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1. Tutorial 1 (Oct 19th)

Ultraproducts

Definition 1.1. Let I be an infinite set. A filter on I is a set D ⊂ P(I) such that

(1) I ∈ D and ∅ /∈ D
(2) if A and B are in D, then A ∩B is in D
(3) if A ∈ D and A ⊂ B ⊆ I, then B ∈ D

We usually think of the elements in D are “large” sets of I.

Example 1.2. Given any (infinite) set I we have

(1) DF = {X ⊆ I : Xc is finite} is a filter, called the Frechet filter.
(2) Given x ∈ I, let Dx = {X ⊆ I : x ∈ X}. Then Dx is a filter on I , called

the principal filter at x.

Definition 1.3. A filter D on I is called an ultrafilter if X ∈ D or Xc ∈ D for all
X ⊂ I.

Principal filter are examples of ultrafilters. Examples of nonprincipal ultrafilters
are guaranteed by the following result.

Lemma 1.4. Given a filter D of I, there is an ultrafilter U of I extending D.

Proof. Let F = {F ⊂ P(I) : F is a filter extending D}. If we order the elements
of F by inclusion and take an increasing chain, it is easy to check that the union of
the chain is a filter. Thus, by Zorn’s lemma, F has a maximal element U . We claim
that U is an ultrafilter. Towards a contradiction, assume it is not. Then there is
X ⊂ I such that X /∈ U and Xc /∈ U . Let

U ′ = {Y ⊆ I : Z \X ⊆ Y for some Z ∈ U}

Then U ′ is a filter that contains U . Moreover, it contains Xc, contradicting maxi-
mality of U . �

Remark 1.5. Given I and DF the Frechet filter on I, if U is an ultrafilter extending
DF then U is nonprincipal.

Fix a language L, an infinite set I, and an ultrafilter U on I. Suppose Mi is an
L-structure for each i ∈ I. The construction of the “ultraproduct” L-structure

M :=
∏
i∈I
Mi/U
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is given as follows: On the product
∏
i∈IMi define the equivalence relation f ∼ g

iff {i ∈ I : f(i) = g(i)} ∈ U . Here f(i) is the i-th component of f (or simply
think of f as f : I → ∪i∈IMi with f(i) ∈ Mi). One can check that ∼ is an

equivalence relation. The underlying set of the ultraproductM is M :=
∏
i∈I

Mi/ ∼

(thus the elements of the ultraproduct are equivalence classes). Now we give the
interpretation of the symbols from L in M.

(1) For each constant symbol c ∈ C, we set cM = (cMi)i∈I/ ∼
(2) For each function symbol (f, n) ∈ F , let a1, . . . , an ∈

∏
Mi/ ∼ and write

ai = gi/ ∼ where gi ∈
∏
Mi, then we set

fM(a1, . . . , an) = (fMi(g1(i), . . . , gn(i)))i∈I/ ∼
It is an exercise to show that this is well defined (i.e., independent of the
choice of gi’s)

(3) For each relation symbols (R,n) ∈ R, let a1, . . . , an ∈
∏
Mi/ ∼ and write

ai = gi/ ∼ where gi ∈
∏
Mi, then we set

(a1, . . . , an) ∈ RM ⇐⇒ {i ∈ I : (g1(i), . . . , gn(i)) ∈ RMi} ∈ U
Again, this is independent of the choice of gi’s.

Theorem 1.6 (Loś’s theorem). Let φ(x1, . . . , xn) be an L-formula and a1, . . . , an ∈∏
Mi/ ∼ with ai = gi/ ∼ where gi ∈

∏
Mi. Then,∏

i∈I
Mi/U |= φ(a1, . . . , an) ⇐⇒ {i ∈ I :Mi |= φ(g1(i), . . . , gn(i))} ∈ U

Proof. First, one shows that if t(x1, . . . , xn) is an L-term, then

tM(a1, . . . , an) = (tMi(g1(i),...,gn(i)))i∈I/ ∼
. This is done by induction on the complexity of the term. The rest of the proof
goes via induction on the complexity of the formula. We leave the details to the
reader. �

We conclude with a couple of exercises:

(1) Let U be a principal (ultra)filter on I at s ∈ I. Also, letMi be L-structures

for i ∈ I. Prove that the ultraproduct M :=
∏
i∈I
Mi/U is isomorphic (as

an L-structure) to Ms. (Hint: Define the map ϕ : Ms → M by a 7→
(bi)i∈I/ ∼ where bs = a and bj are arbitrarily chosen when j 6= s. Prove
this map is well defined and that it is an isomorphism of L-structures.)

(2) Fix a ultrafilter U on ω (the natural numbers), an L-structure M and set

Mi = M for i ∈ ω. The ultraproduct M∗ =
∏
i∈ω
Mi/U is called the

ultrapower of M with respect to U . Consider the diagonal map d : M→
M∗ given by a 7→ (a)i∈I/ ∼. Show that d is an elementary L-embedding.
Now assume that U is nonprincipal, show that

d is an isomorphism ⇐⇒ M is finite
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2. Tutorial 2 (Ot 26th)

We will do some basic exercises using compactness and ultrapoducts.

(1) Suppose T is a complete theory with a finite model of size n < ω. Prove that
all models of T has size n.

Solution. Let M |= T with |M | = n. Now consider the L-sentence σn saying that
there are exactly n many elements, that is

σn : ∃x1 . . . ∃xn ∧i<j (xi < xj) ∧ (∀y ∨i (y = xi))

Clearly M |= σn. Thus T 6|= ¬σn, and so, since T is complete, we get T |= σn.
Hence, any model of T satisfies σn.

Remark 2.1. Note that the above is also an easy consequence of the fact that a
theory is complete if and only any two of its models are elementary equivalent (this
fact is an easy exercise).

(2) Let T be an L-theory. Suppose that for every n < ω there is m > n such that
T has a model of size m (i.e., T has arbitrarily large models). Prove that has an
infinite model.

Solution. Let θn be the sentence saying that there are at least n many elements.
Consider the L-theory T ∗ := T ∪ {θn :< ω}. It follows from the assumption that
T ∗ is finitely satisfiable. Thus, by compactness, T ∗ has a model M. Clearly M is
an infinite model of T .

(3) (Amalgamation) Suppose M0,M1,M2 are L-structures with M0 � Mi for
i = 1, 2. Prove that there is an L-structure N and elementary L-embeddings
fi :Mi → N such that f1|M0 = f2|M0 .

For this exercise we will need ways to construct elementary embeddings. This
can generally be done as follows. Let M be an L-structure. Let LM be the new
language where we expand L by adding constant symbols for each element of M,
that is

LM = L ∪ {cm : m ∈M}
Then M is naturally an LM -structure (by setting cMn = m for m ∈ M). The
diagram of M, Diag(M), is defined as the LM -theory

{φ(cm1
, . . . , cmn

) : φ(x1, . . . , xn) is a q.f. L-formula and M |= φ(m1, . . . ,mn)}
The elementary diagram of M, Diagel(M), is defined as the diagram of M but
where we allow φ to range over all L-formulas (not necessarily q.f.). Now, if we
have an LM -structure which happens to be a model of Diag(M) then we have an
injective map α : M → N given by m 7→ cNm . Moreover, we have the following fact
(that we leave as an exercise to the interested reader):

Fact 2.2. If N |= Diag(M) then the map α : M → N is an L-embedding. Fur-
thermore, if N |= Diagel(M) then α is an elementary embedding.

Solution to (3). Let

L∗ = LM0
∪ {cm : m ∈M \M0} ∪ {dµ : µ ∈M2 \M0}

Also, let
T ∗ = Diagel(M1) ∪Diagel(M2)
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By Fact 2.2, it suffices to show that T ∗ has a model. So, by compactness, it
suffices to show that T ∗ is finitely satisfiable. Let Σ be a finite subset of T ∗. Then
Σ = {σ1, . . . , σs} ∪ {η1, . . . , ηt} where the σi’s are LM1-sentences and the ηi’s are
LM2

-sentences. Let σ = σ1 ∧ · · · ∧ σs and η = η1 ∧ · · · ∧ ηt. We can write σ as
σ′(c̄m̄) where σ′(x̄) is an LM0

-formula and c̄m̄ is a tuple from LM1
\LM0

. Similarly,
we can write η as η′(d̄µ̄). SinceM0 �M1, from the fact that M1 |= σ′(m̄) we get
that there is a tuple ā from M0 such that M0 |= σ′(ā). Similarly, from the fact
that M0 �M2, we can find a tuple b̄ from M0 such that M0 |= η′(b̄).

Now make the LM0
-structureM0 into an L∗-structure, call itM∗0, by interpret-

ing the constants as follows: c̄m̄ as ā, d̄µ̄ as b̄, and interpret the rest arbitrarily. It
is now easy to check that M∗0 is a model of Σ. We are done!

Remark 2.3. The previous “amalgamation” result does not generally hold if we
remove the assumption that M0 is an elementary substructure. In general,
an L-theory T is said to have the amalgamation property if given any models
M0,M1,M2 with M0 ⊆ Mi, for i = 1, 2, there exists N |= T and L-embeddings
fi :Mi → N such that f1|M0

= f2|M0
. The theory of fields has the amalgamation

property. We leave as an exercise (to the interested reader) to find an example
showing that the theory of rings does not have the amalgamation property.

(4) Recall that the class of torsion-free groups is axiomatized by the theory

Ttf = GROUPS ∪ {σn : n < ω}
where σ is the sentence saying that every nontrivial element does not have order n.
Prove that this class of groups does not have a finite axiomatization.

Solution. Towards a contradiction suppose there is such an axiomatization. By
taking conjunctions, we may assume it is given by a single sentence σ. Then Ttf |= σ
and so, by compactness, there must a finite Σ ⊂ Ttf such that Σ |= σ. There is
N < ω such that Σ ⊆ GROUPS ∪ {σn : n ≤ N}. Now consider the structure
G = (Z/(p),+) where p is a prime larger than N . Then G |= Σ. However, G 6|= σ
which contradicts the fact that Σ |= σ.

(5) Recall that a group is said to be a torsion group if each element has torsion
(i.e., finite order). Prove that the class of torsion groups is not elementary.

Solution. Towards a contradiction suppose it is, say by T . Let

Gn = (Z/(n+ 2),+)

for n ∈ ω. Let U be a nonprincipal ultrafilter of ω. Consider the ultraproduct

G =
∏
n<ω

Gn/U

By Loś’s theorem, G |= T . However, the element α = (1, 1, . . . )/ ∼∈ G has no
torsion. Indeed, if it did there would be N < ω such that αN = (0, 0, . . . )/ ∼. That
is,

{n < ω : N ≡ 0 mod n+ 2} ∈ U .
But since U is nonprincipal all of its elements are infinite. So the above set would
be infinite, this is clearly impossible (its size is at most N).

We finish with some additional exercises (which we leave to the reader):
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(1) Prove that the theory ACF (algebraically closed fields) is not finitely ax-
iomatizable.

(2) Prove that the class of finite fields is not elementary.
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3. Tutorial 3 (Nov 9th)

Real closed fields. The goal is to give an idea of why the theory RCF in the
language Lord (of ordered rings) has quantifier elimination.

Definition 3.1. An ordered field (K,<) is a field equipped with a linear order
such that for all a, b, c ∈ K we have

a < b =⇒ a+ c < b+ c

and

a < b and c > 0 =⇒ ac < bc

Example 3.2. R and Q are ordered fields. Moreover, there is a unique way to
order them. On the other hand, Q[t] is also orderable but this has many orders
(uncountably many).

Remark 3.3. Let K be an ordered field. It can easily be seen that K must have
characteristic zero. Also, note that for nonzero a ∈ K we have a2 > 0 (since
a2 = aa = (−a)(−a)). Also, −1 < 0. This yields that −1 is not a sum of squares.

Definition 3.4.

(1) A field K is (formally) real if −1 is not a sum of squares.
(2) A real field K is real closed if it has no formally real algebraic extensions.

The above remark shows that any ordered field is real. Turns out that the
converse is also true, but this requires some work.

The following theorem is the key to the axiomatization of RCF .

Theorem 3.5. Let K be a real field. TFAE

(1) K is real closed
(2) K(i) is algebraically closed (where i2 = −1)
(3) for a ∈ K either a or −a is a square, and every polynomial over K in one

variable of odd degree has a root in K

As a consequence of (3) in the theorem we get:

Corollary 3.6. In the language of rings, Lrings, the class of real closed fields is
axiomatizable.

One can not get q.e. in the language of rings (if it had q.e. the positive elements
would either be finite or cofinite). But it turns out that the order < is all we need
to add to the language to get q.e. So, we now work in the language Lord. We let
RCF be the theory of ordered fields together with the axioms for real closed fields
(i.e., (2) from the above theorem).

Note that in a model of RCF the order is unique; indeed, the positive elements
are the squares. We also have the following “intermediate value theorem”:

Corollary 3.7. Let K |= RCF . Then for any p ∈ K[x] and a < b with p(a)p(b) <
0, there is a < c < b such that p(c) = 0.

Proof. Since F (i) is algebraically closed, p factors over K into linear and quadratic
irreducible polynomials. One of the linear factors must change sign between a and
b. Thus this linear factor must have a root in between. �
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A real closure of a real field K is a real closed algebraic extension of K. Real
closures are not generally isomorphic. However, if K is ordered and K1 and K2 are
real closures of K such that their unique orderings extend that of K, then they are
isomorphic over K. Now the question is: can we find a real closure extending the
order?

Proposition 3.8. Suppose K is an ordered field. Then K has a real closure that
extends its ordering. Moreover, if L is a real closed field extension of K extending
the ordering, then there is a real closure of K in L.

Theorem 3.9. RCF has q.e.

Proof. We use the criterion for q.e. that we discussed in lectures. So, let K,L |=
RCF with a common substructure R, φ(x̄, y) a quantifier free Lord-formula, ā from
R and b ∈ K such that K |= φ(ā, b). We must find c ∈ L such that L |= φ(ā, c).
Note that R is an integral domain, then Frac(R) is an ordered field, by Proposition
3.8 it has a real closure in K and a real closure in L. Since these real closures are
isomorphic (over Frac(R)), we may assume that K and L contain a common real
closure F of Frac(R). Thus, it suffices to find the desired c in F . Since φ is q.f.,
we may assume that it has the form

∧i(pi = 0) ∧ ∧j(qj > 0)

for pi and qj polynomials in one variable over F . If one of the pi’s is not zero, then
b is algebraic over F and hence in F . Thus we may assume that φ is of the form
∧j(qj > 0). As in the proof of Corollary 3.7, each qi factors over F into irreducible
linear and quadratic terms. Thus, from the linear terms and the fact that qi(b) > 0
for all i, we can find two lists d1, . . . , dn and e1, . . . , en of elements from F with
maxi(di) < maxi(ei) such that for all di < u < ei we have qi(u) > 0. Letting
c = d+e

2 ∈ F , where d = maxi(di) and e = maxi(ei), we get qi(c) > 0 for all i as
desired. �

Let L be a language containing < (i.e., a binary relation symbol). We recall that
an L-structure M is o-minimal if every definable subset of M is a finite union of
intervals (equivalently, definable using only <) . A consequence of q.e. for RCF is
that every model if RCF is o-minimal.
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4. Tutorial 4 (Nov 16th)

Elimination of imaginaries. Let M be an L-structure. Suppose E is an equiv-
alence relation on Mn. We say that E is a definable equivalence relation if the set
E ⊆Mn ×Mn is definable. We can consider the quotient space

Mn/E = {ā/E : ā ∈Mn}.

Can we view this as a “definable set”? For instance, can we find a definable set
of representatives? That is, can we find a definable set X ⊆ Mn such that X
is a set of representatives for Mn/E? This turns out to be true in any model of
RCF (using Skolem functions). However, it is not true in ACF0. For example, the
relation on K |= ACF0 given by xEy iff x2 = y2 cannot a have a definable set of
representatives (since such set would a infinite and coinfinite definable set, but this
is impossible by strong minimality of ACF0).

The next best thing that one could ask for (to somehow viewMn/E as a definable
set) is to ask about the existence of a definable function f : Mn → Mm, for some
m, such that f(x̄) = f(ȳ) iff x̄Eȳ. Note that if this is the case we can identify
Mn/E with the definable set f(Y ) as these two set are in “definable” bijection
ā/E 7→ f(ā).

We will see that the existence of such functions is guaranteed in the theories
ACF0 and DCF0. Before doing so, we need some preliminary results.

Definition 4.1. Let κ be an infinite cardinal and M an L-structure.

(1) M is said to be κ-strongly homogeneous if for every A ⊆ M with |A| < κ
and f : A → M a pem, there is an extension of f to an automorphism of
M.

(2) M is said to be κ-saturated if for every A ⊆M with |A| < κ all types over
A (with respect to the complete theory ThA(M)) are realized in M.

It turns out that a theory always has a κ-strongly homogeneous and κ-saturated
model for any κ. The following is easy to check:

Fact 4.2. Suppose M is κ-strongly homogeneous and κ-saturated.

(1) Let ā, b̄ be n-tuples from M and A ⊆ M with |A| < κ. If tpM(ā/A) =
tpM(b̄/A) then there is an automorphism σ ofM fixing A such that σ(a) =
b.

(2) Suppose A ⊆ M with |A| < κ. Then, a ∈ dcl(A) iff for all σ ∈ Aut(M/A)
we have σ(a) = a.

Proposition 4.3. SupposeM is κ-strongly homogeneous and κ-saturated. Let A ⊆
M with |A| < κ. A definable set X ⊆Mn is A-definable iff for all σ ∈ Aut(M/A)
we have σ(X) = X.

Proof. We have seen in lectures that (⇒). Let us show (⇐). Let X = φM(x̄, b̄).
Consider

Γ = {ψ(x̄) : ψ(x̄) is an LA-formula and M |= ∀x̄ φ(x̄, b̄)→ ψ(x̄)}

We claim that ThA(M) ∪ Γ |= φ(x̄, b̄). If not, by κ-saturation, we can find c̄ in
M realizing Γ but not φ(x̄, b̄). Now, by strong homogeneity, for every c̄′ in M
with tpM(c̄/A) = tpM(c̄′/A) there is σ ∈ Aut(M/A) such that σ(c̄) = c̄′. By our
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assumption, σ(X) = X, so c̄′ cannot be in X. In other words, tpM(c̄/A) |= ¬φ(x̄, b̄).
Thus, we can find an LA-formula θ from tpM(c̄/A) such that

M |= ∀x̄ θ(x̄)→ ¬φ(x̄, b̄).

It follows that ¬θ ∈ Γ but this is impossible since M |= θ(c̄). We have thus shown
that ThA(M) ∪ Γ |= φ(x̄, b̄). By compactness, there is a formula ψ ∈ Γ such that

M |= ∀x̄ ψ(x̄)→ φ(x̄, b̄).

It follows that X = φM(x̄, b̄) = ψM(x̄) as desired (since ψ is an LA-formula). �
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5. Tutorial 5 (Nov 23rd)

We fix M a κ-saturated and κ-strongly homogeneous L-structure for large κ.
Also, B will be a subset of M with |B| < κ.

Recall that last time we proved that given a definable set X, we have that X is
B-definable iff all σ ∈ Aut(M) fixes X setwise. We can now ask, given a definable
X is there a smallest dcl-closed B over which X is defined. Here dcl-closed means
B = dcl(B) and by “smallest” we mean that if X is A-definable then B ⊆ dcl(A).
This motivates the following definition:

Definition 5.1. Let p be a (possibly incomplete) type over A ⊂ M . We say that
B is a canonical base for p if B is dcl-closed and for each σ ∈ Aut(M) we have

σ(pM) = pM setwise ⇐⇒ σ(B) = B pointwise

Recall that pM denotes the set of realization of p in M. Note that p could be a
single formula, and so we can talk about the canonical base of a formula (in fact
we will mostly focus on this case).

Remark 5.2. Let X be a definable set with canonical base B. Note that B is
the smallest dcl-closed set over which X is defined. Indeed, if X is A-definable,
then any σ ∈ Aut(M/A) fixes X pointwise and thus fixes B setwise; by saturation
B ⊆ dcl(A). This also shows that canonical basis are unique (if they exist). We
also have that B is of the form dcl(b̄) for finite tuple b̄ (we’ll see this in Lemma 5.3
below). Finally, if X is A-definable and also C-definable, then it is dcl(A)∩dcl(C)-
definable.

Lemma 5.3. Let X be definable. Then, B is a canonical base for X iff there is a
formula ψ(x̄, ȳ) and b̄ from B such that X = ψM(x̄, b̄) and for all c̄ from M with
c̄ 6= b̄ we have X 6= φM(x̄, c̄). In this case, B = dcl(b̄).

Proof. By Proposition 4.3, X is B-definable. Say X = φM(x̄, b̄) for some b̄ ∈ B.
We claim that

(5.1) tp(b̄) |= (ȳ 6= b̄)→ (∀x̄ φ(x̄, ȳ) 6↔ φ(x̄, b̄))

If not, by saturation, there is b̄′ from M with tp(b̄′) = tp(b̄), b̄′ 6= b̄, and φM(x̄, b̄′) =
φM(x̄, b̄). But then, by homogeneity, there is σ ∈ Aut(M) with σ(b̄) = b̄′, so that
σ does not fix B pointwise, and so (by definition of canonical base) σ does not fix
X setwise, that is φM(x̄, σ(b̄)) = φM(x̄, b̄), a contradiction. Thus (5.1) holds, and
so, by compactness, there is θ(ȳ) ∈ tp(b̄) such that

θ(ȳ) |= (ȳ 6= b̄)→ (∀x̄ φ(x̄, ȳ) 6↔ φ(x̄, b̄))

The desired formula is ψ(x̄, ȳ) = φ(x̄, ȳ) ∧ θ(ȳ).
For the converse, let σ ∈ Aut(M) then σ(X) = X iff ψM(x̄, σ(b̄)) = ψM(x̄, σ(b̄))

iff σ(b̄) = b̄. Hence, dcl(b̄) will be a canonical base for X. �

Do canonical basis always exist? Not generally. This motivate the following

Definition 5.4. A theory T eliminates imaginaries if every definable set has a
canonical base.

Lemma 5.5. Suppose T eliminates imaginaries and that the language has at least
two constant symbols (call them 0 and 1). If X ⊆ Mn is a A-definable set and E
is an A-definable equivalence relation on X, then there is an A-definable function
f : X →Mm, for some m, such that xEy iff f(x) = f(y).
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Proof. By Lemma 5.3, for each formula φ(x̄, ȳ) and tuple ā there is a formula
ψā(x̄, ȳ) and a unique b̄ such that φM(x̄, ā) = ψM(x̄, b̄). By a standard compactness
argument, there are formulas ψ0(x̄, ȳ), . . . , ψs(x̄, ȳ) such that for a given ā there is
i and unique b̄ such that φM(x̄, ā) = ψMi (x̄, b̄). By a standard coding trick we can
reduce to a single ψ (the fact that our language has two constant symbols guarantees
that this ψ has not additional parameters). For instance, let me demonstrate the
coding trick in the case s = 2; i.e., we have only ψ0, ψ1. We set ψ(x̄, ȳ, z) to be

((ψ0(x̄, ȳ)∧(z = 0))∨(ψ1(x̄, ȳ)∧(z = 1)))∧((∃uniquev̄∀w̄ φ0(w̄, v̄)↔ ψ1(w̄, ȳ))↔ (z = 0))

This formula does the job since, given ā, if ∃uniqueb̄ such that φM(x̄, ā) = ψM0 (x̄, b̄)
then (b̄, 0) is the unique such that φM(x̄, ā) = ψM(x̄, b̄, 0); otherwise, (b̄, 1) is the
unique such that φM(x̄, ā) = ψM(x̄, b̄, 1). A similar idea works for more than than
two ψi’s.

We have shown that for any φ(x̄, ȳ) there is ψ(x̄, ȳ) such that for any ā there is
unique b̄ with φM(x̄, ā) = ψM(x̄, b̄). If φ is the formula defining our equivalence
relation E, then the function f is given by ā 7→ b̄. To finish let us check that āEc̄
iff f(ā) = f(c̄). Indeed, if āEc̄ then

φM(x̄, c̄) = c/E = a/E = φM(x̄, ā) = ψ(x̄, b̄),

and so f(c̄) = b̄, as desired. �

Remark 5.6. The converse of the lemma is also true. More precisely, if inM |= T for
every a definable equivalence relation E on Mn there is a definable f : Mn →Mm

such that xEy iff f(x) = f(y), then T eliminates imaginaries. Indeed, let X be
a definable set given by φ(x, a), consider the definable equivalence relation on Mn

given by yEz iff ∀xφ(x, y) ↔ φ(x, z). Then, there is a definable f : Mn → Mm

such that yEz iff f(y) = f(z). Consider the formula ψ(x, y) given by

∃w φ(x,w) ∧ (f(w) = y)

Then b := f(a) is the unique tuple such that X = ψM(x, b). By Lemma 5.3, dcl(b)
is a canonical base for X, and so T eliminates imaginaries.

Theorem 5.7. The theories ACF0 and DCF0 eliminate imaginaries.

Sketch of the proof.
ACF0: We use minimal fields of definition from algebraic geometry. That is,

given a Zariski-closed set V ⊆ Kn with K |= ACF0 sufficiently saturated, it is an
algebraic fact that there is k < K such that for any σ ∈ Aut(K) fixes V setwise
iff it fixes k pointwise. I will only consider the case of a definable set X of the
form V \W where V is irreducible and W ⊆ V (the general case follows from this
using quantifier elimination). Let kV be the minimal field of definition of V and
kW that of W . We claim that k = 〈kV , kW 〉 (the compositum of kV and kW in K)
is a canonical base for X. It is dcl-closed since it is a field. Now let σ ∈ Aut(K).
If σ fixes X setwise, then it fixes a dense open set of V (denseness comes from
irreducibility of V ). But the image σ(V ) is another irreducible Zariski closed set
and so, since V and σ(V ) are Zariski-closed whose intersection is dense in both, we
have V = σ(V ) (setwise). It follows from this that σ also fixes W setwise. Hence, σ
fixes kV and kW pointwise. Consequently, σ fixes k pointwise. On the other hand,
suppose σ fixes k pointwise, then it fixes kV and kW pointwise, and so it fixes V
and W pointwise; and hence also X, as desired.
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DCF0: In differential-alegebraic we also have minimal differential field of defi-
nitions for Kolchin-closed sets. The proof in this case is analogous to the ACF0

case. �
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6. Tutorial 6 (Nov 30th)

A ω-stable group is a structure G in a language expanding the language of groups
such that (G, e, ·) is a group and Th(G) is ω-stable.

Let us recall the notion of interpretability. We say that an L′-structure N is
interpretable in an L-structure M is there is a definable X ⊆ Mn, a definable
equivalence relation E on X, and for each symbol in L′ we can find an E-invariant
set on some Xm (where by definable we mean with respect to L) such that X/E
with the induced L′-structure is isomorphic to N .

Fact 6.1. LetM be a structure with a ω-stable theory. If a group G is interpretable
in M, then G is ω-stable.

For example, any definable group in an algebraically closed (or differentially
closed) field K is ω-stable. In particular, algebraic groups over K are ω-stable; in
fact, such groups have finite Morley rank. The following conjecture is one of the
main open problems in the subject of ω-stable groups.

Conjecture 6.2 (Cherlin-Zilber conjecture). If G is an infinite simple group of
finite Morley rank, then G interprets an algebraically closed field K and G is de-
finably isomorphic to a simple algebraic group over K.

Theorem 6.3. If G is a ω-stable group then there is no infinite descending chain
of definable subgroups.

Proof. Note that for any H ≤ G the translates of H in G have the same Morley
rank as H. Hence, if [G : H] is infinite we get RM(H) < RM(G); otherwise,
RM(G) = RM(H) and degG = [G : H] degH. Now, let α = RM(G). Suppose we
have an infinite descending chain G > G1 > G2 > · · · . Let si = (RM(Gi),degGi).
Then, by the comments above, the si’s are infinite descending sequence of (α+1)×ω
with respect to lexicographic order. But this is impossible as the latter is well
ordered. �
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7. Tutorial 7 (Dec 7th)

Let G be a ω-stable group. We have the following easy corollary of Theorem 6.3
above.

Corollary 7.1. If (Hi)i∈I is a collection of definable subgroups of G, then there is
a finite subcollection Hi1 , . . . ,His such that⋂

i∈I
Hi = Hi1 ∩ · · · ∩His

We also get the following

Proposition 7.2. G has a smallest definable subgroup of finite index, call it G0.
Moreover, G0 is 0-definable and normal in G

We call the above G0 the connected component of G, and we say that G is
connected if G = G0.

Proof. Let

H = {H ≤ G : H is a definable subgroup of finite index}

By Corollary 7.1, there are Hi1 , . . . ,His ∈ H such that⋂
H = Hi1 ∩ · · · ∩His

Let G0 = Hi1 ∩ · · · ∩His . Clearly, G0 is definable and of finite of index, and it is
the smallest such. We now argue why it is 0-definable. Let n = [G : G0]. Note that
if H 6= G0 is a definable subgroup of index ≤ n, then H ∩G0 would be a definable
proper subgroup of G0 of finite index, which is impossible. Thus, G0 is the only
definable subgroup of index ≤ n. Now, let φ(x, b) be an L-formula defining G0.
Consider the 0-definable set

W = {c ∈ G : φ(x, c) defines a subgroup of index ≤ n}

Then the L-formula ∃y φ(x, y) ∧ (y ∈ W ) defines G0. Finally, to see that G0 is
normal in G, note that for any definable group automorphism σ of G we have that
σ(G0) is a definable subgroup of index n. But we have seen that then σ(G0) = G0.
Hence, for any g ∈ G we get gG0g

−1 = G0, showing that G0 EG. �

Let U be a sufficiently saturated elementary of G. We say that a type p ∈ S1(G)
is generic if RM(p) = RM(G). We say that g ∈ U is generic over G if RM(g/G) =
RM(G).

We have the following:

Fact 7.3.

(1) Let g be generic over G and h ∈ G. Then hg and g−1 are generic over G.
(2) G has a unique generic type iff it is connected.

Proof. We prove (1). Suppose hg is not generic overG. Then there is some definable
set X containing hg such that RM(X) < RM(G). Consider the map f : X → U
given by x 7→ h−1x. Then f is a definable injective map whose image contains g,
and so, since RM(f(X)) = RM(X), we get RM(g/G) contradicting genericity of
g. To show that g−1 is generic over G, we argue as before but now using the map
x 7→ x−1. �
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We now aim to prove Macintyre’s theorem (in characteristic zero) that any in-
finite ω-stable field is algebraically closed. We will use the following result from
Galois theory:

Fact 7.4. Let p ∈ N be a prime. If L/K is a Galois extension of degree p and K
contains all p-th roots of unity, then the minimal polynomial of L/K is of the form
xp − a for some a ∈ K.

Theorem 7.5 (Macintyre’s theorem). If K is an infinite ω-stable field, then it is
algebraically closed.

Proof. We prove the case when char(K) = 0. The positive characteristic case
requires a bit more work.

First, note that for every a ∈ K∗ the map x 7→ ax is a definable group auto-
morphism of (K, 0,+), then aK0 = K0 where K0 is the connected component of
(K, 0,+). This implies that K0 is an ideal of K, and so, since K is an infinite
field, we must have K0 = K. By Fact 7.3(2), K has a unique generic type, and so
the multiplicative group (K∗, 1, ∗) also has a unique generic type and hence it is
connected. Now, for every positive integer n, the map x̄ 7→ xn has finite fibres and
so the image of this map (which is Kn) has the same Morley rank as K. So Kn\{0}
is a definable subgroup of the multiplicative group of K of the same Morley rank.
Since the latter is connected, we get K = Kn, and so every element of K has an
n-th root for all n > 0.

We now prove that K has no proper Galois extensions (since char(K) = 0 this
will imply that K is algebraically closed, in fact this is true for any perfect field).
Suppose this not the case. Let n > 0 be minimal such that there is an infinite
ω-stable field K with a Galois extension L of degree n. Let us argue that n must be
prime. There is prime p such that the group Aut(L/K) has a subgroup of order p,
but then, by the Galois correspondence, there is an intermediate field K < F < L
such that L/F has degree p. Since F is a finite extension of K, it is interpretable
in K, and so also ω-stable. By the choice of n, we must have n = p.

Now, to apply Fact 7.4, we must argue that K contains all p-th roots of unity.
But this is easy: the splitting field of xp − 1 is a Galois extension of K of degree
≤ p− 1. By choice of p, this extension must be trivial, and so K contains all p-th
roots of unity. So, by Fact 7.4, the minimal polynomial of L/K is of the form
xp − a. But this is impossible since above we argued that every element of K has
a p-th root, and so this polynomial would not be irreducible. This is the desired
contradiction, and so K has no proper Galois extensions. �

Corollary 7.6. If K is an infinite field with with quantifier elimination, then it is
algebraically closed.

Proof. We may assume that K is sufficiently saturated. Note that, since K has
q.e., it is strongly minimal. We now argue that if F � K is countable then S1(F ) is
countable. To see this it suffices to show that any two a, b ∈ K that are not in F alg

have the same type over F . If their types were different there would be a formula
φ(x) (over F ) such that K |= φ(a)∧¬φ(b). But then φK is an infinite definable set
(otherwise a would in F alg) and it is also coinfinite (otherwise b would be in F alg).
This would contradict strong minimality of K. Thus, indeed, tp(a/F ) = tp(b/F ).

I leave as an exercise to show that if S1(F ) is countable for all countable F , then
Sn(F ) is also countable for all n (do induction on n). This, of course, now implies
that K is ω-stable, and so, by Macintyre’s theorem, it is algebraically closed. �


