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ABSTRACT
We describe the dynamics associated with a construction of tan-
gent lines to elliptic curves which depend on two parameters. With
the exception of a half-curve in the parameter plane, the natural
compactifications of these maps are shown to be smooth (i.e. C∞)
conjugate to each other and to the classic chaotic map (Chebyshev
polynomial)Q(x) = 1 − 2x2. This provides a newnon-trivial example
of a class of maps which are smooth conjugate to each other.
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1. Introduction

Elliptic curves arise in number theory where they are typically parametrized by two real
numbers [14]. A classic construction defines a group operation on these curves, and the
repeated process of ‘adding’ a point to itself is described by a family of difference equations
[14], see Equation (7) of Section 2.We investigate the dynamics induced by these equations
and show that there is a strong equivalence of the systems independent of the parameters.
Since this paper brings together two different areas of mathematics, equivalence of dynam-
ical systems and operations on elliptic curves, we beginwith a brief overview of the relevant
definitions and results that are needed to formulate the problem.

Given a map f : [−1, 1] → [−1, 1] and x0 ∈ [−1, 1], the difference equation xn+1 =
f (xn) generates an orbit (x0, x1, x2, . . . ) andwewrite f n(x) = f (f n−1(x)) for n ≥ 2 (the nth
iterate of x), so xn = f n(x0). A point is periodic if xp = x0 for some p>0 (the period of the
orbit) and the stability of a periodic orbit is determined by the eigenvalue E(x) = (f p)′(x)
evaluated at any point on the periodic orbit: if |E(x)| < 1, then the orbit is stable while
if |E(x)| > 1, it is unstable. The term eigenvalue is used in Refs. [1,8] while in Ref. [11],
it is referred to as a multiplier. Two maps f and g may generate dynamics which is sim-
ilar, and mathematically this is expressed via the idea of topological conjugation. The
maps f : I → I and g : J → J are topologically conjugate if there exists a homeomorphism
h : J → I such that f = h ◦ g ◦ h−1. The conjugating function h can be thought of as a
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2 P. GLENDINNING AND S. GLENDINNING

change of coordinates, and if h is a diffeomorphism, then we say that themaps are differen-
tiably conjugate. Differentiable conjugation is a much stronger condition than topological
conjugation since it implies (for example) that the eigenvalues of corresponding periodic
orbits are equal (the corresponding orbit of a point x ∈ J under g is the orbit of the point
h(x) under f ). The conjugacy is smooth if both the conjugating function and its inverse are
C∞.

A canonical example of a chaotic map is the quadratic Chebyshevmap, xn+1 = 4xn(1 −
xn) on [0, 1] or equivalently, after scaling,

xn+1 = Q(xn) = 1 − 2x2n, xn ∈ [−1, 1]. (1)

The quadraticmapQhasmanynice properties. It has periodic orbits of all periods, periodic
orbits are dense in [−1, 1], there is a dense orbit, and it has an invariant probability density

ρQ(x) = 1
π

√
1 − x2

. (2)

More detail can be added: for example, the modulus of the eigenvalue of every periodic
orbit of period n except the fixed point at x = −1 is 2n.

Jiang [7,8] investigates this issue of differentiable conjugacy for maps like Q (see
Section 5), but there seem to be no explicit examples of families of differentiably conjugate
maps except those that can be reverse engineered by defining the family via the conjugating
functions. Differentiable conjugacies do arise naturally, for example, in the study of period-
doubling, and this property leads to rigidity results in which topological properties imply
metric properties, see Refs. [9,13] for a more detailed discussion and history. Li and Shen
[11] show that two topologically conjugate Cr unimodal maps (r ≥ 3) are Cr conjugate if
they have negative Schwarzian derivative, attractors which are neither periodic orbits nor
Cantor sets, and the eigenvalues of corresponding periodic orbits are equal. Removing the
negative Schwarzian derivative condition has been the focus of much attention both for
conjugacies and more general properties of maps [5,6,12]. More recently, Alves et al. [1]
have shown that if attractors of two Cr maps are conjugate and the conjugating function
is locally differentiable, then it is Cr on the attractor, see Section 5. This generalizes ear-
lier results [8,10], and there is a similar development of local theories for expanding circle
maps stemming from Ref. [15].

In this paper, we show that the addition formula on elliptic curves generatesmaps which
are smoothly conjugate to each other and to the quadratic map. On the face of it, this is a
surprise. We know of no natural classes of examples with this property. Indeed, Jiang [7,8]
cites only two examples of differentiably conjugate maps, and both of these are abstract
classes which are essentially alternative formulations of the conditions of the theorems.
Examples are shown in Figure 3, from which it is also clear that some of the maps do not
have negative Schwarzian derivatives.

Any equation defined by equating a quadratic polynomial in y to a cubic polynomial in
x can be written in the form

y2 = x3 + Ax + B (3)

after rescaling and shifting the coordinates. Solutions lie on elliptic curves and for given A
and B, these may take one of three forms as shown in Figure 1. Let � denote the cubic
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Figure 1. Schematic view of the elliptic curves in the (A, B)-plane.�+ is the part of the curve� = 0 in
B ≥ 0, see (8).

discriminant

� = 4A3 + 27B2. (4)

If � > 0, then solutions to (3) lie on a single curve, if � < 0, then solutions lie on the
union of a closed bounded curve and an unbounded curve, while if � = 0, then there is
a single curve of solutions with a point of self-intersection if B>0 or the union of a curve
and a single point if B<0. In the special case of (A,B) = (0, 0), there is a single curve with
a cubic cusp singularity. This reflects the number of distinct real zeroes of the right-hand
side of (3): one if � ≥ 0, two if � = 0 and three if � < 0.

Elliptic curves have many beautiful properties, and a principle area of investigation is
the existence of rational points on these curves, which are related to problems in num-
ber theory centred around Fermat’s last theorem. A starting point in these studies is the
definition of a natural operation which defines a group induced on the points on the curve
[14]. This operation (‘⊕’) is geometric. Any line which intersects the curve does so in three
points, with multiplicity and including the point at infinity. If the coordinates of a point P
are denoted by (x(P), y(P)) and ‘minus P’ is defined by �P = (x(P),−y(P)), then if these
three points are P, Q and �R, in any order, then

P ⊕ Q = R. (5)

The line between P and �P is vertical, so in this case, the third point of intersection is the
point at infinity, denotedO since it acts as an additive zero: P ⊕ (�P) = O.

If P = Q = (x, y), then the line is tangential to the elliptic curve and we write P ⊕ P =
2P. An elementary calculation shows that

x(2P) = x4 − 2Ax2 − 8Bx + A2

4(x3 + Ax + B)
. (6)
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(a) (b) (c)

Figure 2. The graph of the right-hand side of (6) for (a) (A, B) = (−3, 1), scale [−8, 10] × [−6, 12]; (b)
(A, B) = (−1.88, 1), scale [−6, 8] × [−6, 8] and (c) (A, B) = (1, 1), scale [−6, 8] × [−6, 10]. Note that (b)
is just to the right of the curve�+ of Figure 1 as (27/4)1/3 ≈ 1.88988.

It is now natural to think of this as defining a dynamical system by iteration, obtaining
x(2nP) by n iterations of the equation. This may not be as natural from a number theory
point of view, particularly as it does not answer questions about rational points, but the
iterated construction of drawing a tangent to a point, finding the next point of intersection,
reflecting in the x-axis, drawing a tangent at the new point and so on has many similarities
to dual billiard problems [17] in dynamical systems. As we shall see, the dynamics induced
by this process appears to have many nice properties. In particular, we show that for most
values of (A,B) ((A,B) /∈ �+; see Figure 1 and (8)), the compactifications of these maps
via real Möbius transformations are smoothly conjugate to each other and to the quadratic
map Q of (1).

Figure 2 shows the graph of the right-hand side of (6) for three choices of (A,B). Note
that in (b), the graph develops a ‘nose’ close to double roots of the denominator of (6). Each
of the right-hand boxes indicates a non-compact invariant region for the iterated map.

The dynamics of elliptic curves has been discussed in the dynamical systems litera-
ture, but almost always respecting the interest in rational points [2]. Here, we make no
claims to relevance in the usual context of the study of elliptic curves. Umeno [19,20]
has used elliptic functions to describe maps with simple invariant density functions (
‘exactly solvable chaos’), and these are related to the multiplication formula (6) for elliptic
curves. Our results prove that themaps have absolutely continuous invariantmeasures (see
Corollary 5.6), but do not provide explicit formulas. It seems likely that Umeno’s approach
coupled with the results of Dobbs [4], which relate the existence of absolutely continuous
invariant measures ofCr maps toCr conjugacies to continuous piecewise linear maps away
from the critical orbit, could be used to provide an alternative approach to this problem.
We will not pursue this approach below.

2. Definitions and statement of results

Some basic definitions of the smoothness of functions will be important in what follows.
A function f : M → N isCk if the first kderivatives exist and are continuous at all x ∈ M.

A diffeomorphism f : M → N is a Ck diffeomorphism if both f and f−1 are Ck functions.
A function f : M → N is α-Hölder continuous, α ∈ (0, 1), if there exists a constant K>0
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such that |f (x) − f (y)| < K|x − y|α for all x, y ∈ M. A diffeomorphism f : M → N isC1+α

if both f and f−1 are C1 functions and their derivatives are both α-Hölder continuous. A
homeomorphism which is C1 except on a finite set C is in C1

C .
A unimodal map is a continuous map of an interval M, f : M → M if there exists c ∈

int(M) such that f is monotonically increasing on one side of c andmonotonically decreas-
ing on the other side of c. A double cover unimodal map is a unimodal map f : [−1, 1] →
[−1, 1] with c = 0, f (0) = 1, f (1) = f (−1) = −1 and f (x) > x if x ∈ (−1, 0). Thus, the
image of the interval [−1, 1] covers itself twice. A standard example of a double cover
unimodal map is the quadratic map Q of (1). The transformation h : [−1, 1] → [−1, 1]

h(x) = sin
πx
2

is a C1
C conjugacy between Q and the tent map T(x) = 1 − 2|x| with C = {−1, 0, 1}, the

orbit of the critical point.
A rather more boring class of unimodal map is the class of superstable unimodal maps

for which f isC1, f (0) = 0, f (1) = f (−1) = −1 and f (x) > x if x ∈ (−1, 0). The dynamics
of such maps is very simple: all orbits with x ∈ (−1, 1) tend to zero.

If f has a periodic orbit of periodnwith points p1, . . . , pn, then the eigenvalue of the orbit
is

∏
f ′(pk) and if f and g are C1 topologically conjugate, or C1

C topologically conjugate and
the periodic points are disjoint from C, then the eigenvalues of the corresponding periodic
orbits of f and g are equal. Thus, the modulus of the eigenvalues of all the periodic points
ofQ with period n except the fixed point x = −1 equal 2n, the eigenvalue of −1 forQ is 4.

For clarity, we recall that we are considering (6) as defining a dynamical system by
iteration:

xn+1 = F(xn) = x4n − 2Ax2n − 8Bxn + A2

4(x3n + Axn + B)
. (7)

Note that strictly speaking, we should refer to F(A,B) to emphasize the dependence on
parameters, but we will avoid unnecessary subscripts and simply refer to the maps F. Since
the maps F of (7) are defined on semi-infinite intervals [r,∞), see Section 3, it is natural
to use a (real) Möbius transformation to provide a topologically conjugate map f on the
interval [−1, 1]. All our results will be stated for the compactifiedmaps f which are defined
precisely in Section 4.

Only the upper part of� defined in (4) plays a role in the statement of the theorems, so
let

�+ = {(A,B) | 27B2 = −4A3, B ≥ 0}. (8)

With this notation, our main results can be stated.

Theorem 2.1: If (A,B) /∈ �+, then every compactified map f is smoothly conjugate to every
other map f and to the quadratic map Q.

Theorem 2.2: If (A,B) ∈ �+\{(0, 0)}, then every compactified map f is a superstable uni-
modal map. If (A,B) = (0, 0), then the uncompactified map is F(x) = x3, r = 0 and initial
conditions in 0< x<1 tend to zero and those with x>1 tend to infinity.
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While the parameterisation in terms of A and B is natural in the context of elliptic
curves, from a dynamical systems point of view the behaviour can be reduced to three
one-parameter families of maps by an orientation preserving scaling of the variable x. If
B = 0, then (7) becomes

xn+1 = (xn − A)2

4xn(xn + A)
(9)

while if B = 0, then the linear transformation x → |B|1/3x shows that without loss of gen-
erality, we may consider the two one-parameter families in terms of C = A|B|−(1/3) given
by

xn+1 = (x2n − C)2 ∓ xn
4(x3n + Cxn ± 1)

(10)

with the upper signs chosen if B>0 and the lower signs if B<0. While this formulation
simplifies some calculations (for example, the condition � = 0 becomes C3 = −(27/4) ),
we will retain the standard parameterisation of A and B.

3. The non-compact map F

Let

H(x) = x3 + Ax + B, (11)

so H is the denominator of the rational map F of (7). Almost all the proofs for this paper
stem from a remarkable factorization lemma relating the derivative of F to F andH. We are
sure that this must have been noted elsewhere, but have been unable to find any explicit
reference.

Lemma 3.1: Suppose that F is defined by (7) and H by (11), then

H(F(x)) = 1
4
H(x)[F′(x)]2 if H(x) = 0. (12)

Proof: The proof is a brute force calculation which we have verified using Mathematica.
A straightforward calculation shows that

F′(x) = x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx − (A3 + 8B2)
4(x3 + Ax + B)2

and so

F′(x) = G(x)
4[H(x)]2

, (13)

where

G(x) = x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx − (A3 + 8B2), (14)

and F′(x) = 0 iff G(x) = 0.
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Thus, (12) can be rewritten as

H(F(x)) = 1
4
H(x)[F′(x)]2 = [G(x)]2

64[H(x)]3
ifH(x) = 0. (15)

Now,

F(x) = J(x)
4H(x)

, where J(x) = x4 − 2Ax2 − 8Bx + A2,

so if

[J(x)]3 + 16AJ(x)[H(x)]2 + 64B[H(x)]3 ≡ [G(x)]2, (16)

then (12) follows immediately from (16) by dividing through by 64[H(x)]3.
Equation (16) is an identity relating between two polynomials of degree 12, and each

side when multiplied out gives

x12 + 10Ax10 + 40Bx9 + 15A2x8 + 192ABx7
−(52A3 − 384B2)x6 − 240A2Bx5
+(15A4 − 240AB2)x4 − 320B3x3 + (10A5 + 96A2B2)x2
+(8A4B + 64AB3)x + A6 + 16A3B2 + 64B4.

�

The first step towards understanding the dynamics of (7) is to determine the domain
of definition for recurrent dynamics. The following lemma simply confirms the remark in
the caption of Figure 2.

Lemma 3.2: Let r denote the largest real solution of H(x) = 0 if (A,B) /∈ �+, and the small-
est (most negative) real solution if (A,B) ∈ �+\{(0, 0)}. Let I = [r,∞). Then, F maps I onto
itself and F has a unique minimum, c ∈ (r,∞), with

F(c) =
{
r if (A,B) /∈ �+,
c if (A,B) ∈ �+\{(0, 0)}.

Proof: If� < 0, then the denominator of F has one zero and if� > 0, then there are three
zeroes. Graphs of F are shown in Figure 2 showing how F develops a ‘nose’ as� approaches
zero from below to transition between the two cases. Clearly,

lim
x↓r

F(x) → ∞,

and for sufficiently large x, F(x) < x since F(x) = (1/4)x + O(1).
Thus, F has aminimum c ∈ (r,∞), and F(c) = r by (12). (To show that it cannot equal a

different zero ofH takes some additional manipulation but also follows immediately from
the group property of the geometric addition operation: if F(c) < r, then the image of some
parts of the curve would be in a region in which the graph of the curve has no image,
and hence the geometric addition formula would not be defined .) The turning point c
must be the only minimum in (r,∞) since if there were two minima, they would have
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to be a maximum between them, i.e. a point c1 such that G(c1) = 0 and F(c1) > r, which
contradicts (12). �

Lemma 3.2 has a nice interpretation in terms of the geometry. The continuous com-
ponents of the graphs of F which tend to minus infinity at the points of discontinuity are
not relevant to the geometry; the elliptic curve has no points with those values of x. In
the case � > 0 when the elliptic curve has two connected components, the image of the
closed curve lies on the unbounded connected curve (including the point at infinity) and
the unbounded connected component is invariant. The point (r, 0) is the intersection of
the unbounded component with the x-axis, at which point the tangent is vertical and so
the image of this point is the point at infinity,O.

Let

Rr = [r,∞) ∪ O.

By Lemma 3.2, if (A,B) /∈ �+, then F((c,∞)) = (r,∞), F((r, c)) = (r,∞) and F is contin-
uous andmonotonic on each of the intervals (r, c) and (c,∞). This means that F restricted
to Rr is essentially a unimodal map whose turning point is mapped to the unstable fixed
point O. This structure is exploited in the next section to define families of maps on the
compact interval [−1, 1] which are obtained by real Möbius transformations from the
maps F.

4. Compactification and eigenvalues

The map F of (7) is defined on a non-compact domain, and so to avoid issues of con-
vergence at infinity, we will work with a compactified version. It is natural to choose a
Möbius transformation that takes the three points (r, c,∞) to (1, 0,−1), respectively, i.e.
h : Rr → [−1, 1] with

h(x) = −x + c
x + (c − 2r)

(17)

with inverse h−1 : [−1, 1] → Rr defined by

h−1(x) = c − (c − 2r)x
1 + x

. (18)

Note that since c> r,

h′(x) = − 2(c − r)
(x + c − 2r)2

< 0 if x ∈ Rr and

(h−1)′(x) = − 2(c − r)
(1 + x)2

< 0 if x ∈ [−1, 1].

The conjugate function f : [−1, 1] → [−1, 1] is

f (x) = h ◦ F ◦ h−1(x). (19)

Lemma 4.1 (Elementary properties of f ): Let f : [−1, 1] → [−1, 1] be defined by (19)
and suppose that (A,B) = (0, 0).
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(i) f (0) = 1; f (1) = f (−1) = −1;
(ii) f is C∞ on [−1, 1] and f ′(−1) = 4
(iii) f ′(x) > 0 if x ∈ [−1, 0) and f ′(x) < 0 if x ∈ (0, 1] and
(iv) f ′(0) = 0 and f ′′(0) < 0.

Proof: (i) F(r) = O, F(c) = r and F(O) = O imply that f (0) = 1 and f (1) =
f (−1) = −1.

(ii) If x ∈ (−1, 1), then f is a composition of rational functions with non-vanishing
denominators and so it isC∞. In a neighbourhood of x = −1, set x = −1+ v. Then
a routine calculation shows that if v = 0, f is the ratio of two quartics in v and the
denominator is non-zero in a neighbourhood of v = 0. Thus, this ratio is C∞ at
v = 0 and f is C∞ at x = −1. In fact, if L(v) = 1 − ((c − 2r)/(2(c − r)))v, then

h−1(x) = 2(c − r)L(v)
v

,

from which

F ◦ h−1(x) =
(
c − r
2v

)
L4 − 2Av2L2 − 8Bv3L + Av4

L3 + Av2L + Bv3

and so

f (−1 + v) = − L4 − 2Av2L2 − 8Bv3L + Av4 − (2c/(c − r))(L3 + Av2L + Bv3)
L4 − 2Av2L2 − 8Bv3L + Av4 + ((2(c − 2r))/(c − r))(L3 + Av2L + Bv3)

.

This is the ratio of two quartics in v and the denominator equals one at v = 0, so it
is C∞ in a neighbourhood of v = 0, i.e. x = −1. Moreover, simplifying a little more,

f ′(−1) = d
dv

( −(c − r) + 2cv + O(v2)
c − r + 2(c − 2r)v + O(v2)

) ∣∣
v=0 = 4.

A similar argument holds in a neighbourhood of x = 1.
(iii) Since the derivatives of both h and h−1 are negative, the sign of the derivative of f at

x is the sign of the derivative of F evaluated at h−1(x) establishing (iii) by remarks of
the previous section.

(iv) Differentiating (12)

H′(F(x))F′(x) = 1
4

(
H′(x)[F′(x)]2 + 2H(x)F′(x)F′′(x)

)
and evaluating at x = c being careful about the limits:

F′′(c) = 2
H′(r)
H(c)

.

But if (A,B) /∈ �+, then r< c,H(c) > 0 andH′(r) > 0 so F′′(c) > 0. For finite x and
h−1(x), the chain rule gives

f ′′(c) = h′(F(c))F′′(c)[(h−1)′(c)]2

and since both h and h−1 are decreasing the sign of f ′′(c) is negative. �
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(a) (b) (c)

Figure 3. Compactifiedmaps f : [−1, 1] → [−1, 1]: (a) (A, B) = (−2, 1); (b) (A, B) = (−1.88, 1) and (c)
(A, B) = (1, 1).

In fact, the argument for part (ii) above effectively shows that f is analytic on [−1, 1];
the simple zero in the denominator of F at r cancels with a simple zero of the numerator.
Examples of the return maps obtained from the compactification onto [−1, 1] are given in
Figure 3. Note that the maps are clearly not always ‘nice’ in the sense of convex, negative
Schwarzian derivative or any other simple criterion. On the other hand, Figure 3 suggests
that the maps f are symmetric about x = 0, although we have not checked this by hand.
The sharp peak in Figure 3(b) is explained by the limiting behaviour on �+ described in
Section 6.

We now turn to the eigenvalues of the map at periodic orbits.

Lemma 4.2: If (A,B) /∈ �+, then in (r,∞), F has one and only one fixed point x∗ and
|F′(x∗)| = 2.

Proof: Evaluating (12) at x∗ using F(x∗) = x∗ gives

1 = 1
4
[F′(x∗)]2,

so |F′(x∗)| = 2. Clearly, F has a fixed point in (r, c). Suppose that it has a fixed point y∗ in
x> c. Since F(c) < c and the slope of themap at y∗ is 2, F(x) > x for x > y∗ (as if there were
another fixed point at larger values of x it would have to intersect the diagonal with slope
less than or equal to one). But F(x) < x at large x since F(x) ∼ (1/4)x + O(1) as x → ∞,
a contradiction. �

The same technique generalizes to every periodic orbit except x = −1 (O on the infinite
domain).

Lemma 4.3: Let (x1, . . . xn) be points on a periodic orbit of F : [r,∞) → [r,∞) with xk ∈
(r,∞), F(xk) = xk+1, k = 1, . . . , n − 1 and f n(xn) = 1. Then,

n∏
1

|F′(xk)| = 2n.
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Proof: Note that H(x) > 0 for x ∈ (r,∞). Evaluating (12) at xk gives

H(x1) = [G(xn)]2

64[H(xn)]3
, H(xk+1) = [G(xk)]2

64[H(xk)]3
, k = 1, . . . , n − 1.

Thus,

H(x1)
H(xn)

= 1
4
[F′(xn)]2,

H(xk+1)

H(xk)
= 1

4
[F′(xk)]2, k = 1, . . . , n − 1,

and multiplying all n right-hand sides together and similarly for the left-hand sides

1 = 1
22n

n∏
1
[F′(xk)]2,

from which the result follows by taking the square root. Since h is continuously differen-
tiable on (r,∞), the derivatives of f n and Fn at corresponding periodic points of period n
in the open sets (r,∞) and (−1, 1) are equal. �

This result shows that the eigenvalues of corresponding periodic orbits are independent
of the parameters of the map, a necessary condition for the topological conjugacy to be
differentiable.

5. Differentiable conjugacy and invariant measures

In this section, we use results from Jiang and van Strien to establish that the dynamics on
each elliptic curve is differentiably conjugate to each other and to the classic quadratic map
Q(x) = 1 − 2x2.

Let Jn,k denote the set of maximal intervals on which f n is monotonic, i.e. the maximal
intervals such that f n|Jn,k is a homeomorphism. Also, for given γ ≥ 1, define the power
function

rf (x) = f ′(x)
|x|γ−1 .

Jiang [8] works with maps he calls Ulam-von Neumann maps, a term derived from a short
and somewhat gnomic abstract [18]. From Lemma 5 of Ref. [8], these are C1+α double
cover unimodal maps for some 0 < α ≤ 1 which satisfy

(C1) there exists γ ≥ 1 and real number A<0 such that

lim
x↑0

rf (x) = lim
x↓0

rf (x) = A (20)

(γ is called the power law of f );
(C2) the power function rf (x) is β-Hölder continuous when restricted to [−1, 0) and to

(0, 1] and
(C3) there exists μ < 1 and real C>0 such that |Jn,k| ≤ Cμn for all (n, k).

In fact, Jiang works in a slightly more general setting in which the two limits in (20) can
take different values, but this will be unnecessary for the application below. Conditions
(C1) and (C2) are automatically satisfied for the smooth maps we consider.
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Theorem 5.1 ([8]): Two C1+α double cover unimodal maps which satisfy (C1) –(C3) are
C1+ε-topologically conjugate to each other for some 0 < ε ≤ 1 provided the eigenvalues at
corresponding periodic orbits are equal.

To prove Theorem 2.1, we start with differentiable conjugacy.

Theorem 5.2: If (A,B) /∈ �+, then every map f is C1+(1/2) conjugate to every other map f,
and to the quadratic map Q.

Here we need only establish that the conditions for Jiang’s theorem hold. The only dif-
ficult part is checking condition (C3). To do this, we need a further definition and a result
from Ref. [16].

Definition 5.3: A critical point c of a unimodal map is non-flat if there exists n ≥ 1 and a
neighbourhoodN of c such that

(NF1) f is Cmax(3,2n) onN ;
(NF2) f (2n)(c) = 0 and
(NF3) f (k)(c) = 0 if k = 1, . . . , 2n − 1.

Theorem 5.4 ([16]): If f : [−1, 1] → [−1, 1] is a C2 unimodal map with non-flat critical
point and all periodic orbits are expanding, then f has no homtervals and there exists λ > 1
and a constant C such that for any maximal interval In such that f n|In is a diffeomorphism

|f n(In)| ≥ Kλn|In|. (21)

Proof of Theorem 5.2: The eigenvalue of f at the fixed point x = −1 is 4 (Lemma 4.1(ii))
and for all other periodic points of period p, the eigenvalue is ±2p (Lemma 4.3 together
with the fact that the compactification is C∞), with the sign determined by the parity of
the number of points in x>0, which is the same for corresponding orbits. The same is true
for the quadratic map Q (see the second paragraph of Section 2). Hence, the eigenvalue
condition of Jiang’s theorem (Theorem 5.1) holds.

Differentiating (12)

H′(F(x))F′(x) = 1
4

(
H′(x)[F′(x)]2 + 2H(x)F′(x)F′′(x)

)
and evaluating at x = c being careful about the limits:

F′′(c) = 2
H′(r)
H(c)

.

But if (A,B) /∈ �+, then r< c and H′(r) = 0 so F′′(c) = 0. Since F is C∞ on a neighbour-
hood of c (again, provided (A,B) /∈ �+), F and hence f are non-flat critical points and so
van Strien’s theorem (Theorem 5.4) holds.

Since f n(In) ⊆ [−1, 1], |f n(In)| ≤ 2 and hence (21) implies that

|In| ≤ 2K−1λ−n.

But the intervals In are precisely the intervals Jn,k of Jiang and so (C3) holds withC = 2K−1

and μ = λ−1.
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The smoothness conditions are clearly satisfied, (C1) and (C2) are clearly satisfied with
power law γ = 2 since f ′′(c) = 0 and α = 1 since f is C∞. The exponent ε = 1/2 follows
from the end of the proof of Lemma 8 in Ref. [8] which shows that ε = α/γ .

The equivalent results for the quadratic map are well known [9]. �

To complete the proof of Theorem 2.1, we use a result from Ref. [1]. To avoid the
introduction of more notation, we will state their result in a very restricted form of their
Corollary 2.6 appropriate for our proof.

Theorem 5.5 ([1]): Let f : I → I and g : I → I be Cr double cover unimodal maps which
satisfy (C1) –(C3). Suppose that the eigenvalues of every periodic point of f and of g has mod-
ulus greater than one and the power laws of f and g are equal. If the conjugating function h
between f and g is C1 at some periodic point p ∈ I, then h is a Cr diffeomorphism on the whole
of I.

We emphasize that this statement does not begin to do justice to the actual statement in
Ref. [1], but the restriction is good enough for our purposes.

Proof of Theorem 2.1: ByTheorem 5.2, the any twomaps of the theorem are differentiably
conjugate and hence the conjugating function is C1 on the whole interval. The maps f of
the theorem are C∞, so by Theorem 5.5, the conjugating function is also C∞ (it is Cr for
all r ≥ 1). �

Corollary 5.6: Let ρQ(x) denote the invariant density function (2) of the quadratic map.
For all (A,B) /∈ �+, there exists a smooth diffeomorphism q : [−1, 1] → [−1, 1] such that
f = q ◦ Q ◦ q−1 and the density of the invariant measure of f is ρf where

ρf (x) = 1
q′(q−1(x))

ρQ(q−1(x)). (22)

Proof: By Theorem 2.1, f and Q are smoothly conjugate. Let q denote the conjugating
function, then (22) follows by equating probabilities at corresponding intervals in [−1, 1].

�

Figure 4 shows numerically computed probability distributions of iterates of f for differ-
ent values ofA andB (the same values as used in the description ofmaps earlier). The peaks
near the turning point for values of parameters close to �+ are to some extent explained
by Theorem 2.2.

6. Proof of Theorem 2.2

On �+, A and B are related as � = 0 and we may calculate directly that

r = −2
√

−A
3

, c =
√

−A
3

,

and c is a fixed point of the map. Indeed, c is the double zero ofH(x) = 0 and this gives the
impression that F is singular at c, but there is again a cancellation in the calculation and F
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Figure 4. Histograms (100 bins) of 500,000 iterations of an initial condition for the compactified maps
shown in Figure 3 at the same parameter values: (a) (A, B) = (−2, 1); (b) (A, B) = (−1.88, 1) and (c)
(A, B) = (1, 1). Normalization is chosen so that the integral of the density is one. Note that in case (b),
numerical instabilitymeant that themapused for iterationwas 0.999999999f, and that the profile shown
is accurate for 250,000 iterations of the map f using Scilab 6.0.2.

may be calculated explicitly:

F(x) = −A + √
(−A/3)(x − √

(−A/3)) + (1/4)(x − √
(−A/3))2

3
√

(−A/3) + (x − √
(−A/3))

with

F′(
√

(−A/3)) =
√

(−A/3)(3
√

(−A/3)) + A
(3

√
(−A/3))2

= 0.

Thus, c is both the fixed point and the turning point of the map: it is superstable.

7. Conclusion

We have shown that the maps in a natural family of dynamical systems derived from a
simple geometric construction on elliptic curves are smoothly conjugate to each other. This
is a restricted form of rigidity for which we have no intuitive explanation. The proof relies
on a factorization result (Lemma 3.1) which should have interesting generalizations and
whichmay lead to a better understanding of the conditions for smooth conjugacy. It would
be natural to consider other classes of curves (e.g. some of those used in cryptography [3])
to determine whether this smooth conjugacy is special to elliptic curves or a more general
phenomenon.

The shorthand notation for iteration on the elliptic curves, 2nP, actually has a more
direct significance. Double cover unimodal maps can be conjugated to a double cover of
the circle which is in turn conjugate to z → z2 on the unit circle. On the unit circle, the
dynamics of the argument of z under z → z2 is literally θ → 2θ , and so the nth iterate of
θ is 2nθ . Moreover, as noted after the proof of Lemma 4.1, the maps f are analytic and we
conjectured that they are also symmetric. The conjugacy to the circle map then begs the
question as to whether the C∞ conjugacy is actually analytic (cf. [15]). We conjecture that
this is the case, and that this would follow from the analytic analogue of Theorem 5.5 which
is reported in Ref. [1] and attributed to Sullivan in unpublished lecture notes.
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