this purpose a fixed auxiliary simplicial mesh is used to interpolate the variables of interest
in a piecewise linear manner. Thus, the integration of the position and velocity of the fluid
particles is actually driven byapproximate piecewise linear vector fields. Nevertheless, the
higher-order fine-scale details of the initial solution andof the integration results are retained
with the particles. This is essential for the accuracy of thescheme and avoids the so-called
erosion artefact associated to the Eulerian formulations.

Despite the possibility to compute analytically the positions and velocities of the parti-
cles, numerical sub-stepping methods based on simple finite-difference schemes (e.g. forward
Euler) were used for this purpose in the original proposal and in the subsequent developments
until now. On the one hand, this introduces an additional source of numerical error and the
repercussions of the same are not well understood. One has tocarefully choose an appro-
priate sub-time-step for stability. On the other hand, numerical sub-stepping might weaken
the X-IVAS hypothesis. For instance, a situation originally used to motivate the X-IVAS hy-
pothesis is that the streamlines of a flow never cross fixed impermeable domain boundaries
(e.g. vortices near corners of wall bounded flows). The X-IVAS hypothesis guarantees that
the material points never leave impermeable domain boundaries. Numerical sub-stepping
procedures clearly compromise this guarantee.

Diachin and Herzog reported [3] that analytical solvers provide faster more accurate
results for streamline calculations on a linear tetrahedrathan the forward Euler and the fourth-
order Runge–Kutta methods. The matrix functions were computed therein using a procedure
based on matrix decomposition methods. The singular value decomposition was used to
determine the matrix rank which in turn was used to classify the calculation procedure into
four cases in 3D. Using a Schur decomposition the matrix functions were transformed to
equivalent functions of upper triangular matrices. The calculation of the latter was done using
a recursive relation proposed by Parlett [18]. Nielson and Jung presented [15] formulas in 2D
and 3D to compute the closed-form analytical solution of tangent curves for linearly varying
vector fields over tetrahedral domains. We infer from the algebraic structure of these formulas
that the matrix functions were expressed therein using the Lagrange form of the polynomial
interpolation definition. The analytical solution of the tangent curves were classified into five
cases in 2D and nine cases in 3D which depend on the eigenvalues of the system matrix.

Idelsohn et al. presented [10] a procedure to compute the analytical solution of the X-
IVAS scheme in 2D. The matrix functions are expressed therein using the Jordan canonical
form definition. The solution in 3D was omitted pointing out that the extension to 3D is
straightforward. Unlike in 2D where the procedure to express matrices in the Jordan canon-
ical form is straightforward, in 3D (and for matrices of larger dimensions) this procedure
is arduous as repeated eigenvalues with different Jordan blocks might exist. As the Jordan
structure of a 3D matrix involves multiple cases, we beg to differ with Idelsohn et al. [10]
that it is not trivial to derive and implement (code) their approach to compute the analytical
solution of the X-IVAS scheme in 3D.

Moreover, using finite precision arithmetic theas iscomputation of the analytical solu-
tion procedure of Idelsohn et al. [10] and the formulas of Nielson and Jung [15] are condition-
ally stable. Errors creep into the computations in the neighbourhood of removable singulari-
ties where subtractive cancellations in finite precision arithmetic are brought to prominence.
This leads to agradual loss of significant digits (errors gradually build up) in thecompu-
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tations as we approach the points of removable singularities. In the absence of numerically
stable formulas/computational techniques, the accuracy promise of analytical solvers is lost
and what is worse, the loss of significance will go unnoticed or misdiagnosed. In the afore-
said papers [10, 15] we find expressions with removable singularities, e.g.[exp(λ t)−1]/λ ,
which are typical examples used to demonstrate [12, 6] loss of significance in finite precision
arithmetic.

The conditional stability issue also extends to the analytical solution procedure presented
by Diachin and Herzog [3]. Although matrix decompositions are robust/stable with respect
to rounding errors, the recursive algorithm used to computethe exponential function of block
upper triangular matrices breaks down in certain situations. Moreover Parlett [18, p. 199]
warned that implementations in finite precision arithmeticcould be expected to give inac-
curate results in particular situations. The message is clear: irrespective of the choice of the
solution procedure, issues related to numerical instability exist and they need to be addressed.

Further, once such instabilities are identified, it is oftennot trivial to localize the terms in
these formulas that participate to obtain a finite limit at removable singularities. Identifying
such terms is crucial to control numerical instabilities and bound the loss of significant dig-
its. We discuss these issues here and present algebraicallyequivalent yet numerically stable
formulas for the X-IVAS scheme in 2D and 3D.

2. Preliminaries. Here we describe briefly the convention used in the description of the
flow. The independent variables in Lagrangian kinematics are (χ , t), whereχ represents a
label to identify particles (material points) andt represents the time elapsed after labeling.
The primary dependent variable is the fluid particle trajectory denoted asXXX(χ , t). The initial
particle positions denoted byXXX0 := XXX(χ ,0) are assumed to be given. A natural choice for the
labelχ is the ordered tripleXXX0. The Lagrangian velocity and acceleration, denoted asẊXX(χ , t)
andẌXX(χ , t), respectively are defined as follows.

(2.1) ẊXX(χ , t) :=
d
dt

XXX(χ , t), ẌXX(χ , t) :=
d2

dt2 XXX(χ , t)

On the other hand, the independent variables in Eulerian kinematics are(xxx, t). Herexxx
denotes the spatial coordinate. The primary dependent variable is the fluid velocityuuu(xxx, t).
The so-called fundamental principle of kinematics [19] states that the velocityuuu(xxx, t) and
accelerationaaa(xxx, t) at a given timet and fixed positionxxx (Eulerian description) is equal to the
velocity ẊXX(χ , t) and acceleration̈XXX(χ , t) of a particle that is present at that position and at
that instant (Lagrangian description). Thus,

(2.2) uuu(xxx, t) =
d
dt

XXX(χ , t)
∣∣∣∣
XXX(χ ,t)=xxx

, aaa(xxx, t) =
d2

dt2 XXX(χ , t)

∣∣∣∣∣
XXX(χ ,t)=xxx

As a corollary we have the following exact but implicit equations of particle motion.

(2.3)
d
dt

XXX(χ , t) = uuu(XXX(χ , t), t),
d2

dt2 XXX(χ , t) =
d
dt

ẊXX(χ , t) = aaa(XXX(χ , t), t)

3. The X-IVAS scheme.

3.1. Introduction. The explicit time integration of the particle position and velocity
along the streamline results in the following equations of motion.

(3.1)
d
dt

XXX(χ , t) = uuu(XXX(χ , t), tn),
d
dt

ẊXX(χ , t) = aaa(XXX(χ , t), tn)
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Recall that the data corresponding to the dependent variables is stored with the particles
which form a sufficiently large yet finite set. In other words,the data at any given time is
available as discrete samples at the spatial locations occupied by the particles. Data inter-
polation is inevitable to have spatially continuous vectorfields and to solve for the particle
motion. Hence in the equations of motionuuu(xxx, tn) andaaa(xxx, tn), which are unknown for an
arbitraryxxx are replaced by the interpolated counterpartsuuuh(xxx, tn) andaaah(xxx, tn), respectively.
The superscripth represents the discretization size associated to the interpolation. It follows
that the trajectory obtained from these interpolated vector fields needs to be represented as
XXXh(χ , t).

In the following we describe the X-IVAS scheme to integrate the equations of particle
motion from timetn to tn+1 as a four step process.

Step 1: Projection. This step involves the projection of vector fields stored with the
particles onto a simplicial mesh. Consider a simplicial mesh over the problem domain and
a set of characteristic domains corresponding to every nodeof the mesh. LetP i be an
operator that projects data onto a mesh node with indexi from a set of sample points in the
corresponding characteristic domain. Using this projection operator we calculate the velocity
ūuui(tn) and acceleration̄aaai(tn) vector fields at the mesh nodes as follows.

(3.2) ūuui(tn) := P
i [ẊXX(χ , tn)], āaai(tn) := P

i [ẌXX(χ , tn)]

This projection step is unnecessary whentn = 0 where we can obtain̄uuui(0) and āaai(0)
directly from the prescribed initial conditions.

Step 2: Interpolation. In this step we do a piecewise linear interpolation of vector fields
projected onto the mesh nodes. Using the velocityūuui(tn) and acceleration̄aaai(tn) vector fields
at the mesh nodes we construct a piecewise linear interpolation of these vector fields as fol-
lows.

(3.3) uuuh(xxx, tn) := Ni(xxx)ūuui(tn), aaah(xxx, tn) := Ni(xxx)āaai(tn)

In the above equation Ni(xxx) represents the piecewise linear shape function corresponding
to the nodei. Let xxx j denote the spatial coordinate of nodej, 〈 〉 j denote the average operator
over the indexj andδ i j denote the Kronecker delta. For a given simplex, we can express
Ni(xxx) in terms of its gradient∇∇∇Ni (which is constant within the simplex) and the spatial
coordinatexxx as follows.

(3.4) Ni(xxx) := ∇∇∇Ni ·(xxx−〈xxx j〉 j)+
1i

δ kk

Using the above equationuuuh(xxx, tn) andaaah(xxx, tn) can be expressed within each simplex as
follows.

uuuh(xxx, tn) = [ūuui(tn)⊗∇∇∇Ni ] · (xxx−〈xxx j〉 j)+ 〈ūuu j(tn)〉 j = An ·xxx+bn(3.5)

aaah(xxx, tn) = [āaai(tn)⊗∇∇∇Ni ] · (xxx−〈xxx j〉 j)+ 〈āaa j(tn)〉 j = Cn ·xxx+dn(3.6)

Here⊗ denotes the tensor product. Further,An,bn,Cn anddn are constant tensors eval-
uated for each simplex at timetn and are defined as follows.

An := [ūuui(tn)⊗∇∇∇Ni ], bn := 〈ūuui(tn)〉i−An · 〈xxxi〉i(3.7)

Cn := [āaai(tn)⊗∇∇∇Ni ], dn := 〈āaai(tn)〉i−Cn · 〈xxxi〉i(3.8)
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Step 3: Integration. Here we describe the time integration of the approximate equations
of particle motion. The approximate equations of motion forthe particles in the X-IVAS
scheme can be written as follows.

(3.9)
d
dt

XXXh(χ , t) = uuuh(XXXh(χ , t), tn),
d
dt

ẊXX
h
(χ , t) = aaah(XXXh(χ , t), tn)

Recall that the above equations are expressed in a piecewisemanner as bothuuuh andaaah

are defined in this manner. To be precise, within each simplexthe particle motion is driven
by the following equations which vary from one simplex to another.

(3.10)
d
dt

XXXh(χ , t) = An ·XXXh(χ , t)+bn,
d
dt

ẊXX
h
(χ , t) = Cn ·XXXh(χ , t)+dn

Likewise, the time integration of these equations should also be done in a piecewise
manner. In other words, if a particle tends to exit the current simplex prior to the end of the
time step, its subsequent motion is driven by the equations written for the simplex in which it
tends to enter and so forth until the end of the time step.

Further, certain relationships that existed between the dependent variables in the exact
equations of motions no longer hold for the corresponding variables in the approximate equa-
tions of motion. That is,

(3.11) ẊXX
h
(χ , t) 6= d

dt
XXXh(χ , t), ẌXX

h
(χ , t) :=

d
dt

ẊXX
h
(χ , t) 6= d2

dt2 XXX(χ , t),

Nevertheless, the X-IVAS scheme is consistent in the sense that these relations are re-
covered as the discretization sizeh→ 0. The analytical solution to the pair of equations given
in Eq. (3.10) can be written within each simplex as follows.

XXXh(χ , t) = e(t−tn)An ·XXXh(χ , tn)+

[∫ t

tn
e(t−τ)An

dτ
]
·bn(3.12)

ẊXX
h
(χ , t) = ẊXX

h
(χ , tn)+Cn ·

[∫ t

tn
XXXh(χ ,τ)dτ

]
+(t− tn)dn(3.13)

Note that the particle motion is restricted to the tangent curve ofuuuh(xxx, tn) (i.e. the stream-
line) on which it was located at timetn and is accelerated along this curve up to timetn+1.

Note that the solution for the particle velocitẏXXX
h
(χ , t) is given as a line integral along the

curveXXXh(χ , t). This integral is left hereas isfor compactness and its evaluated form will be
given in the following section.

Equations3.12and3.13 justify the classification of the X-IVAS scheme as aparticle-
based explicit exponential integrator. Unlike classical exponential integrators [8, 17, 2] which
integrate a global system of equations, the X-IVAS scheme integrates analytically a small
and fixed-size local system of equations for the particles. This is an innovative approach that
combines concepts of exponential integrators with the particle percept. On the one hand,
it inherits the stability properties of exponential integrators which allow us to choose larger
time steps. On the other hand, the associated algebra is computationally intensive, i.e. it
is not memory bound. This conceptual setting is ideal for parallel computation which is an
important strategy for faster simulations.

Step 4: Update. In this step we update the dependent variables at timetn+1 and repeat

the process. At the end of the time step we obtainXXXh(χ , tn+1) and ẊXX
h
(χ , tn+1) which are

governed by the kinematics of the flow. The state ofẌXX
h
(χ , tn+1) is governed by the dynamics

of the internal and the external force terms that appear in the momentum balance equation of
the flow.
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3.2. Remarks on the analytical solution. In this section we simplify the analytical
solution given in Eq. (3.12) and Eq. (3.13) and identify relationships among the terms that
appear therein, if any. Consider three matricesP,Q and R which in turn are defined as
functions of a given matrixA and a scalarτ as follows.

(3.14) P(τ ,A) := eτA , Q(τ ,A) :=
∫ τ

0
eξA dξ , R(τ ,A) :=

∫ τ

0

∫ η

0
eξA dξ dη

As it can be seen from the above equation, the considered matrices are exponential func-
tions of the given matrixA. The matrixP is usually called the propagator [4]. The following
relationships can be identified between the matricesP andQ.

Q(τ ,A) =
∫ τ

0
P(ξ ,A)dξ =

[
eτA− I

]
· inv(A) = [P(τ ,A)− I ] · inv(A)(3.15)

⇒ P(τ ,A) = Q(τ ,A) ·A+ I(3.16)

Likewise, the matricesQ andR satisfy the following relationships.

R(τ ,A) =
∫ τ

0
Q(ξ ,A)dξ =

[(
eτA− I

)
· inv(A)− τI

]
· inv(A)(3.17)

R(τ ,A) = [Q(τ ,A)− τI ] · inv(A), ⇒ Q(τ ,A) = R(τ ,A) ·A+ τI(3.18)

In the above equations inv(A) denotes the matrix inverse ofA. Further, the products
involving inv(A) and A in these equations are commutative, i.e. the order in which they
appear are irrelevant. Using these definitions, we can express the analytical solution of the
equations of motion in the X-IVAS scheme as follows.

XXXh(χ , t) = P(t− tn,An) ·XXXh(χ , tn)+Q(t− tn,An) ·bn(3.19)

ẊXX
h
(χ , t) = ẊXX

h
(χ , tn)+(t− tn)dn

+Cn · [Q(t− tn,An) ·XXXh(χ , tn)+R(t− tn,An) ·bn]
(3.20)

Recall that a nodal projection of the data carried by the particles onto the background
mesh is done after every time step and the tensorsAn,bn,Cn anddn have to be recalculated
for each element using the projected data. It follows that the matricesP,Q andR also need
to be recalculated for each element after every time step.

Note that we need the exit points of the particles on the simplex boundary to perform
the piecewise integration of particle motions described earlier in the paragraph following Eq.
(3.10). To find the exit points we need to solve the intersection of their trajectories with
the simplex boundary. A procedure to solve for the exit points using Newton linearisation
was presented by Kipfer et al. [13]. In this procedure the matricesP and Q have to be
evaluated at every iteration as the time increments need notbe uniform. Should one decide
to useanalytical sub-stepping procedures to arrive at the exit point and if a constantsub
time step is used for all the particles throughout the sub-stepping procedure, then we need
to compute these matrices for each element just once. The incremental method [15] for
computing tangent curves and the analytical time stepping algorithm called ANTS [3] are
based on this idea.

4. Functions of matrices.

4.1. Introduction. Functions of matrices can be defined in various yet equivalent ways,
a comprehensive presentation of which is made by Higham [7]. Let the size ofA be n×n
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and assume that a given scalar function f(λ ) takes well-defined values (including values as-
sociated with derivatives where appropriate) at the eigenvalues ofA denoted by the sequence
Z := {λ1, λ2, . . ., λn}. We will use the Newton form of the polynomial interpolationdefini-
tion for f(A). The coefficients in the Newton form of the interpolating polynomial have the
algebraic structure of divided differences.

We denote thekth divided difference of f(λ ) on the subsequenceZk
i := {λi , λi+1, . . .,

λi+k} as f[λi ; λi+1; . . .; λi+k] and define it using the following recurrence equations.

f[λi ] := f(λi)(4.1)

f[λi ;λi+1; . . . ;λi+k] :=
f[λi+1;λi+2; . . . ;λi+k]− f[λi ;λi+1; . . . ;λi+k−1]

λi+k−λi
(4.2)

λi = λi+1 = · · ·= λi+k⇒ f[λi ;λi+1; . . . ;λi+k] :=
1
k!

∂ k

∂λ k f(λ )
∣∣∣∣
λ=λi

(4.3)

It is a well-known result that the value of f[λi ; λi+1; . . .; λi+k] does not depend on the
order ofλi , λi+1, . . ., λi+k in Zk

i . The Newton form of the polynomial interpolation definition
for f(A) is

(4.4) f(A) = f[λ1]I +
n−1

∑
k=1

f[λ1;λ2; . . . ;λ1+k](A−λ1I)(A−λ2I) · · ·(A−λkI)

The computation ofnearly confluentdivided differences are known to suffer from sub-
tractive cancellations in floating point arithmetic. Thus,this definition givesa priori warning
about thegradual loss of significance in the computation of f(A) in the neighbourhood of
removable singularities. By grouping terms prone to loss ofsignificance (as divided differ-
ences) it also paves way to systematically design procedures for the stable computation of
f(A). Moreover this definition is independent of the Jordan structure of A [7, p. 6] which
makes it convenient to implement in a computer program.

It is possible to write thekth divided difference f[λ1; λ2; . . .; λ1+k] as follows.

(4.5) f[λ1;λ2; . . . ;λ1+k] =
1+k

∑
i=1

f(λi)

∏ j 6=i(λi−λ j)
, j ∈ {1,2, . . . ,1+k}

Using the above identity we can transform the formulas givenin this article to compute
tangent curves to the ones presented by Nielson and Jung [15]. Algebraic rearrangements us-
ing this identity do not avoid existing issues related to loss of significance and makes matters
worse by obscuring them. The example in§5.1drives this point home.

To express the closed-form solution of the X-IVAS scheme we need to consider the cases
wheren= 2 (2D) andn= 3 (3D). Forn= 3, we can express f(A) as follows.

(4.6) f(A) = f(λ1)I + f[λ1;λ2](A−λ1I)+ f[λ1;λ2;λ3](A−λ1I)(A−λ2I)

Without loss of generality we assume that the eigenvalueλ3 is a real number and the
eigenvaluesλ1 andλ2 might be complex numbers. Complex eigenvalues will always occur
in conjugate pairs, i.e.{λ1,λ2} = {λc,λ ∗c }. The subscript c indicates that it is a complex
number and the superscript∗ indicates that it is a complex conjugate.

Although Eq. (4.6) holds for all eigenvalues, this form is convenient to implement in a
computer program when the eigenvalues are real numbers. In the case of complex eigenvalues
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Eq. (4.6) can be simplified to evaluate f(A) as follows.

(4.7) f(A) =
Im[ f ∗(λc)λc]

Im[λc]
I +

Im[f(λc)]

Im[λc]
A

+

[
f(λ3) Im(λc)−λ3 Im[f(λc)]− Im[ f ∗(λc)λc]

Im[λc]

][
A2−2Re(λc)A+ |λc|2I
λ 2

3 −2Re(λc)λ3+ |λc|2
]

Here, the functions Re(λc) and Im(λc) return the real and imaginary parts of a complex
argumentλc, respectively.

4.2. Formulas for exponential functions of3×3 matrices. In this section we consider
the case when f(λ ) := exp(τλ ) and write the expressions for the matricesP(τ ,A), Q(τ ,A)
and R(τ ,A) which were defined earlier in Eq. (3.14). It is straightforward to verify the
following results.

∫ τ

0
eξ λ dξ =

eτλ −1
λ

= τ exp[0;τλ ](4.8)

∫ τ

0

∫ η

0
eξ λ dξ dη =

eτλ −1− τλ
λ 2 = τ2exp[0;0;τλ ](4.9)

Following this line we define two auxiliary functions q(x) and r(x) which are divided
differences of the exponential function.

q(x) := exp[0;x] =





ex−1
x

if x 6= 0,

1 if x= 0.
(4.10)

r(x) := exp[0;0;x] = q[0;x] =





ex−1−x
x2 if x 6= 0,

1
2

if x= 0.
(4.11)

Using these auxiliary functions we can expressP(τ ,A),Q(τ ,A) andR(τ ,A) as follows.

P(τ ,A) = eτλ1I + τ exp[τλ1;τλ2](A−λ1I)+ τ2exp[τλ1;τλ2;τλ3](A−λ1I)(A−λ2I)
(4.12)

Q(τ ,A) = τ q(τλ1)I + τ2q[τλ1;τλ2](A−λ1I)+ τ3q[τλ1;τλ2;τλ3](A−λ1I)(A−λ2I)
(4.13)

R(τ ,A) = τ2 r(τλ1)I + τ3 r[τλ1;τλ2](A−λ1I)+ τ4 r[τλ1;τλ2;τλ3](A−λ1I)(A−λ2I)
(4.14)

The expression forP(τ ,A) is a trivial specialization of Eq. (4.6) for f(λ ) := exp(τλ ). We
obtainQ(τ ,A) by integrating the terms inP(ξ ,A) with respect toξ ; cf. Eq. (3.15). Likewise,
R(τ ,A) is obtained by integrating the terms inQ(ξ ,A) with respect toξ ; cf. Eq. (3.17). We
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have used the following results to arrive at these equations.

∫ τ

0
ξ exp[ξ λ1;ξ λ2]dξ = τ

exp[0;τλ2]−exp[0;τλ1]

λ2−λ1
= τ2q[τλ1;τλ2](4.15)

∫ τ

0
ξ 2exp[ξ λ1;ξ λ2;ξ λ3]dξ =

∫ τ

0
ξ

exp[ξ λ2;ξ λ3]−exp[ξ λ1;ξ λ2]

λ3−λ1
dξ

= τ3q[τλ1;τλ2;τλ3]

(4.16)

∫ τ

0

∫ η

0
ξ exp[ξ λ1;ξ λ2]dξ dη = τ2 exp[0;0;τλ2]−exp[0;0;τλ1]

λ2−λ1
= τ3 r[τλ1;τλ2](4.17)

∫ τ

0

∫ η

0
ξ 2exp[ξ λ1;ξ λ2;ξ λ3]dξ dη =

∫ τ

0

∫ η

0
ξ

exp[ξ λ2;ξ λ3]−exp[ξ λ1;ξ λ2]

λ3−λ1
dξ dη

= τ4 r[τλ1;τλ2;τλ3]

(4.18)

Let α,β be real numbers and consider a complex numberλc as defined below.

(4.19) i:=
√
−1, λc := α + iβ , ⇒ λ ∗c = α− iβ

The cardinal sine function sinc(x) is defined as follows.

(4.20) sinc(x) :=





sin(x)
x

if x 6= 0,

1 if x= 0.

Further, define two auxiliary functionsΨ(x,y) andΦ(x,y) as follows.

Ψ(x,y) := cos(y)−xsinc(y)(4.21)

Φ(x,y) := exp[−iy; iy;x] =





ex−Ψ(−x,y)
x2+y2 if (x,y) 6= (0,0),

1
2

if (x,y) = (0,0).
(4.22)

In the case of complex eigenvalues, i.e.{λ1,λ2}= {λc,λ ∗c }we can evaluateP(τ ,A),Q(τ ,A)
andR(τ ,A) as follows.

P(τ ,A) = eτα[Ψ(τα,τβ )I + τ sinc(τβ )A+ τ2 Φ(τλ3− τα,τβ )[(A−αI)2+β 2I ]
]

(4.23)

Q(τ ,A) = τeτα[sinc(τβ )I + τ Φ(−τα,τβ )(A−2αI)

+ τ2 Φ(⋆,τβ )[−τα;τλ3− τα][(A−αI)2+β 2I ]
](4.24)

R(τ ,A) = τ2eτα[Φ(−τα,τβ )I + τ Φ(⋆,τβ )[−τα;−τα](A−2αI)

+ τ2 Φ(⋆,τβ )[−τα;−τα;τλ3− τα][(A−αI)2+β 2I ]
]

(4.25)

The expression forP(τ ,A) is a trivial specialization of Eq. (4.7) for f(λ ) := exp(τλ )
and the choice of the auxiliary functionsΨ(x,y) andΦ(x,y) is motivated by the structure of
the same. The notationΦ(⋆,y)[x1;x2] means that the divided differences are to be taken with
respect to the variable in whose place the symbol⋆ appears. The rest of this section describes
some results which were used to arrive at the expressions forQ(τ ,A) andR(τ ,A) from the
expression forP(τ ,A).
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The following integrals are straightforward.

∫ τ

0
eξ α cos(ξ β )dξ =

eτα [α cos(τβ )+β sin(τβ )]−α
α2+β 2 = τeτα [sinc(τβ )− τα Φ(−τα,τβ )]

(4.26)

∫ τ

0
eξ α sin(ξ β )dξ =

eτα [α sin(τβ )−β cos(τβ )]+β
α2+β 2 = τ2βeτβ Φ(−τα,τβ )(4.27)

⇒
∫ τ

0
eξ α Ψ(ξ α,ξ β )dξ = τeτα [sinc(τβ )−2τα Φ(−τα,τβ )](4.28)

Using Eqs. (4.27) and (4.28) we obtain the following result.
∫ τ

0
eξ α ξ 2 Φ(ξ λ3−ξ α,ξ β )dξ =

∫ τ

0

eξ λ3−eξ α [Ψ(ξ α,ξ β )+ξ λ3sinc(ξ β )]
(λ3−α)2+β 2 dξ(4.29)

= τ
[

q(τλ3)−eτα [sinc(τβ )+ τ(λ3−2α)Φ(−τα,τβ )]
(λ3−α)2+β 2

]
(4.30)

= τeτα

[
[eτλ3−1]e−τα − τλ3[sinc(τβ )+ τ(λ3−2α)Φ(−τα,τβ )]

τλ3[(λ3−α)2+β 2]

]
(4.31)

= τeτα

[
eτλ3−τα −Ψ(τα− τλ3,τβ )− τ2[(λ3−α)2+β 2]Φ(−τα,τβ )

τλ3[(λ3−α)2+β 2]

]
(4.32)

= τ3eτα
[

Φ(τλ3− τα,τβ )−Φ(−τα,τβ )
(τλ3− τα)− (−τα)

]
= τ3eτα Φ(⋆,τβ )[−τα,τλ3− τα](4.33)

The results given in Eqs. (4.27), (4.28) and (4.33) are used to obtainQ(τ ,A) from
P(τ ,A). Substitutingλ3 = 0 in Eq. (4.33) we get the following result.

(4.34)
∫ τ

0
eξ α ξ 2 Φ(−ξ α,ξ β )dξ = τ3eτα Φ(⋆,τβ )[−τα;−τα]

Using Eqs. (4.33) and (4.34) we arrive at the following result.

∫ τ

0
eξ α ξ 3 Φ(⋆,ξ β )[−ξ α;ξ λ3−ξ α]dξ =

∫ τ

0
eξ α ξ 2 Φ(ξ λ3−ξ α,ξ β )−Φ(−ξ α,ξ β )

λ3
dξ

(4.35)

= τ3eτα
[

Φ(⋆,τβ )[−τα;τλ3− τα]−Φ(⋆,τβ )[−τα;−τα]

λ3

]
(4.36)

= τ4eτα Φ(⋆,τβ )[−τα;−τα;τλ3− τα](4.37)

The results given in Eqs. (4.27), (4.34) and (4.37) are used to obtainR(τ ,A) from
Q(τ ,A).

REMARK: Note that the equations forP(τ ,A), Q(τ ,A) andR(τ ,A) are expressed (3D
problems wheren = 3) as the sum of three terms. Due to the properties of the polynomial
in the Newton’s form, the corresponding equations forn= 2 (2D problems) can be obtained
from the equations forn= 3 by dropping out the third term.

4.3. Formulas for the eigenvalues of3×3 matrices. Let det(A) and tr(A) denote the
determinant and trace of the matrixA, respectively. Whenn= 3, the characteristic equation
of the matrixA is given by the following.

det(A−λ I) = 0(4.38)

⇒ λ 3− tr(A)λ 2+
tr(A)2− tr(A2)

2
λ −det(A) = 0(4.39)



NUMERICALLY STABLE FORMULAS FOR THE X-IVAS SCHEME 11

The solution of the above cubic equation can be found by Cardano’s method (see [20]).
The calculation steps of the same are summarized below.

B := A− tr(A)

3
I , Q :=

tr(B2)

6
, R :=

det(B)
2

(4.40)

λ1 =
tr(A)

3
+

3
√

R−
√

R2−Q3e−i(2π/3)+
3
√

R+
√

R2−Q3ei(2π/3)(4.41)

λ2 =
tr(A)

3
+

3
√

R−
√

R2−Q3e−i(4π/3)+
3
√

R+
√

R2−Q3ei(4π/3)(4.42)

λ3 =
tr(A)

3
+

3
√

R−
√

R2−Q3+
3
√

R+
√

R2−Q3(4.43)

We follow the convention that the cube roots that appear in the above expressions are real
and single valued. The three admissible solutions to the cube root function are already taken
into consideration in the above formula.

Note that when the discriminant(R2−Q3) > 0, we obtain complex eigenvalues. In this
case, the formulas are already in a suitable format for implementation. When(R2−Q3)≤ 0
we obtain real eigenvalues and the formulas for the same can be written in a form better suited
for implementation as follows.

(4.44) θ := arccos(
R√
Q3

), λn =
tr(A)

3
+2

√
Qcos(

2πn+θ
3

)

where arccos() denotes the inverse cosine function whose range is defined tobe the
closed interval[0,π]. The formula for the real eigenvalues given in Eq. (4.44) guarantees
λ1≤ λ2≤ λ3. This can be verified using the following results.

(4.45) 0≤ θ ≤ π ⇒

−1≤ cos(
2π +θ

3
)≤ −1

2
−1
2
≤ cos(

4π +θ
3

)≤ 1
2

1
2
≤ cos(

6π +θ
3

)≤ 1

⇒

tr(A)

3
−2

√
Q≤ λ1≤

tr(A)

3
−
√

Q

tr(A)

3
−
√

Q≤ λ2≤
tr(A)

3
+
√

Q

tr(A)

3
+
√

Q≤ λ3≤
tr(A)

3
+2

√
Q

Note that in the case of two equal eigenvalues, it will be eitherλ1 = λ2 or λ2 = λ3. In all
the situations the eigenvalueλ3 is always a real number.

5. Stable computation of formulas using finite precision.

5.1. Introduction. The issue with stable computation of formulas is best explained by
an example. The example consists in the naı̈ve computation of the second-order divided
difference exp[1;1+ ε;1+2ε ]. We denote byFormula1 theas isexpression of the second-
order divided difference.

x1 = 1, x2 = 1+ ε , x3 = 1+2ε(5.1)

exp[x1;x2;x3] =
1

x3−x1

[
ex3−ex2

x3−x2
− ex2−ex1

x2−x1

]
(5.2)

Using Eq. (4.5) the above equation can be rearranged in an algebraically equivalent form
which we denote asFormula2.

(5.3) exp[x1;x2;x3] =
ex1

(x1−x2)(x1−x3)
+

ex2

(x2−x1)(x2−x3)
+

ex3

(x3−x1)(x3−x2)
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TABLE 1
Loss of significant digits in the naı̈ve computations ofexp[1;1+ ε;1+2ε].

ε Formula1 computation Exact 16 digits Formula2 computation

10−01 1.503 335 165 136 320 1.503335165136325 1.503 335 165 136292
10−02 1.372 811 947 550 877 1.372811947550820 1.372 811 947 550 871
10−03 1.360 500 848424467 1.360500848315854 1.360 500 848 386436
10−04 1.359 276 824430971 1.359276836249607 1.359 276 831150054
10−05 1.359 152790283402 1.359154505717948 1.359 151840209960
10−06 1.359 135026857928 1.359142273371229 1.359375
10−07 1.332267628772320 1.359141050143621 1.359375
10−08 2.220446084949470 1.359140927820931 4
10−09 0 1.359140915588663 256
10−10 0 1.359140914365436 0
10−11 −2220445.681810107 1.359140914243114 −4194304
10−12 −222005130.3996447 1.359140914230881 −268435456
10−13 0 1.359140914229658 17179869184
10−14 2223999815985.422 1.359140914229536 4398046511104
10−15 0 1.359140914229523 0

All the expressions that appear in the formulas given by Nielson and Jung [15] are ex-
pressed in the above simplified form.

Table1 illustrates the results of naı̈ve computations of both formulas using double pre-
cision floating point arithmetic asε → 0. The exact values up to 16 digits of precision are
given in the third column. The significant digits in both formula computations that coincide
with the exact values are highlighted in green colour. We observe a gradual loss of significant
digits in both formula computations which deteriorates asε → 0. Forε ≤ 10−8 we lose all
the significant digits in both formula computations.

This example demonstrates two features: 1) algebraic rearrangements using Eq. (4.5)
does not avoid loss of significance inFormula2 and 2) the bad fame of nearly confluent di-
vided differeces is a blessing in disguise as it gives a priori warning about loss of significance
in Formula1. In other words, due to the algebraic structure ofFormula2 the loss of signifi-
cance in the computations might go unnoticed or misdiagnosed.

In the analytical solution of the X-IVAS scheme, the following expressions might suffer
from cancellation errors in a straight-forward (naı̈ve) computation of the same using finite
precision arithmetic.

(5.4) exp[τλ1;τλ2], exp[τλ1;τλ2;τλ3], q(τλ1), q[τλ1;τλ2], q[τλ1;τλ2;τλ3],

r(τλ1), r[τλ1;τλ2], r[τλ1;τλ2;τλ3], Φ(−τα,τβ ), Φ(τλ3− τα,τβ ),
Φ(⋆,τβ )[−τα;−τα], Φ(⋆,τβ )[−τα;τλ3− τα], Φ(⋆,τβ )[−τα;−τα;τλ3− τα]

The above expressions can be identified as the elements of thefollowing nested set of
divided differences.

(5.5)
{{

exp[x1;x2],q(x)
}
,
{

exp[x1;x2;x3],q[x1;x2], r(x),Φ(x,y)
}
,

{
q[x1;x2;x3], r[x1;x2],Φ(⋆,y)[x1;x2]

}
,
{

r[x1;x2;x3],Φ(⋆,y)[x1;x1;x2]
}}
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The order of the divided differences gradually increase from first-order in the first subset
to fourth-order in the last subset. All elements of a subset are particular cases of the first
element of that subset. For instance,

(5.6) q[x1;x2] = exp[0;x1;x2], r(x) = exp[0;0;x], Φ(x,y) = exp[−iy; iy;x]

Following this line, it is possible to express all the divided differences in Eq. (5.5) as
the divided differences of the exponential function; The details of the same are given in§5.5.
As ε → 0, the rate of loss of significant digits in a naı̈ve computation of divided differences
is generally equal to the order of the same. In the consideredexample, i.e. exp[x1;x2;x3]
we loose significant digits at a second order rate. Followingthis line, näıve computation of
the third and the fourth subsets in Eq. (5.5) are meaningless forε ≤ 10−5 andε ≤ 10−4,
respectively.

An algorithm for the accurate computation of divided differences of the exponential func-
tion was presented by McCurdy et.al [14]. Following this line, a similar algorithm for the ac-
curate computation of divided differences of the auxiliaryfunctions q() and r(), cf. Eq. (4.10)
and Eq. (4.11), was presented by Caliari [1]. These algorithms have a wider scope, i.e. they
were designed to evaluate functions ofn×n matrices appearing in exponential integrators for
large systems of equations (ordinary or differential). A user who already has these algorithms
implemented, might just invoke them to evaluate the divideddifferences listed in Eq. (5.4)
and use them in the formulas forP(τ ,A), Q(τ ,A) andR(τ ,A) given in §4.2. This would
address the numerical stability issues in the formula computations.

In what follows, we present a simple yet stable piecewise definitions for divided differ-
ences. The methodology used to arrive at these piecewise definitions is of limited scope, i.e.
this approach is not suitable for arbitrarykth order divided differences. Nevertheless, it is
well suited for the at most fourth order divided differencesfound in the formulas forP(τ ,A),
Q(τ ,A) andR(τ ,A).

5.2. Optimal series approximation of divided differences.In this section we establish
optimal series approximation of divided differences of a given function f(x). Consider the
sequence{x1,x2, . . . ,xn} and some definitions related to this sequence.

xa :=
1
n

n

∑
i=1

xi , x̃i := xi−xa, X := {x̃1, x̃2, . . . , x̃n}(5.7)

Xp := choose(X ,2),

(
n
k

)
:=

n!
k!(n−k)!

, x2
p :=

(n
2)

∑
i=1

2

∏
j=1

Xp(i, j)(5.8)

wherexa is the mean value of the sequence andx̃i is the fluctuation ofxi about the
mean. The functionchoose(X ,2) returns a sequenceXp consisting of pair-combinations
(2−combinations) of elements fromX . In Xp(i, j) the indexi points to a combination and
index j points to an element within this combination. The sum of the product of the pairs in
Xp is stored as the square of the auxiliary variablexp. The result is stored asx2

p to highlight the
fact that it is a second order term. Likewise, the triple, quadruple and quintuple combinations
of X are denoted asXt, Xq andXv, respectively. Further, the sum of the product of the
triples, quadruples and quintuples are stored inx3

t , x4
q andx5

v, respectively. Followingx2
p, the

superscripts (which are ordinary powers) inx3
t , x4

q andx5
v highlight the fact that they are third,
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fourth and fifth order terms, respectively. Thus,

Xt := choose(X ,3), Xq := choose(X ,4), Xv := choose(X ,5)(5.9)

x3
t :=

(n
3)

∑
i=1

3

∏
j=1

Xt(i, j), x4
q :=

(n
4)

∑
i=1

4

∏
j=1

Xq(i, j), x5
v :=

(n
5)

∑
i=1

5

∏
j=1

Xv(i, j)(5.10)

Using the above definitions, we can derive1 the following identity for the divided differ-
ences of f(x). The mean value theorem guarantees the existence of aξ in the smallest interval
containing{x1,x2, . . . ,xn} such that,

f(n)(ξ ) :=
∂ n

∂λ n f(λ )
∣∣∣∣
λ=ξ

, f(xn) = f(ξ )+
∞

∑
n=1

(xn−ξ )n f(n)(ξ )
n!

(5.11)

f[x1;x2; . . . ;xn] =
f(n−1)(xa)

(n−1)!
−x2

p
f(n+1)(xa)

(n+1)!
+x3

t
f(n+2)(xa)

(n+2)!
+(x4

p−x4
q)

f(n+3)(xa)

(n+3)!

+(x5
v−2x2

px3
t )

f(n+4)(ξ )
(n+4)!

(5.12)

Note that the first term in the above series expansion provides a second-order approxi-
mation to f[x1;x2; . . . ;xn]. If the series is expanded with respect to any point other than xa,
the first-order terms are resurrected. Thus, the approximation is optimal for the choicexa.
For the first-order divided difference f[x1;x2], the above equation can be simplified and easily
extended to any number of terms as shown below.

h :=
x2−x1

2
, x2

p =−h2, x2
t = 0, x2

q = 0, x2
v = 0(5.13)

f[x1;x2] = f(1)(xa)+h2 f(3)(xa)

3!
+ · · ·+h2n−2 f(2n−1)(xa)

(2n−1)!
+h2n f(2n+1)(ξ )

(2n+1)!
(5.14)

Likewise, for the second-order divided difference f[x1;x2;x3], Eq. (5.12) can be simpli-
fied to the following.

x2
p =−

3
2

x2
σ , x2

σ :=
x̃2

1+ x̃2
2+ x̃2

3

3
, x3

t = x̃1x̃2x̃3, x2
q = 0, x2

v = 0(5.15)

f[x1;x2;x3] =
1
2

f(2)(xa)+
x2

σ
16

f(4)(xa)+
x3

t

120
f(5)(xa)+

x4
σ

320
f(6)(xa)+3x2

σ x3
t
f(7)(ξ )

7!
(5.16)

wherexσ is the standard deviation of the considered sequence. It is possible to relate
xp andxσ for all n and in this work we exploit this relationship as it reduces the number of
arithmetic operations.

(5.17) x2
p =−

n
2

x2
σ

5.3. Double precision floating point numbers.We briefly describe how double pre-
cision floating point numbers are stored in a computer as per the IEEE 754 standard. Any

1As the algebra involved is overwhelming and error-prone, we have used the computer algebra systemMaple

to perform the simplifications and verifications. Thus, human intervention is dedicated to identify patterns and to
discover abstract expressions such asxp, xt, xq, etc.
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decimal floating point number within the range of the double can be written in the normalized
form as follows.

(5.18) Decimal form→ (−1)s2e1. f ≈ s

1

(e+1023)b

11

0. fb

52

← Binary form

← No. of bits stored

In the above equation the booleans∈ {0,1} is called thesign bit, the integere is called the
exponent; −1022≤ e≤ 1023 and the fractionf is called thesignificand. The numbers with a
subscript b are expressed in the binary format. When the binary expression 0. fb is not exactly
representable using 52 bits, it is rounded to the nearest representable number.

5.4. Piecewise definition of divided differences.To control (bound) the loss of signif-
icant digits in the computations of the divided differencesin Eq. (5.5), we present piecewise
definitions for the same. In this approach, we switch the computations to the corresponding
series expansions of the same should the difference of the independent variables be less than
some threshold. These threshold values are chosen such thatwe retain as many significant
digits as possible. This methodology (technique) is simpleand systematic. It is explained in
full detail using an example by means of which we answer the three questions raised in this
context by Kahan and Darcy [12]: 1) What value should be assigned to the threshold in this
technique? 2) How many terms in the series approximation should this technique retain? and
3) How accurate is this technique?

The elements of the first subset of Eq. (5.5) can be computed [14] to machine precision
by rearranging them to the following functional form2.

sinhc(x) :=





sinh(x)
x

if x 6= 0,

1 if x= 0.
(5.19)

exp[x1;x2] = e(x1+x2)/2sinhc

(
x2−x1

2

)
, q(x) = ex/2sinhc

(x
2

)
(5.20)

We now explain the methodology used to arrive at piecewise definitions of divided dif-
ferences using exp[x1;x2;x3] as an example. This term can be written as

(5.21) exp[x1;x2;x3] = ex2 exp[x1−x2;0;x3−x2] = ex2
q(x3−x2)−q(x1−x2)

x3−x1

where the function q(x) is evaluated as shown in Eq. (5.20). Without loss of generality,
we assumex1≤ x2≤ x3. Consequently we have,

∀ξ ∈ [x1,x3], |ξ −x2| ≤ (x3−x1)(5.22)

x2
σ ≤ (x3−x1)

2, |x3
t | ≤ (x3−x1)

3(5.23)

In the computations of divided differences, the loss of significance is due to the subtrac-
tive cancellations that occur in the dependent variables which is brought to prominence after
a division by the difference of the independent variables. Particularly, in Eq. (5.21) the loss
of significant digits is due to the cancellations that occur in the term q(x3−x2)−q(x1−x2).
This term admits the following series expansion.

(5.24) q(x3−x2)−q(x1−x2) =
x3−x1

2
[1+(xa−x2)+ · · · ]

2In this form the difference of the independent variables appear symbolically as input to a function that could
be evaluated to machine precision
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Let x3− x1 = 2−m wherem≥ 1 is an integer. Then, Eq. (5.22) implies that the higher
order terms in Eq. (5.24) tend to zero asm→ ∞. Thus,

(5.25)
x3−x1 = 2−m

x1≤ x2≤ x3

}
⇒ q(x3−x2)−q(x1−x2) = O(2−(m+1))

When written in the normalized decimal form (cf. Eq. (5.18)), the exponent of q(x3−x2)
and q(x1−x2) will be 0 and−1, respectively. This can be inferred using Eq. (5.22) as shown
below.

0≤ x≤ 2−m⇒ 20≤ q(x)< 21, −2m≤ x≤ 0⇒ 2−1≤ q(x)< 20(5.26)

0≤ (x3−x2)≤ 2−m⇒ q(x3−x2) = (−1)0201. f̂ ≈ 0 1023b 0. f̂b(5.27)

−2−m≤ (x1−x2)≤ 0⇒ q(x1−x2) = (−1)02−11. f̃ ≈ 0 1022b 0. f̃b(5.28)

where f̂ and f̃ denote the significands of q(x3− x2) and q(x1− x2), respectively. The
subtraction q(x3−x2)−q(x1−x2) can be described schematically as follows.

(5.29) q(x3−x2)−q(x1−x2) = (−1)0201. f̂ − (−1)02−11. f̃

≈ 0 1023b 0. f̂b − 0 1022b 0. f̃b normalized form

= 0 1023b 0. f̂b − 0 1023b 0.1 f̃b align radix points

= 0 1023b 0.{0}m1 fb O(2−(m+1))

= 0 (1022−m)b 0. fb normalized form

The notation{0}m means that the bits within the braces are repeatedm times. We see
that among the stored 52 bits off̂b and f̃b, the firstm bits are lost due to cancellation. After
subtraction, the unit bit at them+1th place will become the implicit bit of the result which is
not stored, cf. Eq. (5.18). The exponent of the result will become−(m+1). The significand
of the result will become the remaining bits denoted in Eq. (5.29) as fb of which only 51−m
bits are significant.

We see that if exp[x1;x2;x3] is evaluated using Eq. (5.21) we loose significant bits at a first
order rate. We will call this form of computation as thedirect computation. If x1 ≤ x2 ≤ x3

andx3− x1 = 2−m then in the direct computation of exp[x1;x2;x3] we are left with 51−m
significant bits in the significand.

Using Eq. (5.16) we can write the series expansion for exp[x1;x2;x3] as follows.

(5.30) exp[x1;x2;x3] =
exa

2
S , S :=

[
1+

x2
σ
8

+
x3

t

60
+

x4
σ

160
+

x2
σ x3

t

840
+ · · ·

]

The above form to evaluate exp[x1;x2;x3]will be called as theseries computation. Clearly,
in the series computation we do not find removable singularities which imply that subtractive
cancellations (if any) are not brought to prominence. However, the truncation of the series
will introduce an error which will limit the number of significant digits in the series compu-
tation that match those in an exact computation. When the seriesS is truncated after the
first n terms it will be denoted asSn. As exp(xa)/2 can be evaluated to machine precision,
the number of significant digits in the series computation isessentially limited by the term
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Sn. The seriesS when written in the normalized decimal form has a zero exponent when
x1≤ x2≤ x3 andx3−x1 = 2−m. This can be inferred using Eqs. (5.16) and (5.23) as follows.

∃ξ ∈ [x1,x3] such that,
exa

2

[
1+

x2
σ
8

+
x3

t

60
+ · · ·

]
=

exa

2
+

x2
σ

16
eξ(5.31)

⇒ 1+
x2

σ
8

+
x3

t

60
+ · · ·= 1+

x2
σ
8

eξ−xa(5.32)

⇒ 20≤ 1+
x2

σ
8

eξ−xa ≤ 1+2−(2m+3)e2−m
< 21(5.33)

It follows that all terms except the first one contribute to the significand ofS . Thus,

(5.34) S = (−1)0201. f ≈ 0 1023b 0. fb

Hence, whenS is replaced bySn, the associated truncation error can be understood
as to limit the number of significant digits in the series computation. The truncation error
associated toSn is denoted asEn. From Eqs. (5.23) and (5.30) we infer,

E1 = O

(
x2

σ
8

)
≤O(2−(2m+3)), E2 = O

(
x3

t

60

)
≤O(2−(3m+6))(5.35)

E3 = O

(
x4

σ
160

)
≤O(2−(4m+8)), E4 = O

(
x2

σ x3
t

840

)
≤O(2−(5m+10))(5.36)

ExpressingSn = S −En in the double storage format we get,

S1≈ 0 1023b 0. fb − 0 1023b 0.{0}2m+21. . .(5.37)

S2≈ 0 1023b 0. fb − 0 1023b 0.{0}3m+51. . .(5.38)

S3≈ 0 1023b 0. fb − 0 1023b 0.{0}4m+71. . .(5.39)

S4≈ 0 1023b 0. fb − 0 1023b 0.{0}5m+91. . .(5.40)

whereEn is written after the alignment of radix points and the remaining digits in the
significands are denoted by ellipsis. This implies that we have (2m+2),(3m+5),(4m+7)
and(5m+9) significant digits inS1,S2,S3 andS4, respectively.

For eachSn we solve form by matching the accuracy of the series computation with
the one obtained in the direct computation. In this way, we obtain the threshold value of
(x3−x1) = 2−m and the lower bound for the number of significant digitsnsd in a piecewise
computation of exp[x1;x2;x3]. Thus,

S1 : 51−m= 2m+2 ⇒ m= 16, nsd= 34 bits≈ 11 decimal digits(5.41)

S2 : 51−m= 3m+5 ⇒ m= 12, nsd= 39 bits≈ 12 decimal digits(5.42)

S3 : 51−m= 4m+7 ⇒ m= 9, nsd= 42 bits≈ 13 decimal digits(5.43)

S4 : 51−m= 5m+9 ⇒ m= 7, nsd= 44 bits≈ 14 decimal digits(5.44)

In the above equations, the solution form is rounded to the nearest integer. Using this
roundedm we estimatensd as the minimum of the number of significant digits found in the
direct and the series computations. As the loss of significant digits is bounded, the piecewise
computation of exp[x1;x2;x3] is stable.
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TABLE 2
Loss of significance controlled in the piecewise computations ofexp[1;1+ ε;1+2ε].

ε Formula3 computation Exact 16 digits Formula4 computation

10−01 1.503335165136323 1.503335165136325 1.503335165136323
10−02 1.372811947550791 1.372811947550820 1.372811947550791
10−03 1.360500848316 010 1.360500848315854 1.360500848315854
10−04 1.359276836253 229 1.359276836249607 1.359276836249607
10−05 1.359154505691 532 1.359154505717948 1.359154505717948
10−06 1.359142273371116 1.359142273371229 1.359142273371229
10−07 1.359141050143620 1.359141050143621 1.359141050143622
10−08 1.359140927820931 1.359140927820931 1.359140927820931
10−09 1.359140915588663 1.359140915588663 1.359140915588663
10−10 1.359140914365436 1.359140914365436 1.359140914365436
10−11 1.359140914243114 1.359140914243114 1.359140914243114
10−12 1.359140914230881 1.359140914230881 1.359140914230881
10−13 1.359140914229658 1.359140914229658 1.359140914229658
10−14 1.359140914229536 1.359140914229536 1.359140914229536
10−15 1.359140914229524 1.359140914229523 1.359140914229524

The numerical test presented in§5.1 is repeated here and the computations of the piece-
wise definitions are shown in Table2. The piecewise definitions consideringS1 andS4 for
the series computations are calledFormula3 andFormula4, respectively. The significant dig-
its in both formula computations that differ from the exact values are highlighted in green
color. The lower bounds for the number of significant digits given in Eqs. (5.41) and (5.44)
are reproduced in this test forFormula3 andFormula4, respectively.

5.5. Stable formulas for exponential divided differences.Following the methodology
described in the previous section we present stable piecewise definitions of all the expressions
that belong to the subsets in Eq. (5.5). In the series computation of each piecewise definition,
we consider the first four terms in the corresponding series expansion. Recall that the expo-
nential function is its own derivative. This result along with the abstraction (e.g.xp,xt etc.) in
the optimal series expansion permits us to use multiple terms in the series expansion without
incurring substantial computational cost.

The elements of the first subset in Eq. (5.5) can be evaluated to machine precision without
resorting to a series computation, cf. Eq. (5.20). The first element of the second subset, i.e.
exp[x1;x2;x3] was used as an example to describe the details of the piecewise computation
technique in the previous section. The stable piecewise definition of the same whenx1 ≤
x2≤ x3 can be summarized as follows.

(5.45) exp[x1;x2;x3] =





ex2
q(x3−x2)−q(x1−x2)

x3−x1
if (x3−x1)> 2−7

exa

2

[
1+

x2
σ
8

+
x3

t

60
+

x4
σ

160

]
else

It is essential to sort the arguments lest the series computation should incur a significant
truncation error. The variation in the number of significantdigits nsd in exp[x1;x2;x3] with
respect tom, where(x3− x1) = 2−m, is denoted asnsd(exp[x1;x2;x3],m). Using the above
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stable formula for exp[x1;x2;x3] we obtain,
(5.46)

nsd(exp[x1;x2;x3],m) =





51−m if m< 7

5m+9 if 7≤m< 8.6

52 if m≥ 8.6

,

nsd

m
15971

44

50
52

Recall that q[x1;x2] = exp[x1;0;x2], r(x) = exp[0;0;x] andΦ(x,y) = exp[−iy; iy;x]. Let
sort be a sorting function and̂x1 ≤ x̂2 ≤ x̂3. Then, using Eq. (5.45) a stable formula for
q[x1;x2] is

(5.47) {x̂1, x̂2, x̂3}= sort({x1,0,x2}), q[x1;x2] = exp[x̂1; x̂2; x̂3];

Likewise a stable formula for r(x) is

(5.48) {x̂1,0, x̂3}= sort({0,0,x}), r(x) = exp[x̂1;0;x̂3];

As exp[−iy; iy;x] involves complex numbers we give it special attention. Recall that the
exponential function is holomorphic, i.e. it is complex differentiable in a neighbourhood of
every point in its domain. This implies that it is infinitely differentiable and is equal to its
own Taylor series. Thus, the optimal series approximation of divided differences presented in
§5.2naturally extends to exp[−iy; iy;x]. Following this line, a stable formula forΦ(x,y) can
be obtained as shown below.

z := x+ iy, za :=
x
3
, z2

σ := 2z2
a−

2
3

y2, z3
t := 2za(z

2
a+y2)(5.49)

Φ(x,y) = exp[−iy; iy;x] =





ez/2sinhc(z∗/2)−sinc(y)
z

if |z|> 2−7

eza

2

[
1+

z2
σ
8
+

z3
t

60
+

z4
σ

160

]
else

(5.50)

The above definition assumes the availability of a complex math library which provides
an interface for stable computation of common arithmetic operations, elementary and tran-
scendental functions. This assumption holds for theC++ programming language which is
equipped with the standard math library<complex>.

The divided difference exp[x1;x2;x3;x4] is a template for the elements of the third subset
in Eq. (5.5). The proposed piecewise definition of exp[x1;x2;x3;x4] whenx1 ≤ x2 ≤ x3 ≤ x4

is

(5.51) exp[x1;x2;x3;x4] =





exp[x2;x3;x4]−exp[x1;x2;x3]

x4−x1
if (x4−x1)> 2−6

exa

3!

[
1−

x2
p

20
+

x3
t

120
+

x4
p−x4

q

840

]
else



20 PRASHANTH NADUKANDI

For the above piecewise definition of exp[x1;x2;x3;x4] we obtain
(5.52)

nsd(exp[x1;x2;x3;x4],m) =





43−m if m< 6

5m+10 if 6≤m< 8.4

52 if m≥ 8.4

,

nsd

m
12961

37
40
42

52

It is straightforward to verify that q[x1;x2;x3] = exp[0;x1;x2;x3], r[x1;x2] = exp[0;0;x1;x2]
andΦ(⋆,y)[x1;x2] = exp[−iy; iy;x1;x2]. Using Eq. (5.51) a stable formula for q[x1;x2;x3] is

(5.53) {x̂1, x̂2, x̂3, x̂4}= sort({0,x1,x2,x3}), q[x1;x2;x3] = exp[x̂1; x̂2; x̂3; x̂4];

Likewise a stable formula for r[x1;x2] is

(5.54) {x̂1, x̂2, x̂3, x̂4}= sort({0,0,x1,x2}), r[x1;x2] = exp[x̂1; x̂2; x̂3; x̂4];

The proposed piecewise definition ofΦ(⋆,y)[x1;x2] is

{x̂1, x̂2}= sortabs({x1,x2}), z1 := x̂1+ iy, z2 := x̂2+ iy, za :=
x̂1+ x̂2

4
(5.55)

z2
p := y2+ x̂1x̂2−6z2

a, z3
t := 2za(y

2− x̂1x̂2+4z2
a), z4

q := (y2+z2
a)(x̂1x̂2−3z2

a)(5.56)

Φ(⋆,y)[x1;x2] =





[
exp[x̂1; x̂2]−ez1/2sinhc(z∗1/2)

z∗2
−Φ(x̂1,y)

]
1
z2

if |z2|> 2−6

eza

3!

[
1−

z2
p

20
+

z3
t

120
+

z4
p−z4

q

840

]
else

(5.57)

wheresortabs is a function that sorts its arguments with respect to its absolute value,
i.e. |x̂1| ≤ |x̂2| in Eq. (5.55). The termΦ(x̂1,y) is evaluated using the stable formula given in
Eq. (5.50).

The divided difference exp[x1;x2;x3;x4;x5] is a template for the elements of the third
subset in Eq. (5.5). The proposed piecewise definition of exp[x1;x2;x3;x4;x5] whenx1 ≤
x2≤ x3≤ x4≤ x5 is

(5.58) exp[x1;x2;x3;x4;x5] =





exp[x2;x3;x4;x5]−exp[x1;x2;x3;x4]

x5−x1
if (x5−x1)> 2−4

exa

4!

[
1−

x2
p

30
+

x3
t

210
+

x4
p−x4

q

1680

]
else

For the above piecewise definition of exp[x1;x2;x3;x4;x5] we obtain
(5.59)

nsd(exp[x1;x2;x3;x4;x5],m) =





36−m if m< 4

5m+12 if 4≤m< 8

52 if m≥ 8

,

nsd

m
12841

32
35

52
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It is straightforward to verify that r[x1;x2;x3] = exp[0;0;x1;x2;x3] andΦ(⋆,y)[x1;x2;x3] =
exp[−iy; iy;x1;x2;x3]. Using Eq. (5.58) a stable formula for r[x1;x2;x3] can be written as,

{x̂1, x̂2, x̂3, x̂4, x̂5}= sort({0,0,x1,x2,x3})(5.60)

r[x1;x2;x3] = exp[x̂1; x̂2; x̂3; x̂4; x̂5];(5.61)

The proposed piecewise definition ofΦ(⋆,y)[x1;x2;x3] is

{x̂1, x̂2, x̂3}= sortabs({x1,x2,x3}), z3 := x̂3+ iy(5.62)

za :=
x̂1+ x̂2+ x̂3

5
, z4

q := 6z4
a+

1
2
[11z2

a− (x̂2
1+ x̂2

2+ x̂2
3)](y

2+3z2
a)−2zax̂1x̂2x̂3(5.63)

z2
p :=

1
2
[2y2+5z2

a− (x̂2
1+ x̂2

2+ x̂2
3)], z3

t :=
za

2
[4y2−35z2

a+3(x̂2
1+ x̂2

2+ x̂2
3)]+ x̂1x̂2x̂3

(5.64)

Φ(⋆,y)[x1;x2;x3] =





[
exp[x̂1; x̂2; x̂3]−exp[iy; x̂1; x̂2]

z∗3
−Φ(⋆,y)[x̂1; x̂2]

]
1
z3

if |z3|> 2−4

eza

4!

[
1−

z2
p

30
+

z3
t

210
+

z4
p−z4

q

1680

]
else

(5.65)

where the termΦ(⋆,y)[x̂1; x̂2] is evaluated using the stable formula given in Eq. (5.57).
Note that in the stable formula forΦ(⋆,y)[x̂1; x̂2], just the direct computation of exp[iy; x̂1; x̂2]
is sufficient as the threshold value of|z2| to switch to a series computation is larger for the
former than the latter. This means that the series computation of exp[iy; x̂1; x̂2] will never be
used in the stable computation ofΦ(⋆,y)[x̂1; x̂2]. On the contrary, in the stable computation
of Φ(⋆,y)[x1;x2;x3] the switch to the series computation is governed by some threshold value
of |z3| which includes the possibility|z2| → 0. Therefore, in Eq. (5.65) it is necessary to
evaluate the term exp[iy; x̂1; x̂2] in a piecewise manner.

Following Eqs. (5.45) and (5.50), a stable formula for exp[iy; x̂1; x̂2] can be obtained as
follows.

z1 := x̂1+ iy, z2 := x̂2+ iy, za :=
x̂1+ x̂2+ iy

3
, z̃1 := iy−za(5.66)

z̃2 := x̂1−za, z̃3 := x̂2−za, z2
σ :=

z̃2
1+ z̃2

2+ z̃2
3

3
, z3

t := z̃1z̃2z̃3(5.67)

exp[iy; x̂1; x̂2] =





exp[x̂1; x̂2]−ez1/2sinhc(z∗1/2)
z∗2

if |z2|> 2−7

eza

2

[
1+

z2
σ
8
+

z3
t

60
+

z4
σ

160

]
else

(5.68)

6. Examples. We present two examples to validate the numerical stabilityin the com-
putation of the proposed formulas for the X-IVAS scheme. In these examples the eigenvalues
of the matrixA gradually tends to zero. The symbolic computation of the formulas for the
chosen eigenvalues are done using Maple and the first 16 significant decimal digits are stored
as reference solutions. These reference solutions are usedto measure the relative error in the
formula computations using double precision floating pointarithmetic.

6.1. Example 1. Consider the case when two of the eigenvalues of the matrixA are
complex numbers. Letε := 10−n and choosen ∈ {1,2,3, . . . ,15}. For eachε define the
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TABLE 3
Relative errors in the usual and stable computation whenλ = {ε± i2ε,4ε}.

ε ‖Ru−R‖
‖R‖

‖Rs−R‖
‖R‖

‖Qu−Q‖
‖Q‖

‖Qs−Q‖
‖Q‖

‖Pu−P‖
‖P‖

‖Ps−P‖
‖P‖

10−01 6.1 10−15 7.4 10−15 5.3 10−16 1.1 10−15 1.1 10−16 2.6 10−16

10−02 6.7 10−12 4.8 10−13 6.9 10−14 7.5 10−15 1.1 10−15 9.7 10−17

10−03 5.7 10−09 4.3 10−17 6.1 10−12 0.0 10+00 1.1 10−14 9.9 10−17

10−04 4.9 10−06 6.9 10−17 5.2 10−10 0.0 10+00 9.8 10−14 0.0 10+00

10−05 9.4 10−04 1.2 10−16 1.0 10−08 0.0 10+00 1.8 10−13 2.1 10−21

10−06 2.4 10+00 2.1 10−16 2.6 10−06 5.9 10−17 4.9 10−12 9.9 10−17

10−07 2.8 10+03 3.0 10−17 3.0 10−04 8.3 10−17 5.7 10−11 9.9 10−17

10−08 2.8 10+06 0.0 10+00 3.0 10−02 8.3 10−17 5.7 10−10 9.9 10−17

10−09 2.2 10+09 3.0 10−17 2.4 10+00 5.9 10−17 4.5 10−09 9.9 10−17

10−10 7.2 10+11 0.0 10+00 7.7 10+01 0.0 10+00 1.4 10−08 0.0 10+00

10−11 7.2 10+13 0.0 10+00 7.7 10+02 1.2 10−27 1.4 10−08 2.0 10−27

10−12 1.9 10+18 2.1 10−16 2.0 10+06 5.9 10−17 3.8 10−06 9.9 10−17

10−13 2.7 10+21 2.1 10−16 2.9 10+08 5.9 10−17 5.4 10−05 9.9 10−17

10−14 6.9 10+23 6.2 10−31 7.4 10+09 0.0 10+00 1.4 10−04 1.9 10−30

10−15 6.9 10+25 3.0 10−17 7.4 10+10 1.4 10−31 1.4 10−04 0.0 10+00

matrixA and a corresponding auxiliary matrixZ as follows.

A :=




a+ ε −2ε b
2ε a+ ε c
0 0 a+dε


⇒ eigs(A) :=

[
α± iβ

λ3

]
=

[
a+ ε± i2ε

a+dε

]
(6.1)

Z := (A−αI)2+β 2I = ε




0 0 b(d−1)+cε
0 0 c(d−1)+bε
0 0 d(d−2)ε +5ε


⇒

ZA = (a+dε)εZ

ZA2 = (a+dε)2εZ
(6.2)

whereeigs(A) represents the eigenvalues ofA. We can drive all the eigenvalues and/or
the gap betwen them to zero by appropriately choosing the parametersa andd. For eachA we
computeR(τ ,A) using the stable formulas summarized in the previous section. The matrices
P(τ ,A) andQ(τ ,A) are computed fromR(τ ,A) using the relationships given in Eqs. (3.16)
and (3.18).

Table3 illustrates the relative errors in the computations of the matricesP(τ ,A), Q(τ ,A)
andR(τ ,A) choosingτ = 1, a= 0, b= c= 1 andd= 4. ThereinRu andRs denotes the usual
(näıve) and the stable (piecewise) computations of the matrixR, respectively. The Frobenius
norm is used in‖R‖. The relative errors‖Ps−P‖/‖P‖, ‖Qs−Q‖/‖Q‖ and‖Rs−R‖/‖R‖
are found to be within the guaranteed computation accuracies established for the same and
reflect the robustness of the stable formulas. The gradual loss of significance asε → 0 is
reflected as a gradual increase in the relative error (from machine epsilon to values intolerably
high) in the usual computations of the considered matrices.The maximum relative error in
the computations ofPu, Qu andRu are of the order of 10−4, 1010 and 1025, respectively. As
ε→ 0 we observe(‖Pu−P‖/‖P‖) is O(ε) times smaller than(‖Qu−Q‖/‖Q‖) which in turn
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TABLE 4
Relative errors in the usual and stable computation whenλ = {ε,2ε,3ε}.

ε ‖Ru−R‖
‖R‖

‖Rs−R‖
‖R‖

‖Qu−Q‖
‖Q‖

‖Qs−Q‖
‖Q‖

‖Pu−P‖
‖P‖

‖Ps−P‖
‖P‖

10−01 3.9 10−14 7.1 10−14 1.7 10−15 3.2 10−15 5.4 10−16 4.0 10−16

10−02 1.0 10−11 7.1 10−14 1.2 10−13 2.1 10−14 1.0 10−15 2.1 10−15

10−03 1.1 10−07 1.3 10−16 6.8 10−11 7.8 10−17 6.6 10−14 1.1 10−16

10−04 3.8 10−05 1.3 10−16 1.4 10−09 7.9 10−17 9.3 10−14 8.2 10−17

10−05 3.5 10−02 5.2 10−17 4.2 10−07 0.0 10+00 8.1 10−12 0.0 10+00

10−06 8.0 10+01 0.0 10+00 4.4 10−05 5.5 10−17 5.8 10−11 0.0 10+00

10−07 4.5 10−02 1.7 10−16 6.7 10−05 7.9 10−17 7.8 10−11 8.2 10−17

10−08 4.0 10+07 5.2 10−17 4.7 10−01 0.0 10+00 7.5 10−09 8.2 10−17

10−09 4.0 10+10 0.0 10+00 5.5 10+01 5.5 10−17 1.0 10−07 8.2 10−17

10−10 3.4 10−01 3.0 10−17 8.3 10−02 0.0 10+00 1.5 10−08 0.0 10+00

10−11 3.4 10−01 3.0 10−17 8.3 10−02 0.0 10+00 1.5 10−08 0.0 10+00

10−12 4.0 10+19 3.0 10−17 5.5 10+07 7.9 10−17 1.0 10−04 8.2 10−17

10−13 4.0 10+22 0.0 10+00 5.5 10+09 5.5 10−17 1.0 10−03 8.2 10−17

10−14 8.0 10+25 3.0 10−17 5.5 10+11 0.0 10+00 8.0 10−03 8.2 10−17

10−15 8.0 10+28 4.2 10−17 5.5 10+13 0.0 10+00 6.1 10−02 1.1 10−16

is O(ε) times smaller than(‖Ru−R‖/‖R‖). The following results explain this behaviour.

ZA = 4ε2Z, ZA2 = 16ε3Z(6.3)

Ru−R≈
(

Φu(⋆,2ε)[−ε;−ε;3ε ]−Φ(⋆,2ε)[−ε;−ε;3ε ]
)
Z(6.4)

Qu−Q = (Ru−R)A, Pu−P= (Ru−R)A2(6.5)

Equation (6.4) holds becauseΦ(⋆,2ε)[−ε;−ε;3ε ] is the highest-order divided difference
term in Eq.4.25and its computation error dominantes over the rest. The relative error in the
usual (näıve) computation ofΦ(⋆,2ε)[−ε;−ε;3ε ] is approximately 1040 whenε = 10−15.
Recall that the matricesP(τ ,A) andQ(τ ,A) govern the evolution of the particle positions.
Likewise, the matricesQ(τ ,A) andR(τ ,A) govern the evolution of the particle velocities.

6.2. Example 2. Here the details differ from the previous example only in thedefini-
tions of the matricesA andZ.

A :=




a+ ε b c
0 a+2ε d
0 0 a+3ε


⇒ eigs(A) :=




λ1

λ2

λ3


=




a+ ε
a+2ε
a+3ε


(6.6)

Z := (A−λ1I)(A−λ2I) =




0 0 bd+ch
0 0 2dh
0 0 2h2


⇒

ZA = (a+3ε)Z

ZA2 = (a+3ε)2Z
(6.7)

By construction, all the eigenvalues and the gap between them can be driven to zero with
decreasing values ofε for appropriate choice of the parametera.

Table4 illustrates the relative errors in the computations of the matricesP(τ ,A), Q(τ ,A)
and R(τ ,A) choosingτ = 1, a = 0 andb = c = d = 1. The behaviour of the usual and
stable computations are similar to what is observed in the previous example. The maximum
relative error in the usual computations ofPu, Qu andRu are of the order of 10−2, 1013 and
1028, respectively. As before(‖Pu−P‖/‖P‖) is O(ε) times smaller than(‖Qu−Q‖/‖Q‖)
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which in turn isO(ε) times smaller than(‖Ru−R‖/‖R‖). The following results explain this
behaviour.

ZA = 3εZ, ZA2 = 9ε2Z(6.8)

Ru−R≈
(

ru[ε;2ε;3ε ]− r[ε;2ε;3ε ]
)
Z(6.9)

Qu−Q = (Ru−R)A, Pu−P= (Ru−R)A2(6.10)

Equation (6.9) holds because r[ε;2ε;3ε ] is the highest-order divided difference term in
Eq. (4.14) and its computation error dominates over the rest. The relative error in the usual
(näıve) computation of r[ε;2ε;3ε ] is approximately 1028 whenε = 10−15.

7. Conclusions.Formula computations in the neighbourhood of removable singularities
suffer loss of significance when they are done using finite precision arithmetic. Formulas for
the solution of the X-IVAS scheme involve many removable singularities. Hence, the use of
numerically stable formulas for the same is a criteria for robustness.

We have proposed numerically stable formulas for the closed-form analytical solution of
the X-IVAS scheme. Therein, the Newton form of the polynomial interpolation definition is
used for the functions of matrices which appear in the formulas. In this definition, removable
singularities and the terms/expressions that participateto yield a finite limit at these points
are grouped together as divided differences. In other algebraically equivalent forms, these
terms/expressions get dispersed. The poor reputation of nearly confluent divided differences
with respect to the loss of significance in floating point computations is a blessing in disguise.
We geta priori warning about possible numerical instabilities in formulacomputations. To
control the loss of significance, we have presented piecewise definitions for these divided
differences. The piecewise definitions switch the computations to the respective series ap-
proximations of the divided differences should the gap between the independent variables
be less than a specified threshold. These divided differences are expressible as the divided
difference of the exponential function of an appropriate order less than or equal to four. For
the terms involving the second, third and fourth order divided differences, the double preci-
sion floating-point computation of their piecewise definitions guarantee at least 14, 12 and 10
significant decimal digits to be exact, respectively. The implementation of these piecewise
definitions is simple and the computations are stable.
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in draft form and suggesting improvements.
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