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1 Summary of the model

We develop a lumped-parameter model for recruitment a network of flooded and possibly
collapsed flexible airways. The model is developed based on a number of assumptions, which
we briefly summarise here.

1. The airway network has dichotomous bifurcations over six generations mimicking gen-
erations 11-16 of the human lung.

2. Each airway can be modelled as a planar symmetric flexible-walled channel in cross-
section, characterised by a transverse ‘height’ and effective ‘width’ in the planes orthog-
onal to the axis of the channel (mimicking a buckled configuration).

3. Airway dimensions across generations are taken from the anatomical measurements of
Weibel (1963). In particular, we employ his estimates of the mean diameter of airways
in a given generation and the total cross-sectional area of each generation at 75% total
lung capacity. The latter is used to estimate the ‘maximal’ cross-sectional area of
airways at a given generation.

4. The ‘maximal’ cross-sectional area of individual airways in each generation is prescribed.
Natural variability within airways in a given generation is introduced by sampling their
cross-sectional (height/width) aspect ratios from independent normal distributions.

5. The airway cross-sectional area is related to the transmural (internal-external) pressure
through the nonlinear tube law proposed by Lambert et al. (1982), rationally capturing
the change in airway compliance between generations. In addition, the pressure-area
relation is modified to incorporate longitudinal tension.

6. Each airway in the network is initially collapsed to 100 C% of its equilibrium cross-
sectional area and completely flooded with fluid, where C falls in the range 0.1 ≤ C ≤ 1.
For C = 1 the airways are flooded but not collapsed.

7. The network is mechanically ventilated by injecting a finger of air with a prescribed flow
rate. The time-dependent airway pressure is continuous across each airway bifurcation.

8. The influence of surfactant transport on the gas-liquid interface is ignored and so the
surface tension coefficient is constant.
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9. Of the two steady modes of recruitment elucidated for a single airway, known as ‘push-
ing’ (where the air finger pushes a long column of fluid ahead of itself like a leaky piston)
and ‘peeling’ (where the airway walls peel apart rapidly) (Halpern et al., 2005), only
‘peeling’ motion can lead to appreciable airway recruitment. The recruitment speed
can be calculated as a function of the airway pressure, derived in a manner identical to
Jensen et al. (2002).

10. Recruitment of a particular airway takes place while the airway pressure exceeds a
yield pressure, which is a function of the airway elastic properties. Once the airway
pressure has fallen below this threshold pressure, recruitment in that airway halts until
the airway pressure increases beyond the threshold again.

11. The generation of airways at the distal end of the network is assumed to open into a
compliant compartment representing the airways in the respiratory zone and the alveoli.
The relationship between the airway pressure and volume of this compartment is based
on that derived by Salazar & Knowles (1964).

We now explain how these assumptions are expressed mathematically.

2 Model for recruitment of a bifurcating airway network

We consider generations 11-16 of a human lung using ‘Model A’ from Weibel (1963) which
prescribes regular dichotomous branching of generations (Assumption 1).

Fully three-dimensional simulations of individual airway recruitment have shown that the
surface-tension-driven collapse of a fluid-lined tube is strongly asymmetric (Heil, 1999a,b;
Hazel & Heil, 2003), where the airway typically adopts a ribbon-like configuration downstream
of the tip of the air finger (see Fig. S1a). To mimic a buckled configuration, in this model
each airway is modelled as a planar symmetric flexible-walled channel in cross-section (see
Fig. S1b), characterised by a transverse ‘height’ and effective ‘width’ in the planes orthogonal
to the axis of the channel (Assumption 2). Airway k in generation j is denoted by subscript
j and superscript (k). The notation for the present model is summarised in Table. S1.

Weibel (1963) (see also Weibel, 1991) measured the lengths and diameters of individual
airways and total cross-sectional area of each generation using casts of human lungs taken at
75% total lung capacity (TLC). The mean length and diameter of airways in generations 11-
16 and their total cross-sectional area at 75% TLC are listed in Table S2. Following Lambert
et al. (1982), we consider this total cross-sectional area as the ‘maximal’ airway area for all
the airways at a given generation, denoted as Am,j.

2.1 Estimation of the maximal airway cross sectional area

The mean maximal cross-sectional area for an individual airway in generation j, denoted
am,j , is assumed to take the form

am,j = Am,j2
−j . (1)

Hence, we can write the total cross-sectional area of generation j at any time t as

Aj =

2j
∑

k=1

a
(k)
j . (2)

To account for natural variability between airways across a generation we sample the maximal

cross-sectional area for each individual airway (a
(k)
m,j) relative to the mean for that generation
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Figure S1: Schematic of recruitment of a single airway: (a) three-dimensional sketch of airway
recruitment showing the buckled ‘ribbon-like’ configuration Hazel & Heil (2003); the cross-
section shape is characterised by and effective ‘width’ z and a transverse ‘height’ 2h. (b) cross
section of a single airway, resembling 2D flexible walled channel models Halpern et al. (2005);
(c) the relationship between airway pressure and recruitment speed for steady recruitment of
a single airway.

(am,j). In particular we define the relative stiffness parameter s
(k)
j = a

(k)
m,j/am,j and sample

its value from a normal distribution with unit mean and variability d (Assumption 4)

s
(k)
j ∼ N(1, d2). (3)
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Quantity

Symbol Global properties

P (t) airway pressure
p airway liquid pressure
Q prescribed flow rate of air finger
γ uniform surface tension
µ uniform liquid viscosity
P0 threshold opening pressure of alveoli (TOP)
T0 constant longitudinal tension applied across the network

Properties of generation j

Aj total cross-sectional area of airways
Am,j maximal total cross-sectional area of airways
αj ratio of Aj to Am,j

am,j maximal cross-sectional area of individual airways
hm,j mean maximal transverse displacement of cross-section for airways
α0j ratio of equilibrium cross-sectional area to maximal
α′

0j gradient of pressure-volume curve at zero transmural pressure (equilibrium)

Tj longitudinal tension of airways

Properties of airway k in generation j

Ũ
(k)
j pushing speed of recruitment

a
(k)
j cross-sectional area

h
(k)
j transverse dimension of cross-section

h
(k)
m,j maximal traverse dimension of cross-section

a
(k)
m,j maximal cross-sectional of an individual airway

s
(k)
j ratio of maximal cross-sectional area to the mean for that generation

h
(k)
e,j equilibrium traverse dimension of cross-section

z
(k)
j effective width

L
(k)
j (t) length of air finger

U
(k)
j (t) peeling speed of recruitment

h
(k)
I,j (t) transverse dimension of cross-section in Region I

L
(k)
I,j length of asymptotic Region I

L
(k)
III,j length of asymptotic Region III

H
(k)
j downstream (collapsed) traverse dimension of airway cross-section

θ
(k)
j peeling angle

Table S1: Notational choices for the airway network model.

An estimate of the transverse dimensions of the airway can then be calculated assuming an

approximately circular cross-section of radius h
(k)
m,j = (a

(k)
m,j/π)1/2. In addition, we prescribe

the effective ‘width’ of each airway across the tree as

z
(k)
j = a

(k)
m,j/(2h

(k)
m,j). (4)
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j 2hm,j (cm) Lj(cm) Am,j (cm2) α0j α′
0j n1j n2j

11 0.109 0.39 19.6 0.08 0.202 1.0 9.0
12 0.094 0.33 28.8 0.063 0.214 1.0 8.0
13 0.082 0.27 44.5 0.049 0.221 1.0 8.0
14 0.074 0.23 69.5 0.039 0.228 1.0 8.0
15 0.066 0.20 113.0 0.031 0.234 1.0 7.0
16 0.060 0.17 180.0 0.024 0.238 1.0 7.0

Table S2: Parameter choices generations 11-16 of a human lung, calculated based on Weibel
(1963) and Lambert et al. (1982); Lambert & Beck (2004).

2.2 Model for airway wall elasticity

Lambert et al. (1982) proposed a relationship between transmural pressure across the airway
wall and total airway cross-sectional area (like a ‘tube law’) for generations 0-16 of a human
lung (see also Lambert & Beck, 2004). They modelled the expansion and collapse of each
generation of airways based on anatomical data (Weibel, 1963, see Table S2). Each gener-
ation is characterised by an equilibrium area (at zero transmural pressure) and a maximal
area (arising at infinite transmural pressure), recognising that airways stiffen when strongly
inflated. The total collective equilibrium (or undisturbed) cross-sectional area of a particu-
lar generation is denoted as α0,jAm,j (where α0,j is also listed in Table S2). In particular,
this model describes the relationship between αj , the total cross-sectional area of all the air-
ways at generation j normalised on the the maximal cross-sectional area for that generation
(αj = Aj/Am,j), and the transmural pressure P . They used two hyperbolae to describe the
inflation and collapse of each generation, appropriately matched together at P = 0. For all
the airways at generation j

αj = Fj(P ) =







α0j

(

1 − P
P1j

)−n1j

, P ≤ 0,

1 − (1 − α0j)
(

1 − P
P2j

)−n2j

, P ≥ 0,
(5a)

where n1j and n2j are constants (tabulated in Table S2) and

P1j =
α0jn1j

α′
0j

, P2j =
−n2j(1 − α0j)

α′
0j

, (5b)

where α′
0j represents dαj/dP as P → 0±.

The relationship between αj and P is plotted in Fig. S2(a) for generations 11-16. Similarly,
the pressure-area curve for an individual airway in generation 14 with maximal area am,j is
shown as a solid line in Fig. S2(b). Also shown are the pressure-area curves for airways with
maximal area (1 ± 0.1)am,j . The corresponding compliance of this airway is the gradient of
the P against aj curve evaluated at P = 0. This figure illustrates that an increase in the
maximal area of an airway corresponds to a decrease in compliance.

Using this notation, the equilibrium transverse ‘height’ of the cross-section in an individual
airway can be expressed

h
(k)
e,j = α0jh

(k)
m,j , (6)

ensuring (from (4)) that z
(k)
j h

(k)
e,j = α0ja

(k)
m,j (no sum over j).
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Figure S2: The variation in αj , the total generation cross-sectional area Aj normalised on
the ‘maximal’ cross-sectional area Am,j , with P , the airway pressure, for generations 11-16.
Based on data taken from Lambert et al. (1982), listed in Table S2.

Representing each airway as a two-dimensional channel, Lambert’s tube law for generation
j (5) can be re-expressed in the form

h
(k)
j = h

(k)
m,jFj(P ) =

(

a
(k)
m,js

(k)
j

π

)1/2

Fj(P ), (7)

where h
(k)
j is the transverse displacement of the cross-section for airway k in generation j

(Assumption 5).
In addition, a constant longitudinal wall tension T0 is applied between the upstream and

downstream ends of the network. This tension is assumed to be constant for all the airways
across a given generation, denoted Tj, and is calculated using a simple force balance around
each bifurcation. If η is the symmetric branching angle, this implies Tj = 2Tj+1 cos(η).
Assuming small branching angles (η ≪ 1) and neglecting external tethering forces, Tj ≈

2Tj+1.

2.3 Model for airway collapse

We assume that each airway cross-section (Fig. S1) constitutes two (finite-length) flexible
sheets confining a region of Newtonian liquid with viscosity µ (Fig. S1). Initially each con-

stituent airway is collapsed and each sheet is uniform, held a constant distance of 2H
(k)
j apart

by the liquid (Assumption 6). For simplicity we place an axis midway between (and parallel
to) the undeformed sheets, about which we assume the motion is symmetric. Throughout

this work we assume that the H
(k)
j is 100C% of the equilibrium transverse ‘height’ of the

airway wall (h
(k)
e,j ), where C is a constant. Thus, 0 < C ≤ 1 measures the degree of initial

airway collapse. In the main paper we investigate the interval 0.1 ≤ C ≤ 1. The coordinate
x measures distance along the airway.

A finger of air is introduced at the upstream end of the network with a prescribed flow rate
Q (Assumption 7); the corresponding airway pressure is denoted pb(t) where t is time. The
finger of air inflates the airway walls, forming an interface with the liquid with constant surface
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tension γ. This surface tension coefficient is assumed constant, so the effects of surfactant
transport through the network are ignored (Assumption 8). Neglecting the pressure drop due
to the surface tension of the liquid (assumed to be much less than the wall tension, Halpern
et al. (2005)) implies that pb = P . Henceforth we denote the airway pressure as P (t).

2.4 Steady recruitment

When the airway pressure exceeds a threshold for an individual airway, denoted P ∗
j

(k), steady
recruitment proceeds through one of two modes, known as ‘pushing’ (where the air fin-
ger pushes a long column of fluid ahead of itself like a leaky piston) and ‘peeling’ (where
the airway walls peel apart rapidly) (Halpern et al., 2005), as illustrated schematically in
Fig. S1(c). Previous work considering the recruitment of a bifurcated airway has shown that
for sufficiently high flow rates the system can sustain fast quasi-steady peeling motion in both
daughter airways. For lower flow rates (where simultaneous steady peeling of both daughter
airways cannot be sustained) the finger tip in one or both of the daughter airways makes
the transition to slow pushing motion once the pressure falls below the critical pressure re-
quired to sustain steady motion. For simplicity, since peeling speeds greatly exceed pushing
speeds, we assume that the finger of air exhibits quasi-steady peeling in any daughter airway
where the pressure exceeds this critical threshold pressure (Assumption 9). Once the airway
pressure falls below this threshold in a particular airway, we assume that recruitment of that
airway stops until the airway pressure rises above this threshold again (Assumption 10).

We follow Jensen et al. (2002) in constructing a scaling approximation for the recruit-
ment speed in peeling motion which can be implemented for each airway in the network
(Assumption 9), dividing the flow into three asymptotic regions (Fig. S1b).

In region I we assume that P ≥ 0 and the airway wall is inflated to a transverse ‘height’

h
(k)
I,j (dependent on P ) and in local equilibrium (we assume h

(k)
e,j < h

(k)
I,j < h

(k)
m,j). Modifying

(7b), we express the normal stress balance across the airway wall as

P = P2j



1 −

(

(1 − h
(k)
j /hm,j)

(1 − α0j)

)−1/n2j


− Tj

∂2h
(k)
j

∂x2
, (P ≥ 0), (8)

combining Lambert’s tube law with a linearised expression for the effect of airway wall tension.

The transverse ‘height’ of the airway wall far upstream of the tip of the air finger, where h
(k)
j

is independent of x, is given by

h
(k)
I,j = hm,j

(

1 − (1 − α0j)

(

1 −
P

P2j

)−n2j

)

, (P ≥ 0). (9)

Across region I we balance the elastic restoring force with the airway wall tension, represented
by the two terms on the RHS of (9). This balance implies that the scale of variation within
region I can be expressed approximately as

L
(k)
I,j =









Tjh
(k)
I,j

P2j

(

1 −

(

(1 − h
(k)
I,j /hm,j)/(1 − α0j)

)−1/n2j

)









1/2

, (10)

from which we can estimate the peeling angle (Fig. S1b)

θ
(k)
j = h

(k)
I,j /L

(k)
I,j . (11)
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Region II contains the tip of the air finger and the flow field is complicated, but Halpern
et al. (2005) have shown that it can be assumed passive provided the flux of fluid passing the
tip and the corresponding pressure drop are accounted for.

Across region III (of approximate length L
(k)
III,j) the airway wall collapses to a transverse

‘height’ H
(k)
j downstream. We choose this to be a fixed fraction, C, of the equilibrium

transverse displacement of the airway, so H
(k)
j = Ch

(k)
e,j . Throughout this work we assume

that C is a constant across the network (Assumption 6). Following Jensen et al. (2002),
we estimate the pressure gradient in the long expanded region ahead of the finger tip from
lubrication theory as

p

L
(k)
III,j

∼
µU

(k)
j

H
(k)
j

2 , (12)

where p is the liquid pressure in region III.
The airway wall tension is assumed large enough to dominate the negative transmural

pressure induced by bending of the airway wall, implying

p ∼
TjH

(k)
j

L
(k)
III,j

2 , (13)

so a second estimate of the peeling angle θ
(k)
j takes the form

θ
(k)
j ∼ H

(k)
j /L

(k)
III,j ∼ (µU

(k)
j /Tj)

1/3
. (14)

Equating the two estimates (11,14) of the peeling angle θ
(k)
j gives an expression describing

steady ‘peeling’ speed for airway k in generation j, relating the airway pressure P to the speed

of the recruitment U
(k)
j :

U
(k)
j =

1

µ









h
(k)
I,j P2j

(

1 −

(

(1 − h
(k)
I,j /hm,j)/(1 − α0j)

)−1/n2j

)

T
1/3
j









3/2

, (15)

where h
(k)
I,j depends non-linearly on P . However, P must exceed a threshold in each daughter

airway, which we denote P ⋆
jk.

2.5 The yield pressure for airway recruitment

A suitable description of the speed of airway recruitment in steady pushing motion (denoted

Ũ
(k)
j ) is required to derive an estimate of the critical pressure for steady recruitment in an

individual airway P ∗
j

(k) (where the steady pushing and peeling branches intersect, discussed
Halpern et al. (2005) and illustrated schematically in Fig. S1(c)). The upstream transverse
displacement of the airway wall can again be approximated using (9), so the total flux of
liquid lost across the meniscus (according to Bretherton, 1961) takes the form

qu,jk = αs

(

µŨ
(k)
j

γ

)2/3

h
(k)
I,j Ũ

(k)
j , (16)
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where Ũ
(k)
j is the pushing speed and αs ≈ 1.337. The total volume of fluid swept up ahead

of the advancing air finger tip takes the form

qd,jk = Ũ
(k)
j Ch

(k)
e,j . (17)

For steady pushing these two fluxes balance exactly and thus we derive that

Ũ
(k)
j =

γ

µ





Ch
(k)
e,j

αsh
(k)
I,j





3/2

. (18)

The critical pressure required for recruitment a particular airway occurs when steady pushing
and peeling intersect, so P ⋆

jk is a solution of

γ2/3





Ch
(k)
e,j

αsh
(k)
I,j



 =









h
(k)
I,j P2j

(

1 −

(

(1 − h
(k)
I,j /hm,j)/(1 − α0j)

)−1/n2j

)

T
1/3
j









, (19)

calculated numerically using Newton’s method implemented in MATLAB. For the simulations
shown we only accepted solutions which MATLAB returns as converged within a tolerance
of 10−8. In these simulations we used an initial pressure of 0.5545 cm H20 and an initial
speed of 0 cm s−1 for each airway, but found that the solver was not sensitive to the choice
of initial conditions. We performed a variety of numerical experiments starting with a wide
range of randomised initial conditions; simulations which MATLAB reported as converged
always attained the same value.

The critical recruitment pressure for each generation using our benchmark parameters
(Table S3 below) is shown in Fig. 1(d) in the main paper.

2.6 Model for alveolar compliance

We assume that the airways in the most distal generation considered (generation 16 in this
case) open into a compliant bag representing the airways in the respiratory zone and the
alveoli (Assumption 11). Following Bates & Irvin (2002), we assume that this sac will expand
and contract with changing P , according to the Salazar–Knowles relationship (Salazar &
Knowles, 1964),

V (t) = VA

(

1 − e−KAP (t)
)

, (20)

where VA is the maximal volume of each acinar compartment and KA is a compliance pa-
rameter Bates & Irvin (2002). This model has zero acinar volume for P = 0.

We modify this model to allow the alveoli to accommodate a theoretical opening pressure
(TOP) for the alveoli PA such that

V (t) =

{

VA

(

1 − e−KA(P−PA)
)

, (P > PA),
0, (P < PA).

(21)

2.7 Ventilating the airway network

As in previous compartmental models (Halpern et al., 2005), we assume that in each airway
being recruited the rate of lengthening of the air finger is equal to the recruitment speed
identified in (15), so that

d

dt
L

(k)
j = U

(k)
j . (22)
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Parameter value units source

T 3000 dyn cm−1 Naire & Jensen (2005)
γ 30 dyn cm−1 Kamm (1999)
µ 0.01 dyn s cm−2 Naire & Jensen (2005)

KA 0.14 cmH20
−1 Bates & Irvin (2002)

VA 0.0778 cm3 Prediletto et al. (2007)
PA 2 cmH2O Hickling (2002)
PE 2 − 5 cmH2O

Table S3: Parameter choices for an adult human lung.

The air finger is inflated with a prescribed flow rate, so the corresponding airway pressure
will change with time. The total air finger volume has three contributions: the volume of the
upper airways that are always open (generations 0-10), then open (or partially open) airways
in generations 11-16 and the open alveoli. The total flow rate Q is balanced by

Q =
d

dt





10
∑

j=0

AjLj +
∑

j≥11

2h
(k)
I,j z

(k)
j L

(k)
j +

∑

l

Hl(P − PA)VA

(

1 − e−KA(P−PA)
)



 , (23)

where l is an index over all the acini and the function Hl is a Heaviside function, which is
set to zero for P < PA and set to one for P ≥ PA. Eqn. (23) can be rearranged to form an

ODE for dP/dt in terms of P , U
(k)
j , L

(k)
j and the model parameters.

2.8 Simulating the model numerically

For M airways being recruited at time t, we have a system of 2M equations ((15) and (22)
for each airway for the M quasi-steady recruitment speeds and M lengths of bubble fingers).
These are coupled to the pressure condition (23) forming a system of 2M +1 equations. These
governing equations were solved using MATLAB solver ode15s for differential-algebraic
equation systems. A typical simulation for a 6 generation network takes approximately 2
minutes on a desktop computer. In simulations we employed an absolute tolerance of 10−6

and a relative tolerance of 10−4. Selected simulations have been validated against equivalents
using error tolerances a factor of 10 smaller (everything else held the same) and the time-
traces of airway pressure were almost indistinguishable.

To complete the description of the numerical model we specify an initial condition for the
airway pressure P (t). In this study we explored two possible initial conditions for the system.

The first choice was to assume that theme that the bubble is peeling steadily in the parent
generation, with the airway pressure and peeling speed determined directly from the choice
of prescribed volume flux, calculated from (19) for j = 11 using Newton’s method (with an
absolute tolerance of 10−8 and a relative tolerance of 10−8).

Alternatively, the second choice was to prescribe a positive end expiratory pressure
(PEEP) during recruitment, which maintained that the airway pressure must always ex-
ceed a particular value PE ; in simulations of the model including a PEEP we prescribed the
initial pressure as P = PE .
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