1.2 Measuring molecules

For these problems, review Appendix A and B on the main document. You may also need to read up on Indices in the Foundation Maths support Pack.

1.2.1 More converting units and geometry

1. The volume of a cuboid is $4 \mathrm{~cm}^{3}$. If the cuboid is placed on a flat table its height is 10 cm . What is the area of the side in contact with the table in square metres?
2. What is the volume of a spherical shell (an 'onion shell') that is 1 cm thick and has an outer radius of 10 cm (in cubic metres)?
3. The volume of a sphere is $10 \mathrm{~m}^{3}$. What is its surface area in square metres?
4. The volume of a cylindrical cup is $400 \mathrm{~cm}^{3}$. If the height of the cup is 10 cm , what is the radius of the cylinder in cm ?

1.2.2 Density, volume and mass

The basic concept here is that mass $=$ density \times volume. In these questions you are given two of the three variables and asked to calculate a third. The difficulty is often converting units though!

1. A cube has the length of all sides equal to 10 cm . The density of the material it is made of is $\rho=3000 \mathrm{~kg} \mathrm{~m}^{-3}$. What is the mass of the cube in kg ?
2. A cube has a mass of 4500 grams. What is the length of all three sides (in $\mathrm{cm})$ if the density of the cube is $\rho=2000 \mathrm{~kg} \mathrm{~m}^{-3}$?
3. A sphere has density, $\rho=1.5 \mathrm{~g} \mathrm{~cm}^{-3}$ and a radius of 20 cm . What is its mass in kg ?
4. A spherical rain drop has mass of $5 \times 10^{-4} \mathrm{~kg}$ and a density of $\rho=1 \mathrm{~g} \mathrm{~cm}^{-3}$. What is its diameter in cm ?

1.2.3 Distances between things

These problems follow on from the problem in class about distance between water molecules.

1. Manchester city centre has an area of $\sim 5.7 \mathrm{~km}^{2}$ and a population of $11,689{ }^{11}$. What is the average distance between people within the Centre?
2. Walking down Oxford Road for $\sim 1500 \mathrm{~m}$ you count that there are 10 bars / pubs. What is the average distance between pubs?
3. Within a lake of volume $1 \times 10^{6} \mathrm{~m}^{3}$ there are 1000 fish. What is the average spacing between the fish?
[^0]Answers to: More converting units and geometry:

1. $4 \times 10^{-5} \mathrm{~m}^{2}$.
2. $0.0011 \mathrm{~m}^{3}$.
3. 1.3365 m is the radius and $22.4466 \mathrm{~m}^{2}$ is the surface area.
4. 3.57 cm .

Answers to: Density, volume and mass:

1. 3 kg .
2. 13.1 cm .
3. 50.27 kg .
4. 0.98 cm .

Answers to: Distances between things:

1. 22 m .
2. 150 m .
3. 10 m .

[^0]: ${ }^{1}$ http://en.wikipedia.org/wiki/Manchester_city_centre

