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What is model theory? It is a branch of math logic that studies mathematical
structures by looking at their first-order properties. A principal theme of the subject
is to

look at theories with interesting properties and prove
structural theorems about their models.

This can be illustrated by the existence and uniqueness of prime models in ω-
stable theories (in analogy to algebraic closure in the context of fields). We will
view ω-stable theories as an abstraction of classical algebraic geometry where the
objects are Zariski closed set (i.e., solutions to systems of polynomials eq’s) and
more generally Zariski constructible (Boolean combination of Zariski closed).

The main point is: As in algebraic geometry, in any ω-stable theory we can
associate to every definable set a well behaved notion of “dimension”.

Acknowledgements. Most of the material presented here is based on the very
nice introduction to model theory given in [1]. For this I thank Dave.
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1. Lecture 1 (Oct 12th)

First-order languages. To study groups we consider sets equipped with a distin-
guished element and binary function

(G, e, ·)
Similarly, to study rings we consider sets with distinguished elements and functions

(R, 0, 1,+,−, ·)
and to study ordered rings we add the relation symbol <. The point is that in each
of these categories we are fixing a language. More generally,

Definition 1.1. A language L is given by specifying:

(1) A set of constant symbols C
(2) A set of function symbols with a given arity F = {(f, nf ) ∈ F}
(3) A set of relation symbols with a given arity R = {(R,nR) ∈ R}

Example 1.2.

• The language of groups is Lgroups = {e, ·} with e ∈ C and · ∈ F of arity 2.
• The language of rings is Lrings = {0, 1,+,−, ·} with 0, 1 ∈ C, +,−, · ∈ F

all of arity 2.
• The language of ordered rings Lord = Lrings ∪ {<} with <∈ R of arity 2.
• The language of differential rings Lδ = Lrings ∪ {δ} with δ ∈ F or arity 1.

Just as groups are given by specifying a set and how e and · are interpreted in
that set, we have:

Definition 1.3. Let L be a first-order language. An L-structure M is given by a
nonempty set M and an interpretation for the symbols in L:

(1) An element cM ∈M for each c ∈ C
(2) A function fM : Mnf →M for each (f, nf ) ∈ F
(3) A relation RM ⊆MnR for each (R,nR) ∈ R

Example 1.4. In the language of groups, Lgroups-structures are of the form G =
(G, eG , ·G)

(1) (C, 0,+), here the interpretations are eC = 0 and ·C = + (usual complex
number addition).

(2) (C, 1, ∗), here the interpretations are eC = 1 and ·C = · (usual complex
number multiplication).

Remark 1.5. The first example is an actual group while the second is not. In
general, Lgroups-structures will not be groups unless we impose some (first-order)
“conditions” (for instance, ∀x∃y xy = yx = e).

Just as we study group homomorphisms (or ring homomorphisms), we have

Definition 1.6. Let M and N be L-structures. An L-embedding ϕ :M→ N is
an injective map ϕ : M → N that preserves the L-structure; that is

(1) ϕ(cM) = cN for all c ∈ C
(2) ϕ(fM(a1, . . . , anf )) = fN (ϕ(a1), . . . , ϕ(anf )) for all f ∈ F and ai’s in M

(3) (a1, . . . , anR) ∈ RM iff (ϕ(a1), . . . , ϕ(anR)) ∈ RN for all R ∈ R and ai’s in
M
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Moreover, if ϕ is bijective we call it an L-isomorphism (Note that in this case
ϕ−1 : N →M will be an L-embedding).

If M ⊆ N and the inclusion map from M to N is an L-embedding we say thatM
is a substructure of N , written M ⊆ N . Note that in this case we have cM = cN

for all c ∈ C, fM(a1, . . . , anf ) = fM(a1, . . . , anf ) for all f ∈ F and ai’s in M , and

RM = RN ∩MnR for all R ∈ R.

Remark 1.7. In the language of groups, an Lgroups-substructure of an actual group
is generally just a submonoid (since we are not including the inverse function in
the language).

First-order formulas. We use the language L to build formulas that will describe
properties of L-structures. For the Lgroups-structure (C∗, 1, ∗) we have that the
property

∀x∀y x · y = y · x.

In general, L-formulas are string of symbols built from L and

(1) = (equality)
(2) x1, x2, . . . (a list of variables)
(3) ∧,∨,¬ (logical connectives)
(4) ∃,∀ (quantifiers)
(5) (, ) (parenthesis)

Formally,

Definition 1.8. The set of L-terms T is defined inductively as follows

• c ∈ T for all c ∈ C
• xi ∈ T for i = 1, 2, . . .
• for each (f, nf ) ∈ F , if t1, . . . , tnf ∈ T then f(t1, . . . , tnf ) ∈ T

Example 1.9. In Lrings, ·(x1,−(x2, 1)) is an term and we usually write as x1·(x2−1).
Also, +(1, 1) is a term usually written 1 + 1.

We can now define

Definition 1.10. An atomic L-formula is a string of symbols of the form

(1) t1 = t2 where ti’s are terms, or
(2) R(t1, . . . , tnR) where the ti’s are terms and R ∈ mathcalR

The set of L-formulas is inductively defined as: It contains the atomic formulas
and, if φ, ψ are L-formulas, then

¬φ, φ ∧ ψ, φ ∨ ψ, ∃xiφ, ∀xiφ

are also L-formulas.

For example, in the language of rings

• (x1 = 0) ∨ (x1 = 1)
• ∀x1 (x1 = 0) ∨ (∃x2 x1 · x2 = 1)

Note that in the first formula the variable x1 is free (i.e., not bounded by a quan-
tifier), while in the second formula x1, x2 are bounded. An L-formula with no free
variables is called an L-sentence.
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We now define what does it mean for an L-formula to hold in an L-structureM.
First, for t(x1, . . . , xn) an L-term we interpret it in M as the function tM : Mn →
M defined as follows:

• if t = c, with c ∈ C, then tM is the constant function on Mn equal to cM

• if t = xi, then tM is the i-th coordinate function on Mn

• if t = f(t1, . . . , tnf ) where (f, nf ) ∈ F and we have already defined the
interpretation for the ti’s, then

tM(a1, . . . , an) = fM(t1(a1, . . . , an), . . . , tnf (a1, . . . , an))

for all (a1, . . . , an) ∈Mn

Example 1.11. In Lrings, suppose t is x1 · (x2−1). In the structure (C,+,−, ∗) this
term defines the polynomial function tC : C2 → C given by

(z1, z2) 7→ z1(z2 − 1)

In fact, in the language of rings, all terms can be interpreted as polynomial functions
over the integers.

Definition 1.12. Fix a language L and an L-structure M. Let φ(x) with x =
(x1, . . . , xn) be an L-formula and a ∈Mn. We inductively defineM |= φ(a), which
reads as “φ(a) holds in M” or “M satisfies φ(a)”,

(1) if φ is of the form t1 = t2, then M |= φ(a) if tM1 (a) = tM2 (a)
(2) if φ is of the form R(t1, . . . , tnR), then M |= φ(a) if

(tM1 (a), . . . , tMnR(a)) ∈ RM

(3) if φ is of the form ¬ψ, and we have defined M |= for ψ, then M |= φ(a) if
M 6|= ψ(a)

(4) if φ is of the form ψ ∧ θ, and we have defined M |= for ψ and θ, then
M |= φ(a) if M |= ψ(a) and M |= θ(a). Similarly, for φ of the form ψ ∨ θ.

(5) if φ is of the form ∃y ψ(x, y) and we have defined M |= for ψ(x, y), then
M |= φ(a) if there is b ∈ M such that M |= ψ(a, b). Similarly for φ of the
form ∀y ψ(x, y).

Example 1.13. In Lrings, consider the formula φ(x) given by ∃y x = y2. Then, in
the structure (R, 0, 1,+,−, ∗), we have that R |= φ(a) iff a ≥ 0.

Proposition 1.14. SuppoerM⊆ N , a ∈Mn and φ(x) is a quantifier free formula.
Then,

M |= φ(a) ⇐⇒ N |= φ(a)

Idea of the proof. First, one shows (inductively on the complexity on terms) that
for each L-term t we have tM(a) = tN (a). Then one proceeds by induction on the
complexity of the quantifier free formula φ (i.e., first consider the case when it is
an atomic formula, and then when it has logical connectives). �

Remark 1.15. The above proposition is not generally true if φ is not q.f.. For
instance, consider the Lgroups-sentence σ given by ∀x∀y x ·y = y ·x. Now take your
favourite nonabelian group G, then

Z(G) |= σ but G 6|= σ
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where Z(G) denotes the centre of the group. For another example, consider the
Lrings-formula φ(x) given by ∃y x = y2 then with their standard ring structures we
have

R 6|= φ(−1) while C |= φ(−1)
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2. Lecture 2 (Oct 19th)

Definition 2.1. Two L-structuresM andN are said to be elementarily equivalent,
M≡ N , if for all L-sentences σ we have

M |= σ ⇐⇒ N |= σ

It is easy to check that ifM and N are isomorphic,M∼= N , thenM≡ N . But
note that the converse is not generally true (for instance, in Lrings, Qalg ≡ C but
they are of course not isomorphic). In case M ∼= N via ψ : M → N we actually
have that for all formulas φ(x), with x = (x1, . . . , xn), and a ∈Mn we have

(∗)M |= φ(a) ⇐⇒ N |= φ(ψ(a))

NOTE: If ψ :M→N is just an L-embedding then (∗) does not generally hold. An
extension of Proposition 1.14 above shows that it does hold whenever φ is quantifier
free.

It is of course important to understand the cases when (∗) holds. We even give
it a name:

Definition 2.2. An L-embedding ψ :M→N is called elementary if (∗) holds for
all formulas φ(x) and a ∈ Mn. A substructure M ⊆ N is called elementary if the
inclusion map from M to N is elementary, that is, if

M |= φ(a) ⇐⇒ N |= φ(a)

for all φ and a ∈Mn. In this case we write M� N

Clearly, if M � N then M ≡ N . We have the following test for elementary
substructures

Theorem 2.3 (Tarski-Vaught test). SupposeM⊆ N . Then, M� N iff for every
formula φ(x, ȳ) and ā ∈Mn we have

N |= ∃xφ(x, ā) ⇐⇒ M |= ∃φ(x, ā)

Sketch of the proof. We check right-to-left. To show M � N , let ψ(ȳ) be an ar-
bitrary formula and ā ∈ Mn we must show that M |= ψ(ā) iff N |= ψ(ā). By
Proposition 1.14 we know this holds for q.f. formulas. Thus, it suffices to prove the
case when ψ is of the form ∃xφ(x, ȳ) where the claim holds for φ(x, ȳ). We have

M |= ψ(ā) ⇐⇒ M |= ∃xφ(x, ā) ⇐⇒ N |= ∃xφ(x, ā) ⇐⇒ N |= ψ(ā)

where the second ⇐⇒ uses our assumption (for the right-to-left direction). �

Theories. Fix a language L. An L-theory T is simply a set of L-sentences. We
say that an L-structure M is a model of T , M |= T if M |= σ for all σ ∈ T .

Definition 2.4. An L-theory T is said to be satisfiable if has model. A class K of
L-structures is elementary (or axiomatizable) if there is an L-theory T such that
K = {M :M |= T}.

Example 2.5.

(1) In Lgroups, the class of all groups, GROUPS, can be axiomatize with the
sentence

∀x∀y∀z (x · (y · z) = (x · y) · z) ∧ (e · x = x · e = x) ∧ (∃w x · w = w · x = e)
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(2) The class of abelian groups, AbGROUPS, can be axiomatized with the
axioms of groups together with

∀x∀y x · y = y · x

(3) The class of rings and the class of fields can be axiomatized in a natural
fashion in the language Lrings. Moreover, the class of fields of characteristic
zero can be axiomatized with the axioms of fields together the infinite
scheme of axioms

{∃x px 6= 0 : p is prime}

here px stands for the addition of x p-times. Also, the class of algebraically
closed fields can be axiomatized with the scheme

{∀a0 . . . ∀an−1∃xxn + an−1x
n−1 + · · ·+ a1x+ a0 = 0 : n = 1, 2, . . . }

This theory is denoted by ACF and if we specify the characteristic by ACFp
(for p = 0 or prime).

(4) In the language of differential rings Lδ = Lringa∪{δ}, the theory DF0 given
by the theory of fields of characteristic zero together with

∀x∀y(δ(x+ y) = δ(x) + δ(y)) ∧ (δ(x · y) = δ(x) · y + x · δ(y))

axiomatizes the class of differential fields of characteristic zero.

The compactness theorem. We say that a theory T is finitely satisfiable if for
every finite Σ ⊆ T the theory Σ is satisfiable.

Theorem 2.6 (Compactness Theorem). Let T be an L-theory. T is satisfiable iff
T is finitely satisfiable.

Proof. We use ultraproducts. We prove right-to-left. We may assume T is infinite.
Let I = {Σ ⊂ T : Σ is finite}. For each σ ∈ T , let Xσ = {Σ ∈ I : σ ∈ Σ}. Also,
let D = {Y ⊆ I : Xσ ⊆ Y for some σ ∈ T}. It is easy to check that D is a filter.
Let U be an ultrafilter extending D. For each Σ ∈ I, let MΣ be a model of Σ (its
existence is guaranteed by our assumption).

We finish the proof by showing that the ultraproduct

M :=
∏
Σ∈I

MΣ/U

is a model of T . To see this, let σ ∈ T . We must show that M |= σ. By Loś’s
theorem it suffices to check that {Σ ∈ I :MΣ |= σ} is in U . But this is clear since

Xσ ⊆ {Σ ∈ I :MΣ |= σ}

and so the latter set is in D, which is a subset of U . �

Using Henkin constructions one can prove the following strengthening of the
compactness theorem:

Proposition 2.7. If T is a finitely satisfiable L-theory, then there is M |= T with
|M | ≤ |L|+ ℵ0.

Corollary 2.8. Let T be a theory with an infinite model and κ a cardinal ≥ |L|+ℵ0.
If T is finitely satisfiable, then there is a model of T is size exactly κ.
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Proof. Let L∗ = L ∪ {cα : α < κ} with each cα a constant symbol. Let

T ∗ := T ∪ {cα 6= cβ : α < β < κ}
We claim that T ∗ is finitely satisfiable. Let Σ be a finite subset of T ∗. Then
Σ ⊆ Σ0 ∪ {cα 6= cβ : α < β < n} for some finite Σ0 ⊆ T and n < ω. Let N be an
infinite model of T (its existence is part of our assumptions). We can interpret cα
in N for all α < n such that for α < β < n the interpretations of cα and cβ are
distinct. Call this L∗-structure N ∗. Then, N ∗ |= Σ. Thus, T ∗ is indeed finitely
satisfiable. By the strong form of compactness (Proposition 2.7), there is a model
M∗ of T ∗ of size at most |L∗|+ ℵ0 = κ. On the other hand, sinceM∗ has distinct
interpretations for each of the cα’s, it must have size equal to κ. Letting M be de
reduct of M∗ to the language L we get the desired model of T . �

We now aim towards showing that ACF0 is a “complete” theory.

Definition 2.9. Let T be an L-theory. An L-sentence σ is a consequence of T if
M |= σ for all M |= T . We say that T is a complete theory if for any sentence σ
we have that either T |= σ or T |= ¬σ.

Lemma 2.10. If T is a complete theory and M,N are models of T , then M≡ N .

Proof. Easy exercise left to the reader. �

Example 2.11. Let M be an L-structure. The theory of M is defined as

Th(M) = {σ :M |= σ}
This is always a complete theory.

Definition 2.12. Let κ be an infinite cardinal. We say that a theory T is κ-
categorical if any two models of T of the same size are isomorphic.

Theorem 2.13 (Vaught’s test). Let T be a theory with no finite models that is
κ-categorical for some infinite κ ≥ |L|. Then T is a complete theory.

Proof. Towards a contradiction assume T is not complete. Then there is σ such
that T 6|= σ and T 6|= ¬σ. It follows that the theories T1 = T ∪ {¬σ} and T2 =
T ∪ {σ} are both satisfiable. Also, since T has no finite models, Ti has no finite
models for i = 1, 2. By Corollary 2.8, there are models Mi |= Ti, i = 1, 2, such
that |M1| = κ = |M2|. In particular, M1 and M2 are models of T . Now, by
κ-categoricity, M1

∼= M2. In particular, M1 ≡ M2, but this is impossible as
M1 |= ¬σ while M2 |= σ. �

Corollary 2.14. The theory ACF0 is complete.

Proof. By Vaught’s test, it suffices to show that ACF0 is κ-categorical for some
infinite κ. Indeed this is true for any uncountable κ since any two algebraically
closed fields of characteristic zero are isomorphic if and only if they have the same
transcendence degree over Q (also recall that a field of cardinality κ, for uncountable
κ, has transcendence degree κ). �
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3. Lecture 3 (Oct 26th)

Definable sets. LetM be an L-structure. A subsetX ⊆Mn is said to be definable
if there is an L-formula φ(x1, . . . , xn, y1, . . . , ym) and b̄ ∈Mm such that

X = φM(x̄, b̄) := {∈̄Mn :M |= φ(ā, b̄)}
We say that φ(x̄, b̄) defines X and that X is b̄-definable. If X does not the need
parameters (i.e., X = φM(x̄) for an L-formula φ(x̄)) we say that X is 0-definable.

Example 3.1.

(1) In Lrings, supposeM is an actual ring, say (R, 0, 1,+,−, ·). In this case, L-
terms are equivalent to polynomials (over Z). Moreover, it can be checked
that subsets of R defined by atomic formulas with parameters are solution
sets of polynomial equations over R.

(2) Again in the language of rings, consider the real field R and the formula
φ(x) given by

∃y x = y2

Then X = φR(x) is equal to the nonnegative real numbers. This is an
infinite and coinfinite set. Can we find a infinite and coinfinite definable
set inside of C? Note that φC(x) = C, and so in this case φ is equivalent
to the quantifier formula x = x. We will see that all definable sets of C
are indeed quantifier free definable (and thus C can not have a infinite and
coinfinite definable subset).

Quantifier elimination. The idea is that once we get rid of quantifiers, definable
sets are somewhat easier to understand.

Definition 3.2. A theory T is said to have q.e. (quantifier elimination) if for every
L-formula φ(x̄) there is a q.f. formula ψ(x̄) such that

T |= ∀x̄ φ(x̄)↔ ψ(x̄)

We give a few consequences of quantifier elimination.

Definition 3.3. A theory T is said to be model-complete if for every two models
M,N we have that

M⊆ N =⇒ M� N

Lemma 3.4. If T has q.e., then T is model-complete.

Proof. Let M,N be models of T with M⊆ N . Let φ(x̄) be a formula and ā from
M , we must show thatM |= φ(ā) iff N |= φ(ā). Since T has q.e., there is q.f. ψ(x̄)
such that T |= ∀x̄ φ(x̄)↔ ψ(x̄). This yields

M |= φ(ā) ⇐⇒ M |= ψ(ā) ⇐⇒ N |= ψ(ā) ⇐⇒ N |= φ(ā)

where the second equivalence uses Proposition 1.14. �

Lemma 3.5. Let T be a theory with q.e. Suppose there is an L-structure M0 that
embeds into every model of T . Then T is a complete theory.

Proof. We will use the fact that a theory is complete iff any two models are ele-
mentarily equivalent. Now, letM,N be models of T and σ an L-sentence. By q.e.,
there is a q.f. sentence ψ such that T |= σ ↔ ψ. We then have

M |= σ ⇐⇒ M |= ψ ⇐⇒ M0 |= ψ ⇐⇒ N |= ψ ⇐⇒ N |= σ
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where in the second and third equivalence we used Proposition 1.14 (or its extension
rather to structures embeddable in other structures). �

We now give a useful test for q.e. The proof can be found in §3.1 of [1].

Theorem 3.6 (Test for q.e.). Let T be an L-theory. Suppose that for every q.f.
L-formula φ(x̄, y) the following property holds:

(*) For any M,N models of T with a common substructure A, if there are ā
from A and b ∈ M such that M |= φ(ā, b), then there is c ∈ N such that
N |= φ(ā, c).

Then T has q.e.

We now focus in the theory ACF .

Theorem 3.7. ACF has q.e.

Proof. We use the test for q.e. Let φ(x̄, y) be a q.f. formula and K,L |= ACF
with R a common subring. Suppose there is a tuple ā form R and b ∈ K such that
K |= φ(ā, b). We must find c ∈ L such that L |= φ(ā, c). Let F = Frac(R), then F
is a common subfield of K and L, and the tuple ā is from F .

Now, we may assume that φ is of the form

∨i (∧j(pi,j(x̄, y) = 0) ∧ (qi(x̄, y) 6= 0))

Moreover, we may assume that there are no disjunctions, and so we have that in K

∧j(pj(ā, b) = 0) ∧ (q(ā, b) 6= 0)

It suffices to show that there c ∈ L such that pi(ā, c) = 0 for all i and q(ā, c) 6= 0.
There are two cases to consider

(1) If one of the pi(ā, y)’s is not the zero polynomial. Then b is algebraic over
F . Let h be the minimal polynomial of h over F . Since the solutions of
h are generic specializations of b over F , if we let c ∈ L be any solution
of h, then c will have the desired properties (note that such c exists since
L |= ACF ).

(2) If all the pi(ā, x)’s are zero. Then, we simply need to find c ∈ L such that
q(ā, c) 6= 0. But q(ā, y) is not the zero polynomial (since q(ā, b) 6= 0), so
the equation q(ā, y) = 0 has finitely many solutions, as L is infinite, we can
find c ∈ L that does not solve this equation.

�

A theory is said to be strongly minimal if for every M |= T , every definable
X ⊆M is either finite or cofinite. We have the following consequences of q.e.

Corollary 3.8.
(1) ACF is model-complete and strongly minimal.
(2) ACFp is a complete theory for p = 0 or prime. (We saw this one before

using Vaught’s test)

Proof. (1) is immediate from Lemma 3.4 and q.e. (2) follows from Lemma 3.5
noting that in characteristic p the prime field (Q or Fp, respectively) embeds into
every field. �
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Basic notions from classical algebraic geometry. Fix U |= ACF0 and K ≤ U
(a subfield). For S ⊆ K[x̄], with x̄ = (x1, . . . , xn), we let

V (S) := {a ∈ Un : p(a) = 0 for all p ∈ S}
A subset X ⊆ Un is said to be Zariski-closed (over K) if X = V (S) for some
S ⊆ K[x̄]. The collection of Zariski-closed sets of Un forms the closed sets of
a noetherian topology (i.e., every descending chain of closed sets is finite). This
fact follows from Hilbert’s basis theorem (every ideal of K[x̄] is finitely generated).
A (finite) Boolean combination of Zariski-closed sets of Un is called a Zariski-
constructible set. We have the following immediate consequence of q.e. for ACF .

Corollary 3.9. A set X ⊆ Un is definable iff it Zariski-constructible (over U).

A theory is said to be strongly minimal if for every M |= T , every definable
X ⊆M is either finite or cofinite. An immediate consequence of the above corollary
is that ACF0 is strongly minimal (as polynomials in one variable have finitely
solutions).

In the proof of the following proposition we will make use of the following general
fact (the proof is an easy exercise left to the reader).

Fact 3.10. Let M be an L-structure. If X ⊆ Mn is A-definable, then every L-
automorphism of M that fixes A pointwise must fix X setwise.

Proposition 3.11. Let U |= ACF0. If X ⊆ Un is a definable set and f : X → U
is a definable function, then there are Xi’s constructible sets and rational functions
fi : Xi → U such that X = ∪iXi and f |Xi = fi.

Proof. Let L∗ = LU ∪ {c1, . . . , cn} where the ci’s are new constant symbols. We
will write c̄ instead of (c1, . . . , cn). Consider the L∗-theory

T ∗ = {f(c̄) 6= ρ(c̄) : ρ is a rational function over U} ∪ {c̄ ∈ X} ∪ACF ∪Diag(U)

We claim that T is not satisfiable. Towards a contradiction, suppose it is, say
witnessed by a model L. Then L |= ACF∪Diag(U), and so, by model completeness,
U � L. This implies that the interpretation of f in L, written fL, is a definable
function from XL to L. Let b̄ be c̄L. Then we have that fL(b̄) 6= ρ(b̄) for any
rational function ρ over U . This yields fL(b̄) /∈ U(b̄). Since we are in characteristic
zero, there is a field automorphism α of L fixing U(b̄) pointwise such that α(fL()b̄) 6=
fL(b̄). However, the graph of fL is a U-definable set, thus, by Fact 3.10, α must
fix this graph pointwise, and since it also fixes b̄ (pointwise) it must fix fL(b̄). We
have reached the desired contradiction, and hence T ∗ is not satisfiable.

By compactness, there is a finite Σ ⊆ T ∗ which is not satisfiable. We have that
there are rational functions ρ1 . . . , ρm over U such that

Σ ⊆ {f(c̄) 6= ρ1(c̄), . . . , f(c̄) 6= ρm(c̄)} ∪ {c̄ ∈ X} ∪ACF ∪Diag(U)

Now let ā ∈ Un be an arbitrary element of X. Make U into an L∗-structure by
interpreting c̄ as ā. Then U |= {c̄ ∈ X}∪ACF ∪Diag(U). Since Σ is unsatisfiable,
we must have that U |= (f(c̄) = ρ1(c̄)) ∨ · · · ∨ (f(c̄) = ρm(c̄)). In other words,
f(ā) = ρi(ā) for some i. Since ā was chosen arbitrarily, we have shown that

U |= ∀x̄ ∈ X (f(x̄) = ρ1(x̄)) ∨ · · · ∨ (f(x̄) = ρm(x̄))

Letting now Xi = {x̄ ∈ X : f(x̄) = ρi(x̄)} we get the desired definable sets (the
desired rational functions are of course ρi, . . . , ρm). �
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Theorem 3.12 (Hilbert’s Nullstellensatz). Let U |= ACF0 and K ≤ U . Suppose
f1(x̄) = 0, . . . , fs(x̄) = 0 is a system of polynomial equations over K such that the
ideal (f1, . . . , fs) is properly contained in K[x̄]. Then the system has a solution in
U .

Proof. Let P be a maximal ideal containing (f1, . . . , fs]). Let F = (K[x̄]/P )alg,
and ai := ximodP . Then, in F , we have f(ā) = 0 for all f ∈ P . In particular,

F |= ∃ȳ (f1(ȳ) = 0) ∧ · · · ∧ (fs(ȳ) = 0)

Using q.e. for ACF0 and the usual transfer trick (up and down from subtructures
to extensions) we get that

U |= ∃ȳ (f1(ȳ) = 0) ∧ · · · ∧ (fs(ȳ) = 0)

as desired. �

We now define the theory DCF0 (differentially closed fields of characteristic
zero). We work in the language of differential rings Lδ = Lrings ∪ {δ}. Recall that
DF0 is the theory of fields of characteristic zero together with

∀x, y (δ(x+ y) = δ(x) + δ(y)) ∧ (δ(xy) = δ(x)y + xδ(y))

So, the models of DF0 is the class of differential fields of characteristic zero. Let
(K, δ) |= DF0. The ring of differential polynomials in x̄ = (x1, . . . , xn) is

K{x̄} := K[x1, . . . , xn, δx1, . . . , δxn, δ
2x1, . . . , δ

2xn, . . . ]

For example, an expression of the form δ(x1)+x1δ
3(x2) is a differential polynomial

(or δ-polynomial). In this example the order of the δ-polynomial is 3. In general,
the order of a δ-polynomial is the largest m such that δmxi appears (for some i).
We have that (K, δ) |= DCF0 if and only if

for every pair f, g of δ-polynomials over K in one variable with ord(f) > ord(g)
and g 6= 0, there exists a ∈ K such that f(a) = 0 and g(a) 6= 0

Theorem 3.13. DCF0 has q.e.

Proof. The proof is similar to the one for ACF (using the q.e. test). However,
there is a subtlety when we talk of the “minimal” δ-polynomial of an δ-algebraic
element. In general, differential ideals of K{x} are not finitely generated (though
radical differential ideals are, by the Ritt-Raudenbush basis theorem). Nonetheless,
there is a suitable elimination theory for differential polynomials, the issue is that in
general one has to saturate by a “separant” to get “generic” solutions. The details
of these ideas are carefully presented in [2, Chap.2, §1 and §2], and we encourage
the interested reader to check this reference out. �

It follows from Lemmas 3.4 and 3.5, that DCF0 is a complete theory (as (Q, δ =
0) embeds into every model) that is also model-complete.

Notions from differential algebraic geometry. Suppose (U , δ) |= DCF0 and
(K, δ) ≤ (U , δ) (a differential subfield). For S ⊆ K{x̄}, we let V (S) = {a ∈ Un :
p(a) = 0 for all p ∈ S}.

Definition 3.14. A set X ⊆ Un is said to be Kolchin-closed if X = V (S) for some
S ⊆ K{x̄}.
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The collection of Kolchin-closed sets of Un forms the closed sets of a noetherian
topology (i.e., every descending chain of closed sets is finite). This fact follows from
the Ritt-Raudenbush basis theorem (every increasing chain of radical differential
ideals of K{x̄} is finite). A (finite) Boolean combination of Kolchin-closed sets of Un
is called a Kolchin-constructible set. We have the following immediate consequence
of q.e. for DCF0.

Corollary 3.15. A set X ⊆ Un is definable iff it Kolchin-constructible (over U).

We also have a differential version of the Nullstellensatz (the proof is similar to
the algebraic case):

Theorem 3.16 (Differential Nullstellensatz). Let (U , δ) |= DCF0 and (K, δ) ≤
(U , δ). Suppose f1(x̄) = 0, . . . , fs(x̄) = 0 is a system of δ-polynomial equations
over K such that the differential ideal generated f1, . . . , fs is properly contained in
K{x̄}. Then the system has a solution in U .

Remark 3.17. DCF0 is not strongly minimal. Indeed, the constants of every model
is an infinite and coinfinite set. More precisely, if (U , δ) |= DCF0 and U δ = ker(δ)
we claim that Uδ is infinite and coinfinite. Consider the δ-polynomial f(x) =
δx. For any finite set of points a1, . . . , am of Uδ let g(x) be the polynomial (x −
a1) · · · (x − am). Then by the axioms of DCF0, U has an element a such that
f(a) = 0 and g(a) 6= 0. This says that a ∈ Uδ but a is not equal to any of the ai’s.
Thus, Uδ is infinite. On the other hand, for any finite set of points a1, . . . , am of
U \ Uδ if we let p(x) = δ2x and q(x) = δx(x− a1) · · · (x− am), then, again by the
axioms, U has an element a such that p(a) = 0 and q(a) 6= 0. The inequation says
that a /∈ Uδ and is not equal to any of the a′is. Thus, Uδ is coinfinite.
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4. Lecture 4 (Nov 9th)

Types. Given a collection Θ(x̄) of L-formulas, in variables x̄ = (x1, . . . , xn), we say

that Θ is satisfiable in an L-structure M if there is b̄ ∈ Mn such that M |= θ(b̄)
for all θ ∈ Θ. In this case we say that b̄ realizes Θ in M.

The compactness theorem yields the following:

Fact 4.1. Given an L-theory T , if Θ(x̄) is finitely satisfiable in a model of T , then
Θ is satisfiable in a model of T .

Let A be a (parameter) set of new constants. Let LA = L ∪ A. Fix a complete
satisfiable LA-theory T .

Definition 4.2.

(1) Let p(x̄) be a collection of LA-formulas in variable x̄ = (x1, . . . , xn), we
say that p is an n-type if p is satisfiable in a model of T (equivalently, by
Fact 4.1, finitely satisfiable in a model of T ).

(2) We call p a complete type if φ ∈ p or ¬φ ∈ p for all LA-formula φ(x̄).
(3) The Stone space Sn(A) (or STn (A)) is the set of complete n-types equipped

with the topology generated by the basic open sets

[φ] := {p ∈ Sn(A) : φ ∈ p}
where φ(x̄) is an LA-formula.

Remark 4.3.

(1) Note that a type p is finitely satisfiable in any model of T . Indeed, let
M |= T and λ a finite subset of p. By taking conjunctions we may assume
that λ is a single LA-formula. By definition, there is N |= T that satisfies
p; in particular, N |= ∃x̄λ(x̄). Since T is complete, M ≡ N , and so
M |= ∃x̄λ(x̄). Note that is can happen that is not satisfiable inM. In this
case we say that M omits p.

(2) Any complete type p is of the form

p = tpN (b̄/A) := {φ : N |= φ(b̄), φ is an LA-formula}
for some N |= T . Indeed simply take N any model satisfying the type p.
In this case we say that b̄ is a realization of p (in N ).

(3) Basic open sets [φ] of Sn(A) are also closed (and so clopen). To see this
simply note that [φ] = Sn(A) \ [¬φ]. This shows that the topology on the
Stone space is totally disconnected (i.e., given p 6= q there exists a clopen
containing p but not q).

(4) The compactness theorem implies that Sn(A) is a compact topological
space.

We recall that in a topological space X a point p ∈ X is isolated if {p} is open.
It is easy to check that for p ∈ Sn(A), we have that p is isolated iff {p} = [φ] for
some LA-formula (we say that φ isolates p).

Remark 4.4. If p ∈ Sn(A) is isolated by φ, then φ ’determines’ p in at least two
senses:

(i) If q ∈ Sn(A) and φ ∈ q, then q = p.
(ii) For any LA-formula φ we have that

ψ ∈ p ⇐⇒ T |= ∀x̄(φ(x̄) =⇒ ψ(x̄))



15

Let p ∈ Sn(A) with p = tpN (b̄/A) where N |= T . Define pN to be the set of
realizations of p in N . We then have

pN = {b̄ ∈ N : N |= θ(b̄) for all θ ∈ p} = ∩θ∈pθN

where recall that θN is the A-definable set of tuples satisfying θ in N . We see that
generally pN is an intersection of A-definable sets. It is not hard to see that pN

is a definable set iff p is isolated. In this case pN = φN where φ is an LA-formula
isolating p.

Lemma 4.5. Suppose p ∈ Sn(A) is isolated. Then p is realized in all models of T .

Proof. Let φ isolate p, and let M |= T . By Remark 4.3(1), M |= φ(b̄) for some
b̄ ∈Mn. By Remark 4.4(ii), M |= ψ(b̄) for all ψ ∈ p. Hence, b̄ realizes p. �

The above lemma shows that an isolated type cannot be omitted in a model of
T . In a countable language, the converse is true.

Theorem 4.6 (Omitting type theorem). Suppose LA is countable and T is a com-
plete satisfiable LA-theory. If p ∈ Sn(A) is nonisolated, then p is omitted in some
model of T .

We will use a Henkin type construction. For this we need some preparation.

Definition 4.7. Let C be a set of new constant symbols and L∗ = L ∪ C. An
L∗-theory T ∗ has the witness property (w.r.t. C) if for every L∗-formula φ(x) (in
one variable) there is a constant c ∈ C such that

T ∗ |= (∃xφ(x))→ φ(c)

Let T ∗ be a complete satisfiable L∗-theory with the witness property. We now
aim to build a model M∗ using the new constant set C. For c, d ∈ C, set c ∼ d iff
T |= c = d. Then ∼ is an equivalence relation. We let the underlying set of our
structure be M∗ = C/ ∼. We now make M∗ into an L∗-structure:

(i) Constants For c ∈ C, set cM = c/ ∼. For d a constant symbol from the
language L, note that (by the witness property) there is d′ ∈ C such that
T ∗ |= d = d′, then set dM = d′/ ∼.

(ii) Functions For f a function symbol and b̄ = (b1, . . . , bn) ∈ M∗ with bi =
ci/ ∼, we need to specify the value of fM(b̄). By the witness property,
there is c such that T ∗ |= f(c1, . . . , cn) = c. Set f(b̄) = c/ ∼.

(iii) Relations For R a relation symbol and b̄ = (b1, . . . , bn) ∈ M∗ with bi =
ci/ ∼, we set

b̄ ∈ RM ⇐⇒ T ∗ |= R(c1, . . . , cn)

One can check that all of the above are well defined (independent of representatives).
The importance of this construction is given by the following fact (see [1, Chapter
2]).

Fact 4.8. If M∗ is the L∗-structure built above, then M∗ |= T ∗. We call M∗ the
Henkin model of T ∗.

Proof of the Omitting type theorem. Let C be an infinite countable set of new con-
stants and set L∗ = LA∪C. We will construct a sequence of L∗-sentences θ0, θ1, . . .
such that |= θs+1 → θs and if we set T ∗ = T ∪ {θi : i = 0, 1, . . . } then T ∗ will be
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a complete satisfiable L∗-theory with the witness property. Moreover, the Henkin
model of T ∗ will omit the type p.

Enumerate the L∗-sentences as φ0, φ1, . . . , and the n-tuples from C as b̄1, b̄2, . . . .
Start by setting θ0 to be a tautology (e.g. ∀x x = x). Now assume we have
θ0, θ1, . . . , θ3i. We have three stages to consider

3i+ 1 (at this stage we ensure completeness) If T ∪{θ3i, φi} is satisfiable set θ3i+1 =
θ3i ∧ φi; otherwise, set θ3i+1 = θ3i ∧ ¬φ.

3i+2 (at this stage we ensure the witness property) If φi is of the form ∃xψ(x)
for some L∗-formula and θ3i+1 |= φi, then set θ3i+2 = θ3i+1 ∧ ψ(c) where c is any
element of C that does not occur in any of the θ0, . . . , θ3i+1. Otherwise (i.e., φi is
not of the form ∃xψ(x) or θ3i+1 6|= φi), set θ3i+2 = θ3i+1.

3i+1 (at this stage we ensure that we omit p) Let b̄i = (e1, . . . , en), and let ψ(x̄)
be the LA-formula obtained from θ3i+2 by replacing ei with xi, and replace each
c ∈ C \ {e1, . . . , en} with a new variable xc and add ∃xc at the front. Since p is
nonisolated, there is an LA-formula λ(x̄) ∈ p such that

T 6|= ∀x̄ (ψ(x̄)→ λ(x̄))

Otherwise ψ would isolate p. Set θ3i+3 = θ3i+2 ∧ ¬λ(b̄i).

Now, if se set T ∗ := T ∪ {θi : i = 0, 1, . . . }, then T ∗ is a complete satisfiable
L∗-theory with the witness property. LetM∗ be the Henkin model of T ∗. We finish
by arguing that the reductM ofM∗ to LA is model of T omitting p. M is clearly
a model of T . Let ā be an arbitrary n-tuple from M . Then ā = b̄M

∗

i for some i. In
stage 3i + 3 we guaranteed that T ∗ |= ¬λ(b̄i) for some λ ∈ p. So M |= ¬λ(ā). As
ā was an arbitrary tuple from M, we see that M cannot realize p. �

Remark 4.9. The OTT (Omitting type theorem) does not generally hold when the
language is uncountable. We leave it as an exercise (to the interested reader) to
build such a (counter)example.
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5. Lecture 5 (Nov 16th)

Prime models. Fix a set of parameters A and let T be a complete satisfiable
LA-theory. A model M |= T is said to be prime if for every N |= T there is
an elementary embedding from M into N . The model M is said to be atomic if
tpM(b̄/A) is isolated for all ā from M .

Example 5.1. If T = ACF0, then Qalg is a prime model. Moreover, it is also
atomic. Indeed if for ā, a tuple from Qalg, the type of ā is isolated by h1(x) =
0 ∧ · · · ∧ hn(x) = 0 where hi is the minimal polynomial of ai over Q.

Definition 5.2. Given two L-structuresM andN , and B ⊆M . A map f : B → N
is call a pem (partial elementary map) if for all L-formulas φ(x̄) and b̄ from B we
have that

M |= φ(b̄) ⇐⇒ N |= φ(f(b̄))

Remark 5.3. Suppose T has quantifier elimination, M,N |= T , and B is an L-
substructure of M. Then, any L-embedding f : B → N is a pem (but not neces-
sarily an elementary map).

Theorem 5.4. Let LA be countable and T a complete LA-theory with infinite
models. Then a model of T is prime iff it is countable and atomic.

Proof. (⇒) Let M be a prime model. By the strong form of the compactness
theorem (Corollary 2.8), T has a countable model, and so, as M embeds in that
model, M must be countable. Let ā a tuple from M and set p = tpM(a/A). Let
N |= T . Since M � N , we have that p = tpN (ā/A), and so p is realized in N .
This shows that p cannot be omitted. Hence, by the OTT, it must isolated.

(⇐) LetM be a countable atomic model, and N |= T . We will be an elementary
embedding from M into N . Let M = {m0,m1, . . . }. For each i, let φi isolate
tpM(m0, . . . ,mi/A). We now build a sequence of pems (fi)i<ω with Dom(fi) =
{m0, . . . ,mi−1}. Set f0 = ∅, this is a pem sinceM≡ N (recall that T is complete).
Suppose we have build f0, . . . , fs. We haveM |= φs(m0, . . . ,ms) and so, since f is
a pem, N |= φs(fs(m0), . . . , fs(ms−1), e) for some e ∈ N . Set fs+1 = fs∪(ms 7→ e).
Since φs isolates tpM(m0, . . . ,ms/A) we have that

tpM(m0, . . . ,ms/A) = tpN (fs+1(m0), . . . , fs+1(ms))

so fs+1 is indeed a pem.
To finish, simply set f = ∪i<ωfi. Then f is the desired elementary map. �

Remark 5.5. Let M |= T and ā from M. If tp(ā/A) is isolated then the type
of any subtuple of ā is also isolated. For instance, say tp(a, b/A) is isolated by
φ(x, y), then tp(a/A) is isolated by ∃yφ(x, y). On the other hand, the converse is
not generally true; that is, one can find isolated types tpM(a/A) and tpM (b/A)
such that tpM (a, b/A) is not isolated. We leave it as an exercise to build such an
example.

Theorem 5.6. Suppose LA is a countable language and T is a complete LA-theory
with infinite models.TFAE

(1) T has a prime model
(2) T has an atomic model
(3) For all n, the isolated types in Sn(A) are dense.
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Proof. As a prime model embeds in any atomic model, we get that the existence of
an atomic model implies the existence of a countable one. Thus, by Theorem 5.4,
(1)⇔ (2).

(2) ⇒ (3) Let M be an atomic model. Let [φ] be a nonempty basic open set
of Sn(A). Then T |= ∃x̄φ(x̄), and so there is b̄ in M such that M |= φ(b̄). This
implies that the isolated type tpM(b̄/A) is in [φ].

(3) ⇒ (2) We build an atomic model using a Henkin construction (as in the
OTT). Let C = {c0, c1, . . . } be an infinite countable set of new constants and
L∗ = LA∪C. We will build L∗-sentences θ0, θ1, . . . in such a way that the L∗-theory
T ∗ := T ∪{θi : i = 0, 1, . . . } is complete satisfiable with the witness property (w.r.t
C). Along the way we will ensure that the Henkin model of T ∗ yields an atomic
model of T . As in the proof of the OTT, suppose we have θ0, . . . , θ3i, and that
at stage 3i+ 1 we ensured completeness and at stage 3i+ 2 we ensure the witness
property. For the next stage we have

3i+3 (here we ensure atomicity) Let n ≥ i such that the constants from C
appearing in θ3i+2 come from {c0, . . . , cn}. Let ψ(x̄) an L-formula such that θ3i+2 =
ψ(c̄) where c̄ = (c1, . . . , cn). From our assumption, namely that isolated types are
dense, there is an isolated p ∈ [ψ]. Let λ isolate p, and set θ3i+3 = λ(c̄)

Now let M be the reduct to L of the Henkin model of T ∗. We claim that M is
atomic. Let b̄ be from M . Let n such that b̄ ⊆ {c0, . . . , cn} and this n appears in
stage 3i + 3. By Remark 5.5, it suffices to check that tpM(c̄/A) is isolated. Since
T |= θ3i+3, by the shape of θ3i+3, we have that M |= λ(c̄) where this λ is the
formula isolating p from stage 3i + 3. But then tpM(c̄/A) = p and the later is
isolated. �

We now prove that in a countable language if the number of type is not maximal
(< 2ℵ0) then we have prime models.

Theorem 5.7. Suppose T is a complete satisfiable theory in a countable language
LA. If Sn(A) < 2ℵ0 , then the isolated types in Sn(A) are dense.

Proof. Suppose not. Then there is an LA-formula φ such that [φ] is nonempty and
contains no isolated types. Now, note that there exists an LA-formula ψ such that
[φ ∧ ψ] and [φ ∧¬ψ] are nonempty and contain no isolated types. Indeed, since [φ]
contains at least two types, say p and q, we can find ψ ∈ p \ q. This ψ does the job.

We can continue the above process and build a binary tree (with infinite branches)
of LA-formulas (φσ : σ ∈ ∪n<ω2n). Let me just say that to build this tree you de-
fine inductively φσ,1 = φσ ∧ ψ and φσ,0 = φσ ∧ ¬ψ where ψ is an LA-formula such
that [φσ∧ψ] and [φσ∧¬ψ] are nonempty and contain no isolated types. Let f ∈ 2N

be a branch of the tree (we view this as a map f : N → 2). We denote by f |n the
truncation of f at n. We have a descending chain

[φf |0 ] ⊇ [φf |1 ] ⊇ · · ·
Since Sn(A) is compact, there is pf ∈ ∩∞n=0[φf |n ]. It is easy to check that if f 6= q

then pf 6= pg. Thus f 7→ pf yields an injective map from 2N → Sn(A). This
contradicts the original assumption. �

Definition 5.8. An L-structureM is said to be homogeneous if whenever A ⊂M ,
with |A| < |M |, f : A → M is a pem and a ∈ M , there is pem f : A ∪ {a} → M
extending f .
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Lemma 5.9. Let T be a complete satisfiable LA-theory. If M is countable atomic
model, then M is homogeneous.

Proof. Let ā ∈M and f : ā→M a pem. Let c ∈M and φ(x̄, y) isolate tpM(ā, c/A).
Since f is a pem, there is d ∈ M such that M |= φ(f(ā), d). By choice of φ, we
get tpM(ā, c/A) = tpM(f(ā), d/A) and so the map f∗ = f ∪ (c 7→ d) is the desired
pem. �

Theorem 5.10. Let T be a complete satisfiable theory in a countable language LA.
If M and N are prime models of T , then they are isomorphic.

Proof. We have seen thatM and N are atomic. We build an isomorphism f :M→
N by a back-and-forth argument. Let M = {a0, a1, . . . } and N = {b0, b1, . . . }.
We build a sequence of pems as follows: Let f0 = ∅, then f0 is a pem as T is
complete. Suppose we have built f0, f1, . . . , f2i with Dom(f2i) = {a0, . . . , ai−1}
and Im(f2i) = {b0, . . . , bi−1}. In the stage 2i+ 1 we ensure that ai ∈ Dom(f2i+1).
Indeed, let p = tpM(ā, ai/A) where ā = (a0, . . . , ai−1), as in the proof of Lemma
5.9 we can find e ∈ N such that tpM(ā, ai/A) = tpN (f2i(ā), e/A). Hence we set
f2i+1 = fi ∪ (ai 7→ e), this is a pem. At stage 2i + 2 we do a similar argument to
ensure that bi ∈ Im(f2i+2). Finally, f = ∪i<ωfi is the desired isomorphism. �
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6. Lecture 6 (Nov 23rd)

Prime model extensions. We now consider the case when the parameter set A
is arbitrary (not necessarily countable). We fix a complete theory T in a countable
language L. If M |= T and A ⊆ M , we write SMn (A) for the space of complete n-
types over A with respect to the theory ThA(M). When the modelM is understood
we omit it from the superscript.

Definition 6.1. Let M |= T and A ⊆M .

(1) We say that M is a prime model over A if whenever there is N |= T and
a pem f : A → N we can extend f to an elementary embedding from M
into N .

(2) We say thatM is atomic over A is tp(b̄/A) is isolated for every tuple b̄ from
M .

Example 6.2. Recall that if T has q.e. and A ⊆ M is a substructure, then every
L-embedding f : A→ N is a pem (but not necessarily an elementary map).

(1) Let T = ACF0. For any field F of characteristic zero, the algebraic closure
F alg is a prime and atomic model over F .

(2) Let T = DCF0. Let (F, δ) be a differential subfield of (K, δ) |= DCF0.
Is there a differential closure of F? That is, is there F < F diff |= DCF0

such that for every F < L |= DCF0 there is a differential embedding from
F diff into L fixing F? This is equivalent to: Is there a prime model over
F? If so, is it atomic over F? We will see that the answer is YES to both
questions.

Theorem 6.3. SupposeM |= T has the property that for every B ⊆M the isolated
types in SMn (B) are dense (for all n). Then, for every A ⊆ M , there is M0 � M
which is a prime and atomic model over A.

Proof. Consider the following contruction

(1) A0 = A
(2) If no element of M \ Aα realizes an isolated type over Aα we stop and set

δ = α. Otherwise, let aα ∈ M \ Aα such that it realizes an isolated type
over Aα and set Aα+1 = Aα ∪ {aα}.

(3) If α is a limit ordinal, set Aα = ∪β<αAβ .

One can check that Aδ is a substructure of M. We claim that M0 := Aδ is the
desired model. We first show that M0 �M. We use Tarski-Vaught test. Suppose
M |= ∃x φ(x, a) with a from M0. By our assumption, there is an isolated type
in [∃x φ(x, a)] ⊆ SMn (Aδ); that is, there is b ∈ M such that M |= φ(b, a) and
tpM(b/Aδ) is isolated. By construction of Aδ, b ∈ Aδ =M0, and so M0 �M.

We now prove that M0 is a prime model over A. Let N |= T and f : A → N
a pem. We will show that there is a sequence f = f0 ⊆ f1 ⊆ ⊆̇fα ⊆ · · · ⊆ fδ with
each fα : Aα → N a pem. We can then set f = ∪α≤δfα to get the desire elementary
map from M0 into N . Suppose we have built fα : Aα → N . Let φ(x, a) isolate
tp(aα/Aα). Since fα is a pem, we can find b ∈ N such that N |= φ(b, fα(a)). If we
set fα+1 = fα ∪ (aα 7→ b), then it is not hard to check that this is s pem. For limit
ordinal α, set fα = ∪β<αfβ .

We leave as an exercise to check thatM0 is atomic over A. Let me just mention
that to do this one can use the fact that if tp(a/B) is isolated by φ(x, b) and tp(b/C)
is isolated by ψ(y, c), then tp(a/C) is isolated by ∃y φ(x, y) ∧ ψ(y, c). �
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Now, how can we guarantee that for every B ⊆M the isolated types in Sn(B) are
dense? That is, under what conditions on T can we guarantee that the assumption
of Theorem 6.3 are satisfied?

Definition 6.4. A complete theory T in a countable language is said to be ω-stable
if for every M |= T and countable A ⊆M we have that |SMn (A)| ≤ ℵ0 for all n.

Proposition 6.5. Suppose T is ω-stable. Then, for every M |= T and A ⊆ M ,
the isolated types in SMn (B) are dense.

Proof. If the isolated types are not dense, then, as in the proof of Theorem 5.7, we
get a a binary tree of LA-formulas (φσ : σ ∈ ∪∞n=02n). Let A0 be the smallest set
containing all the parameters of the formulas in the tree. Then A0 is countable.
Then, again as in the proof of Theorem 5.7, we can build an injective function from
2N into Sn(A0), implying that |Sn(A0)| = 2N. But this contradicts ω-stability. �

Putting together the above proposition and theorem we get

Corollary 6.6. Suppose T is ω-stable. If M |= T and A ⊆ M , then there is a
prime and atomic model over A.

Later on we will discuss about the uniqueness of prime models over A.

Saturated models. Let κ be an infinite cardinal. An L-structureM is κ-saturated
if for any A ⊆ M with |A| < κ all types over A (w.r.t. ThA(M)) are realized in
M. We say that M is saturated if it is |M |-saturated.

Fact 6.7. Suppose M is saturated and A ⊂M with |A| < |M |.
(1) If f : A→M is a pem, then there is an extension of f to an automorphism

of M.
(2) ā, b̄ ∈ M have the same type over A iff there is σ ∈ Aut(M/A) such that

σ(ā) = b̄.
(3) A definable set X is A-definable iff for every σ ∈ Aut(M/A) we have

σ(X) = X setwise.
(4) For any N ≡ M with |N | ≤ |M |, there is an elementary embedding from
N into M.

For a proof of the following see [1, Chap. 6.5].

Theorem 6.8. Let T be an ω-stable theory. Then, for any infinite cardinal κ,
there is a saturated model of T of size κ.

Notation and assumptions. From now on we work with a ω-stable theory T .
We fix a large saturated U |= T (we will sometimes refer to U as a monster model).
We make the following assumptions:

• All models we consider are elementary substructures of U .
• All parameter sets A come from U .
• All types over A are with respect to the theory ThA(U)
• Definable means definable with parameters (from U) and formula mean
LU -formula.

Morley rank. Let X be a definable set we define RM(X) inductively on ordinals
as follows:

(1) RM(X) ≥ 0 iff X is nonempty.
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(2) RM(X) ≥ α + 1 iff there pairwise disjoint definable sets X1, X2, · · · ⊂ X
such that RM(Xi) ≥ α.

(3) For limit ordinal α, RM(X) ≥ α iff RM(X) ≥ β for all β < α.

We say RM(X) = α if RM(X) ≥ α but RM(X) 6≥ α + 1. We set RM(X) = −1
when X is empty. If RM(X) ≥ α for all ordinal α we write RM(X) = ∞ and
say that X has unbounded Morley rank. If RM(X) = α, the Morley degree of
X, deg(X), is the largest natural number d such that X contains d-many pairwise
disjoint definable sets each of rank α.

The following are left as exercises:

Lemma 6.9. Let X and Y be definable sets

(1) RM(X) = 0 iff X is finite
(2) If X ⊆ Y , then RM(X) ≤ RM(Y )
(3) RM(X ∪ Y ) = max{RM(X), RM(Y )}
(4) If f : X → Y is a definable bijection, then RM(X) = RM(Y )

Theorem 6.10. If T is ω-stable, then RM(X) is bounded for all definable X.

Proof. Suppose not. Then there is X with RM(X) =∞. Let

β = sup{RM(Z) : Z is definable with RM(Z) <∞}
Since RM(X) ≥ β+ 2, we can find a definable subset Y of X with RM(Y ) ≥ β+ 1
and RM(X \ Y ) ≥ β + 1. Hence, RM(Y ) = RM(X \ Y ) = ∞. As we have
done a couple of times now, we can iterate this process to build a binary tree of
LU -formulas (φσ : σ ∈ ∪∞n=02n). Letting A be a countable set containing all the
parameters of the formulas in the tree, we get an injective function from 2N into
Sn(A). This contradicts ω-stability. �
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7. Lecture 7 (Nov 30th)

Rank of types. For p ∈ Sn(A) we define

RM(p) = inf{RM(φ) : φ ∈ p}.

and

deg(p) = inf{deg(φ) : φ ∈ p,RM(φ) = RM(p)}
For a tuple ā, we write RM(ā/A) to mean RM(tp(ā/A)). Note that since any set
of ordinals is well ordered, for any p ∈ Sn(A) there is φp ∈ p such that RM(p) =
RM(φp) and deg(p) = deg(φ). We call such φp a minimal formula for p.

Lemma 7.1.

(1) If X is A-definable, then RM(X) = sup{RM(a/A) : a ∈ X}.
(2) Let p ∈ Sn(A). For any LA-formula ψ we have that

ψ ∈ p ⇐⇒ RM(ψ ∧ φp) = RM(p)

Consequently, if p 6= q ∈ Sn(A), then RM(φp∧φq) < max{RM(p), RM(q)}.
(3) For any LA-formula φ we have

deg(φ) ≥ |{p ∈ Sn(A) : φ ∈ p and RM(p) = RM(φ)}|

Proof. (1) For any a ∈ X we have

RM(a/A) = inf{RM(Y ) : a ∈ Y for A-definable Y } ≤ RM(X)

On the other hand, consider the collection of LA-formulas Θ(x) given by

(x ∈ X) ∧ (x /∈ Y : Y is A-definable with RM(Y ) < α)

We claim this is satisfiable. Take a finite subset (x ∈ X)∧ (x /∈ Y1)∧ · · · ∧ (x /∈ Ys)
Since RM(Yi) < α, we get RM(Y1 ∪ · · · ∪ Ys) < α). So ∪si=1Yi ∩ X is properly
contained in X, and so we can find a realization. Hence, there is a realizing Θ(x).
By choice of a, we have a ∈ X and RM(a/A) = RM(X). This proves the desired
equality.

(2) First, suppose ψ ∈ p. Then ψ ∧ φp ∈ p and so by minimality of φp we get

RM(ψ ∧ φp) = RM(φp) = RM(p).

On the other hand, suppose RM(ψ ∧ φp) = RM(φp) but ψ /∈ p. Then ¬ψ ∈ p,
by the above we get that RM(¬ψ ∧ φp) = RM(φp). But this implies that deg( 6=
ψ ∧ φp) < deg(φp) contradicting minimality of φp.

For the ’consequently’ clause, let ψ ∈ q \ p, then

RM(φp∧φq) = RM((φp∧φq∧ψ)∨(φp∧φq∧¬ψ)) = max{RM(φp∧φq∧ψ), RM(φp∧φq∧¬ψ)}

But φq ∧ ψ /∈ p and so, by the above, RM(φp ∧ φq ∧ ψ) < RM(p). Similarly,
φp ∧ ¬ψ /∈ q and so RM(φp ∧ φq ∧ ¬ψ) < RM(q). The desired inequality follows.

(3) Let d = deg(φ). Suppose we have distinct p1, . . . , pd+1 ∈ Sn(A) such that
φ ∈ pi and RM(pi) = RM(φ). Let φi be a minimal formula for pi. From the
consequently in (2), we see that RM(φi ∧ φj) < RM(φ). From these, we can build
(d + 1)-many pairwise disjoint definable subsets of φU all of Morley rank RM(φ).
This yields deg(φ) > d which is of course a contradiction. �
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In the context of ACF0 Morley rank is a well known rank. Suppose K |= ACF0

and V ⊆ Kn is a Zariski closed set. Then RM(V ) = dimV and the Morley
degree of V equals the number of (absolutely) irreducible components of V of top
dimension. Also, for a subfield k we have RM(a/k) = trdegkk(a).

Now, recall that in (classical) algebraic geometry one has a well behaved notion
of independence: a is independent from b over k if trdegkk(a) = trdegk(b)k(b)(a)
(i.e., the tuples a and b and algebraically disjoint over k). We now aim to define a
notion of independence in an arbitrary ω-stable theory. We will mimic the notion
from algebraic geometry using RM instead of trdeg.

Forking and Independence. We continue to work with an ω-stable theory T and
U our monster model.

Definition 7.2. Let A ⊂ B, p ∈ Sn(A) and q ∈ Sn(B) with p ⊆ q. We say that q
is a nonforking extension (nfe) of p if RM(q)=RM(p); otherwise, we say that q is a
forking extension or that q forks over A.

The idea of nonforking is that B does not add much more information than what
we had from A, or that q is as free as an extension of p can be.

We now show that nonforking extensions always exist.

Proposition 7.3. (Existence of nonforking extensions) Suppose p ∈ Sn(A) and
A ⊆ B.

(1) There is a nonforking extension q ∈ Sn(B) of p
(2) There at most deg p nfe’s of p to B

Proof. (1) Let α := RM(p). Let ψ be an LU -formula such that ψU ⊂ φUp , RM(ψ) =
α and degψ = 1. We claim that

(7.1) q := {θ(x) : θ is an LB-formula and RM(θ ∧ ψ) = α}
does the job. First, q is a type: take a finite subset θ1, . . . , θs, by induction and the
fact that degψ = 1, one can check that RM(θ1 ∧ · · · ∧ θs ∧ ψ) = α ≥ 0, thus we
can realize θ1 ∧ · · · ∧ θs. Also, q is a complete type: for any LB-formula λ either
RM(ψ∧λ) = α or RM(ψ∧¬λ) = α. It is an extension of p: let λ ∈ p, if λ /∈ q then
¬λ ∈ q and so α = RM(ψ ∧ ¬λ) ≤ RM(φp ∧ ¬λ) which implies that ¬λ ∈ p (by
Lemma 7.1(2)) which is impossible. Finally, for any θ ∈ q, we have RM(θ∧ψ) = α
and so RM(θ) = α. This shows that RM(q) = α and so q is a nfe of p.

(2) Since φp is an LB-formula we have by Lemma 7.1(3)

deg(φp) ≥ |{q ∈ Sn(B) : φ ∈ q and RM(q) = RM(φp)}|
All nfe’s of p to B are accounted for in the latter set. So there are at most deg p of
them. �

Remark 7.4.

(1) Note that if deg p = 1 then p has a unique forking extension q to any B
and φq = φp.

(2) We leave as an exercise to check that any forking extension of p has the
form (7.1) for some LU -formula ψ with ψU ⊆ φU , RM(ψ) = RM(φp) and
degψ = 1. In particular, if ψ is an LB-formula and q is the associated
(by (7.1)) nfe of p to B then φq = ψ. It follows that if B contains the
parameters of deg p many definable disjoint subsets of φUp of rank RM(p)
then p has exactly deg p nfe’s to B.
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Definition 7.5 (Definability of types). We say that p ∈ Sn(A) is definable over B
if for each L-formula ψ(x, y) there is an LB-formula dpψ(y) such that for all a ∈ A

ψ(x, a) ∈ p ⇐⇒ U |= dpψ(a)

The following is the key to prove definability of types in ω-stable theories. The
proof can be found in [1, Chapter 6.3].

Theorem 7.6. Let φ(x) be an LA-formula. Then, for every L-formula ψ, we have
that the set

{b ∈ U : RM(φ(x) ∧ ψ(x, b)) = RM(φ(x))}
is A-definable. Call the LA-formula dφψ.

Corollary 7.7. If p ∈ Sn(A) then there is a finite A0 ⊆ A such that p is definable
over A0.

Proof. Let A0 be the parameters of φp. Given any L-formula ψ we have by Lemma
7.1(2) that for any a from A

ψ(x, a) ∈ p ⇐⇒ RM(φp(x) ∧ ψ(x, a)) = RM(φp)

The latter is equivalent to U |= dφpψ(a) by Theorem 7.6. �

Definition 7.8. LetM be an L-structure. An A-definable set is said to be stably
embedded if every definable set Y ⊆ Xn is (A ∪X)-definable.

Corollary 7.9. If X ⊆ Um is A-definable, then it is stably embedded.

Proof. Let Y ⊆ Xn be definable by ψ(x, b) where ψ is an L-formula. Then c ∈ Y
iff U |= ψ(c, b) iff c ∈ Xn and ψ(c, y) ∈ tp(b/X) iff c ∈ Xn and U |= dpψ(c) where
p = tp(b/X). The condition c ∈ Xn is A-definable while the dpψ is X-definable. �

Note that if deg p = 1 then, by the proof of Proposition 7.3(1), the unique
nonforking extension of p to B is given by

q = {ψ(x, b) : b ∈ B, RM(φp(x) ∧ ψ(x, b)) = RM(φp)}
But this set is equal to

{ψ(x, b) : b ∈ B, U |= dpψ(b)}
We thus have

Lemma 7.10. Suppose deg p = 1, then the unique nfe of p to B is given by

q = {ψ(x, b) : b ∈ B, U |= dpψ(b)}
In particular, for any ψ(x, y), dpψ = dqψ and so q is definable over A.

Independence. Let A ⊆ B. We say that a is independent from B over A if
RM(a/A) = RM(a/B). We write this as a |̂

A
B.

Lemma 7.11. Independence has the following properties:

(1) (Automorphism invariant) For all σ ∈ Aut(U), if a |̂
A
B then σ(a) |̂

σ(A)
σ(B).

(2) (Transitivity) Suppose B ⊆ C. Then a |̂
A
C iff a |̂

A
B and a |̂

B
C

(3) (finite character) a |̂
A
B iff a |̂

A
B0 ∪A for all finite subsets B0 of B

(4) (finite basis) for any a there is a finite A0 ⊆ A such that a |̂
A0
A

(5) (existence of nfe’s) for any a there is b with tp(a/A) = tp(b/a) and such
that b |̂

A
B
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(6) (symmetry) a |̂
A
b iff b |̂

A
a

We leave the proofs of (1) to (5) as exercises. The proof of (6) requires more
work, we refer the reader to [1, Chapter 4.3]. Let us mention that if a theory has
a notion of independence satisfying the above six properties and such that types
have finitely many nonforking extensions, then the theory is ω-stable.
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8. Lecture 8 (Dec 7th)

In this lecture we will show that in a ω.stable theory any two prime models over
A are are isomorphic over A. We fix a complete satisfiable theory T in a countable
language.

Constructible models. Let M |= T and A ⊂M . Let (aα : α < δ) be a sequence
of elements of M where δ is an ordinal. Set Aα = (aβ : β < α). We say that
(aα : α < δ) is a construction over A if aα /∈ A ∪Aα and tp(aα/Aα) is isolated for
all α < δ. We say that B ⊆ M is constructible over A is there is a construction
(aα : α < δ) over A such that B = A ∪ (aα : α < δ).

Recall that to prove the existence of prime model extensions in ω-stable theories
we did the following:

(1) Given M |= T and A ⊂ M , we built a constructible over A elementary
substructure M0 of M.

(2) We saw that any model which is constructible over A is prime and atomic
over A.

We will prove that any two constructible over A models of T are isomorphic
over A. Then, we will see that in a ω-stable theory prime models are always
constructible. First we need the notion of sufficient.

Definition 8.1. Suppose (aα : α < δ) ⊆M is a construction over A and let θα(x)
be an LAα that isolates tp(aα/Aα). A subset C of M is called sufficient if whenever
aα ∈ C then all the parameters of θα ∈ C.

Lemma 8.2. Suppose M |= T is constructible over A ⊂M .

(1) If b̄ is a finite subset from M , then there is finite sufficient subset c̄ con-
taining b̄.

(2) If C is sufficient, then M is constructible over A ∪ C.

Proof. We only check (1). Let (aα : α < δ) be construction of M over A. We
prove, by induction on α, that if b̄ is in Aα then there is a finite sufficient c̄ in Aα
containing b̄.

If α = 0, then b̄ is in A and so b̄ is of course sufficient. If α is a limit ordinal, then
b̄ is in Aβ for some β < α and so, by induction, there is finite sufficient c̄ in Aβ ⊂ Aα
containing b̄. So now assume α = β + 1. If b̄ is in Aβ we are done by induction,
so we may asumme that b̄ is of the form b̄0 ∪ {aβ}. Let c̄′ be the parameters of
θβ . Then b̄0 ∪ c̄′ is in Aβ , and so, by induction, there is a finite sufficient c̄ in Aβ
containing b̄0 ∪ c̄′. But then c̄ ∪ {aβ} is a finite sufficient in Aα containing b̄. �

We will make use of the following fact whose proof we leave as an exercise.

Fact 8.3. For tuples a and b, the type tp(a, b/A) is isolated iff tp(aA) and tp(b/A, b)
are both isolated.

Theorem 8.4 (Ressayre’s theorem). Let M,N be elementary substructures of a
monster model U of T . Let A be a common subset of M and N . If M and N are
constructible over A, then they are isomorphic over A.

Proof. Consider the set

I = {f : X → N : A ⊆ X ⊆M,f is a pem over A,X is sufficient in M and f(X) is sufficient in N}
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Note that IdA is in I. Moreover, given increasing chain of elements of I, its union
is again in I. Thus, by Zorn’s lemma, I has a maximal element f : X → N
(with respect to inclusion). We claim that f is the desired isomorphism. So we
must prove that X = M and f(X) = N . Towards a contradiction assume there
is a ∈ M \ X (we only consider this case since the case N \ f(X) 6= ∅ can be
treated with a similar argument as what follows). Let c̄0 be finite sufficient of M
containing a. By Lemma 8.2(2), M is constructible over X and so tp(c̄0/X) is
isolated. Thus, we can extend f to a pem f0 : X ∪ c̄→ N . Note that, while X ∪ c̄0
is sufficient, Im(f0) = f(X)∪ f0(c̄0) might not be sufficient. So now let δ0 be finite
sufficient of N containing f0(c̄0). Because N is constructible over f(X), the type
tp(δ0/X) is isolated, and so, by Fact 8.3, tp(δ/f(X) ∪ f0(c̄0)) is also isolated. We
can extend f0 to a pem f ′0 : X ∪ c̄′0 → N for some finite c̄′0 containing c̄0 and such
that Im(f ′0) = f(X)∪δ0. Note that now Im(f ′0) is sufficient but Dom(f ′0) = X∪ c̄′0
might not be. However, we can continue this process and construct finite sufficient
sets c̄0 ⊂ c̄1 ⊂ · · · in M and a sequence f0 ⊂ f1 ⊂ · · · where each fi : X ∪ c̄i → N
is a pem with fi(c̄i) contained in a sufficient subset of fi+1(c̄i+1). Letting g = ∪ifi,
we get that Dom(g) and Im(g) are sufficient in M and N , respectively. So that
g ∈ I, this contradicts maximality of f . �

The proof of the following is in [1, Chapter 6.4].

Lemma 8.5. Suppose T is ω-stable. If p ∈ Sn(A) has a isolated nonforking exten-
sion, then p is itself isolated.

We will need the following fact which follows easily using finite character, sym-
metry, and transitivity of independence.

Fact 8.6. a, b |̂
A
C iff a |̂

A
C and b |̂

A,a
C

The following proposition shows that in ω-stable theories prime models are con-
structible.

Proposition 8.7. Suppose T is ω-stable. If M |= T is constructible over A ⊂ M
and A ⊂ B ⊂M , then B is constructible over A.

Proof. Let (aα : α < δ) be a construction of M over A. The idea of the proof is
to build a sequence (Bα : α < δ) such that B0 = A, ∪α<δBα = B, and with the
property that Bα+1 is constructible over Bα. By iterating these constructions we
get a construction of B over A.

We first build an auxiliary sequence (Xα : α < δ) of sufficient subsets of M with
the following properties

(1) X0 = A, Xα ⊂ Xβ for α < β
(2) aα ∈ Xα (this yields ∪αXα = M)
(3) |Xα+1 \Xα| ≤ ℵ0

(4) if d̄ is from Xα then d̄ |̂
Xα∩B

B

When α is a limit ordinal we set Xα = ∪β<αXβ . So assume we have built Xα,
we now build Xα+1. Let c̄0 be a finite sufficient containing aα. By finite character
of independence, there is a finite b̄ in B such that c̄0 |̂ Xα,b̄B. Now let c̄1 be a

finite sufficient containing c̄0 ∪ b̄. Note that now c̄0 |̂ Xα,B∩c̄1 B. We continue this

process and build a sequence c̄0 ⊂ c̄1 ⊂ · · · of finite sufficient such that

c̄n |̂
Xα,B∩c̄n+1

B
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Set Xα+1 = Xα∪(∪∞n=0c̄n). Clearly this Xα+1 satisfies properties (1)-(3). Property
(4) requires a bit more work, we leave as an exercise hinting to use Fact 8.6.

To finish set Bα = Xα ∩ B. Then Bα ⊂ Bα+1 and ∪αBα = B (by properties
(1) and (2) above). The result follows once we show that Bα+1 is constructible
over Bα. Let b0, b1, . . . be an enumeration of Bα+1 \ Bα (here we use property
(3) above). We must show that tp(bn/Bα, b0, . . . , bn−1) is isolated for every n. By
Fact 8.3, it suffices to show that tp(b0, . . . , bn/Bα) is isolated. Let b̄ = (b0, . . . , bn).
Because Xα is sufficient, M is constructible over Xα (see Lemma 8.2(2)), and so
tp(b̄/Xα) is isolated, say by φ(x, d). Then φ also isolates tp(b̄/Bα, d). By property
(4) above, d |̂

Bα
B, then by symmetry and transitivity we get b̄ |̂

Bα
d. Thus,

the type tp(b̄/Bα, d) is a nfe of tp(b̄/Bα). By Lemma 8.5, the latter type must be
isolated as desired. And we are done! �

The fact that prime model extensions in ω-stable theories are all isomorphic now
follows from the above results:

Corollary 8.8 (Uniqueness of prime model extensions). Suppose T is ω-stable, U
is our monster model, and A is a common subset of M,N � U . If M and N are
prime models over A, then they are isomorphic over A. Consequently, M is atomic
over A.

Proof. We have seen that there is a constructible prime and atomic model M0

over A. Since M,N are prime models over A, we can embed them into M0 fixing
A. By Proposition 8.7, M and N are both constructible over A. By Ressayre’s
theorem (Theorem 8.4 above),M and N are isomorphic over A, as desired. For the
’consequently’ clause, note that Ressayre’s theorem also yields M ∼=A M0. Since
the latter is atomic over A the former is as well. �
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