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7.1 Introduction
The recruitment of blood-borne leukocytes to the vascular endothelium is a crucial step
in the immune response. It is mediated by specific receptor-ligand interactions [2,32]
that allow circulating leukocytes to form bonds with the endothelium under flow
conditions. This results in the so-called adhesive rolling of leukocytes along the
blood vessel walls prior to targeting sites of inflammation [20,29,31,34].

Similar adhesion mechanisms are found also in cancer cell metastasis [19], bacte-
rial colonization under flow [16], or targeted drug delivery by functionalized parti-
cles [21,26]. This wide range of applications has made cell adhesion an active field
of research, resulting in the identification of key adhesion molecules (e.g., E-, L- and
P-selectin and their ligands) and the biomechanical characterization of the resulting
intermolecular bonds.
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176 History Dependence of Microbead Adhesion under Varying Shear Rate

However, the connections between physiological observations (e.g., the minimum
shear threshold for leukocyte rolling [1,9]) and mechanochemical effects operating
within individual intermolecular bonds [13] are yet to be fully understood. Much
of the complexity arises from the multiscale nature of the nonlinear interactions
between hydrodynamics, adhesion forces, and cell deformation. This has motivated
the development of theoretical models of cell adhesion and cell rolling, which have
now reached considerable levels of sophistication [5,17].

Existing models of cell adhesion fall essentially into two classes, depending on
whether bonds are represented within a continuum [6,7,15] or treated in a discrete
framework [14]. In the first case, the bonds are generally modeled as vertical springs
that resist sideways displacement, preventing a cell membrane that is bound to a
wall from sliding along it. This ensures that an adherent cell in a shear flow exhibits
genuine tank-treading motion, with a peeling process taking place at the trailing edge
of the contact region. In the second case, binding and unbinding occur stochastically
between individual points on the cell and substrate. The bonds are allowed to tilt freely
(they have no preferred spatial orientation), enabling (in principle) some degree of
sliding of the cell over the substrate.

In [24] we proposed a continuum deterministic model for binding kinetics in which
bonds are allowed to tilt. To pass smoothly from the vertical-bond limit to the case in
which bonds can tilt freely, we assumed that the bonds resist tilting via a biomechanical
hinge of prescribed stiffness, while being subject to rotational diffusion. A microscale
calculation (for two parallel sliding plates) revealed a nonlinear force-speed relation
arising from bond formation, tilting, and breakage.

This nonlinear sliding friction law was used in a multiscale model describing the
2-D motion of a cylinder coated with receptors moving over a rigid flat wall in a shear
flow [24]. Two distinct types of macroscale cell motion are predicted: either bonds
adhere strongly and the cell rolls (or tank-treads) over the wall without slipping, or the
cell moves near its free-stream speed with bonds providing weak frictional resistance
to sliding. The model predicts bistability between these two states, implying that at
critical shear rates the system can switch abruptly between no-slip rolling and free
sliding, and suggesting that sliding friction arising through bond tilting may play a
significant dynamical role in some cell-adhesion applications.

To our knowledge, bond resistance to tilting has yet to be characterized experi-
mentally in the context of cell adhesion, although it is relevant in other biomimetic
adhesives involving fields of oriented deformable binders [33] and has motivated prior
modeling of the adhesive properties of rotatable elastic nanofibers [8] or micropil-
lars [27].

We extend here the results obtained in [24] to the 3-D motion of a sphere. In
addition we incorporate the effects of nonequilibrium binding kinetics (although we
consider a steady problem in the reference frame of the center of the sphere). For the
sake of simplicity we assume that the sphere is rigid. In the context of cell rolling
adhesion, this assumption is commonly made on the grounds that many (but not all)
features of leukocyte rolling have been demonstrated in flow-chamber experiments
using ligand-coated microbeads [12].
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Net vertical adhesion forces (as formulated in Dembo et al.’s model [6]) tend to
bring a sphere in direct contact with the wall. In practice, however, they will always
be opposed by other forces like electrostatic or steric repulsion or, depending on
the system studied, volume exclusion effects caused by local microstructure (e.g.,
glycocalyx). Also, bonds with a high resistance to tilting can resist compression
by exerting a vertical force that diverges as the distance between the particle and
the wall tends to zero [24]. To keep the model general and the analysis tractable,
we choose to neglect the vertical force balance on the sphere and assume that the
separation distance !∗ between the sphere and the wall is a fixed parameter (we
assume that !∗ is comparable to the average unstressed length of the bonds !∗,
namely !∗/!∗ ≡ d = O(1)). To apply lubrication theory in the interstitial region,
we assume that the radius R∗ of the sphere is large compared to !∗. The frame of
reference used is that of the sphere’s center, with (O, ex, ey, ez) directed such that ex is
the streamwise direction, ey is the transverse direction, and ez is vertical (Figure 7.1).
The flow has a uniform shear rate G∗ at infinity and is assumed to be purely viscous.

This chapter is laid out as follows. In Section 7.2 we recall some known results
about the hydrodynamics of a rigid sphere in a shear flow near a wall in the absence
of adhesion, or with ad hoc friction forces that prevent sliding entirely. In Section
7.3 we derive in some detail a model for binding kinetics in 3-D that accounts for

G*z*

h*

Y*
y0*

x0*

ey ez
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Figure 7.1 Binding between a sphere and a plane in a shear flow.
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bond tilting and nonequilibrium effects. The model relies on assumptions similar to
the 2-D model presented in [24], albeit with some qualitative differences that are
outlined below. Numerical results are given in Section 7.4 for both (1) the force-
velocity relations and (2) the steady motion of the sphere resulting from a balance
between adhesive and hydrodynamic forces and torques. The implications of these
results are discussed in Section 7.5.

7.2 Hydrodynamics of a Sphere Near a Wall
To understand the effects of adhesive forces on the motion of a cell, we first solve
the force and torque balance on a sphere near a wall (1) when it is subject only
to hydrodynamic forces (free transport, Section 7.2.1) and (2) when the motion is
constrained by strong adhesive friction forces (no-slip rolling, Section 7.2.2). Later
we investigate the intermediate case when the friction forces are coupled (nonlinearly)
with the motion of the sphere.

Let " = !∗/R∗ be the ratio of bond length to sphere radius (so that !∗/R∗ = d").
Typically, we expect " # 1. For a sphere translating parallel to a wall or rotating
with its axis of rotation parallel to the wall, the drag from the fluid is singular as "
goes to zero, diverging as log " [11]. We therefore expect the velocities to scale as
R∗G∗/| log "|. In comparison, for a cylinder in a shear flow, the velocities scale as
"1/2R∗G∗.

7.2.1 No Adhesion

Let us consider a sphere moving near a wall, at a fixed distance !∗, with horizontal
velocity V∗

hex relative to the wall and rotational velocity "∗
hey in a Newtonian fluid

of dynamic viscosity #∗. Following [11], the horizontal force and torque balance (in
dimensional form) are, respectively,

6$#∗R∗ (
R∗G∗Fs + V∗

h| ln d"|Ft + R∗"∗
h| ln d"|Fr

)
= 0 (7.1a)

−4$#∗R∗2 (
R∗G∗Ts + 2V∗

h| ln d"|Tt + 2R∗"∗
h| ln d"|Tr

)
= 0 (7.1b)

where the dimensionless coefficients can be approximated in the small-" limit
[11] by

Fs ≈ 1.7005 + O("), Ts ≈ 0.9440 + O(") (7.2a)

Fr ≈ 2
15

− 0.2526
| ln d"|

+ O
(

"

| ln "|

)
, Tr ≈ −2

5
− 0.3817

| ln d"|
+ O

(
"

| ln "|

)
(7.2b)

Ft ≈ − 8
15

− 0.9588
| ln d"|

+ O
(

"

| ln "|

)
, Tt ≈ 1

10
− 0.1895

| ln d"|
+ O

(
"

| ln "|

)
(7.2c)
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The subscripts s, r, and t denote coefficients related to the effects of the shear flow,
the rotational motion, and the translational motion of the sphere, respectively.

Introducing the dimensionless parameters Vh and "h defined by V∗
h = VhR∗G∗

and "∗
h = "hG∗, Equation (7.1) becomes

Fs + Vh| ln d"|Ft + "h| ln d"|Fr = 0 and Ts + 2Vh| ln d"|Tt + 2"h| ln d"|Tr = 0

which yields the following expressions for the horizontal and rotational velocities:

Vh =
1
2 TsFr − FsTr

(FtTr − FrTt)| ln d"|
=

[
3.716
| ln d"|

− 9.197
| ln d"|2

+ 23.41
| ln d"|3

+ · · ·
]

+ O(")

(7.4a)

"h =
− 1

2 TsFt + FsTt

(FtTr − FrTt)| ln d"|
=

[
2.109
| ln d"|

− 6.072
| ln d"|2

+ 16.00
| ln d"|3

+ · · ·
]

+ O(")

(7.4b)

Uh =
[

1.607
| ln d"|

− 3.124
| ln d"|2

+ 7.406
| ln d"|3

+ · · ·
]

+ O(") (7.4c)

where Uh ≡ Vh − "h is the sliding speed (scaled on R∗G∗) of the base of the sphere
relative to the wall.

7.2.2 Rolling without Sliding

We now consider a sphere moving near a wall, equipped with a device imposing
a no-slip condition between the sphere and the wall (e.g., one can imagine “ideal”
adhesion molecules that provide infinite resistance against any slippage between the
base of the sphere and the wall, as in Dembo et al.’s model [6]). As a result, the sphere
is forced to roll without sliding and we have V∗

ns − "∗
nsR

∗ = 0, where V∗
ns and "∗

ns
denote the sphere’s horizontal and rotational velocities respectively. Let F∗

ns denote
the horizontal friction force exerted on the sphere. The force balance Equation (7.1)
is modified as follows:

6$#∗R∗(R∗G∗Fs + V∗
ns| ln d"|Ft − R∗"∗

ns| ln d"|Fr) + F∗
ns = 0 (7.5a)

−4$#∗R∗2(R∗G∗Ts + 2V∗
ns| ln d"|Tt − 2R∗"∗

ns| ln d"|Tr) + R∗F∗
ns = 0 (7.5b)

Writing Equation (7.5) in terms of dimensionless (unstarred) variables, defined by
F∗

ns = Fns#∗R∗2G∗, V∗
ns = VnsR∗G∗, and "∗

ns = "nsG∗, gives

6$Fs + Vns6$| ln d"|Ft − "ns6$| ln d"|Fr + Fns = 0 (7.6a)

4$Ts + Vns8$| ln d"|Tt − "ns8$| ln d"|Tr − Fns = 0 (7.6b)
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with the constraint Vns − "ns = 0. This yields

Vns = − 1
| ln d"|

2Ts + 3Fs

3(Ft + Fr) + 4(Tr + Tt)
=

[
2.912
| ln d"|

− 7.182
| ln d"|2

+ · · ·
]

+ O(")

(7.7a)

"ns = Vns, (7.7b)

Fns = 12$Ts(Ft + Fr) − 24$Fs(Tr + Tt)

3(Ft + Fr) + 4(Tr + Tt)
=

[
−10.10 + 12.35

| ln d"|
+ · · ·

]
+ O(")

(7.7c)

We can now quantify the effects of these adhesion forces on the motion of the
sphere by comparing the velocities obtained in Equation (7.7a,b) with those for a
sphere moving at its free hydrodynamic velocity Equation (7.4a,b):

Vns

Vh
= 0.784 + 0.0069

| ln d"|
+ · · · and

"ns

"h
= 1.381 + 0.510

| ln d"|
+ · · · (7.8)

Equation (7.8) shows that horizontal adhesion forces tend to make the sphere translate
slower and rotate faster. In both cases, the change is on the order of 20 to 40%.

In the next section, we include nonequilibrium binding kinetics effects that allow
for the build-up of an additional torque on the sphere. Under certain condition this
torque can dominate the hydrodynamic drag and slow down the sphere, reducing
the translation speed and rotation rate by several orders of magnitude, much more
dramatically than in Equation (7.8). Combined with the nonlinear relationship be-
tween adhesion forces and the sphere’s motion, it also leads to interesting hysteretic
behaviour under slowly varying shear rates.

7.3 Adhesive Sphere in a Shear Flow
We now focus on the steady motion of a sphere in a shear flow when the sphere and
the wall are coated with adhesion molecules that can interact with each other to form
bonds (i.e., mechano-resistant complexes). We write a model for the nonlinear forces
exerted by adhesion on the sphere and investigate, from force and torque balances, the
different scalings of the translation and rotation speed of the sphere in different regions
of parameter space. The steady states, defined by the translation and rotation speeds of
the sphere, result from a balance of forces between the shear flow, the hydrodynamic
drag and adhesion forces. The latter originates from the formation of bonds between
the sphere and the wall, which itself depends on the velocity of the sphere. With some
assumptions regarding receptor and ligand spatial distributions (such that the bonds
can be considered a continuum with homogeneous physical properties), and assuming
deterministic binding kinetics (as described by, for example, Dembo et al.’s model [6],
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see below), the net force and torque exerted collectively by all the bonds on the sphere
do not depend on time. Within this framework, the sphere moves steadily even though
its motion occurs through the continuous formation and breakage of adhesive bonds,
which is naturally a time-dependent process.

Some care is needed in defining an evolution equation for the consummated bond
density, determining the resulting adhesive force on the sphere and coupling this with
the hydrodynamic forces to find the motion of the sphere as a function of imposed shear
rate. We derive the model in detail below. The full model is stated in dimensionless
variables in Section 7.3.4.

7.3.1 Geometry and Kinematics

Because we aim to stress the effects of nonequilibrium binding kinetics on the steady
motion of the sphere, we make use of two frames of reference, one translating relative
to the other. We first describe the dynamical formation and breakage of adhesive
bonds with a time-dependent evolution equation in a frame of reference attached to
the receptors (themselves anchored to the wall). Translating to a frame of reference
attached to the center of the sphere, we then derive the adhesive force densities
exerted on the sphere as steady quantities that depend on spatial variables only. The
relationship between the reference frame of the receptors on the wall and that of
the center of the sphere is determined by the translational motion of the sphere. We
therefore expect a strong coupling between the motion of the sphere and the adhesive
forces that it is subject to.

Rs denotes the frame of reference of the center of the sphere. It is associated with
a system of coordinates (x∗

s , y∗
s , z∗) with origin Os on the horizontal wall vertically

beneath the base of the sphere (see Figure 7.2).
Rw denotes the frame of reference of the wall. It is associated with a system of

coordinates (x∗, y∗, z∗) and an origin Ow chosen, with no loss of generality, so that
it coincides with Os at time t∗ = 0. Assuming that the motion of the sphere is steady
and directed along ex, we then have Os = (V∗t∗, 0, 0) in Rw (see Figure 7.2).

Let h∗
w(x∗, y∗, t∗) be the vertical distance, at a given time t∗, between the point

(x∗, y∗, 0) on the wall (in Rw) and the lower surface of the sphere:

h∗
w(x∗, y∗, t∗) = !∗ + R∗ −

√
R∗2 − y∗2 − (x∗ − V∗t∗)2 (7.9)

Similarly, h∗
s (x

∗
s , y∗

s ) denotes the vertical distance between the point (x∗
s , y∗

s , 0) on the
wall (in Rs) and the lower surface of the sphere:

h∗
s (x

∗
s , y∗

s ) = !∗ + R∗ −
√

R∗2 − y∗2
s − x∗2

s (7.10)

We drop the subscripts when no confusion can be made. Note that h∗
s does not depend

on time.
We assume that stretching of an individual bond occurs over length scales com-

parable to the unstretched bond length !∗. The adhesion region, where we expect
most of the adhesive phenomena to take place, is then defined as the area of the wall
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Figure 7.2 Schematic description of the notation used. The frame of reference Rw

is attached to the wall; Rs moves with the center of the sphere. Both origins Ow and
Os are on the wall. A given receptor on the wall can be identified by its coordinates
(x∗, y∗, 0) in Rw or (x∗

s , y∗
s , 0) in Rs. A receptor-ligand bond can be characterized by

cartesian or spherical coordinates (X∗, Y∗, H∗) and (L∗, %, &), respectively, measured
with respect to (x∗, y∗, 0) in Rw.

beneath the sphere where the separation distance is of the same order of magnitude as
the characteristic bond length !∗. Because !∗ = O(!∗), this corresponds to a circular
area of diameter O(

√
!∗R∗) (or equivalently, O(

√
!∗R∗)) beneath the sphere.

In the adhesion region, bonds form between two surfaces that, to leading order,
are locally flat and parallel with error O("1/2). In what follows we retain the terms of
O("1/2) but neglect higher-order corrections. In general, a sphere that moves near a
wall will slide relative to it with a horizontal velocity U∗ex at its base. Let us consider
a point attached to the wall (e.g., a receptor) within the adhesion region and let
(x∗

s , y∗
s , 0) be its coordinates in Rs. Then the horizontal velocity of the sphere relative

to that point is given by V∗ − "∗R∗ to leading order in " (since x∗
s /R∗ = O("1/2)

within the adhesion region). The sliding velocity between the sphere and the wall can
therefore be assumed uniform and equal to U∗ = V∗ − "∗R∗ within the adhesion
region, to leading order in ".

7.3.2 Model of Binding Kinetics between Moving Surfaces

The binding between a receptor-coated and a ligand-coated surface, with surface
densities mr and ml, respectively, is commonly referred to as 2-D binding, in contrast
to 3-D binding where the molecules are in solution. The apparent rate of binding
K∗

on,eq between one receptor and the ligand-coated surface (in s−1) is generally defined
from the intrinsic binding rate K∗

on,int [m2s−1] between one receptor and one ligand as
K∗

on,eq = mlK∗
on,int. The binding affinity Keq is then the dimensionless ratio between the

apparent binding rate and the off-rate K∗
off,eq [s−1] of a formed bond. These reaction
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rates are defined when no load is exerted on the bonds (e.g., for bonds that form
vertically between two plates separated by a distance !∗) and their dependence on
force has to be modeled.

Following Dembo et al. [6], the forward and reverse reaction rates for receptor-
ligand binding are written as Boltzmann distributions, allowing highly stretched “slip”
bonds (for example) to be readily broken by thermal energy fluctuations. However,
unlike Dembo et al. [6], we assume that the bonds are allowed to subtend an angle
% with the vertical direction as well as an angle & with the streamwise direction
(Figure 7.2).

A given bond between a receptor at (x∗, y∗, 0) on the wall in Rw and the sphere can
be characterized in spherical coordinates (with origin at (x∗, y∗, 0)) by the two angles,
% and &, and its length L∗. Equivalently, a bond is characterized by the two components
(X∗, Y∗) of its projection onto the horizontal plane, and the vertical component H∗

(see Figure 7.2). The relationship between the two systems of coordinates is:

L∗ =
√

H∗2 + X∗2 + Y∗2, % = arctan

(√
X∗2 + Y∗2

H∗

)
, & = arctan

Y∗

X∗

(7.11)

At a given time t∗, the vertical component H∗ of a given bond can be written in terms
of the height function h∗

w as:

H∗ = h∗
w(x∗ + X∗, y∗ + Y∗, t∗) (7.12)

To account for the extra degrees of freedom from Dembo’s model (where all bonds
are vertical), the forward rate is expressed as the probability density that a bond may
form for a given value of (L∗, %, &) times the probability density that this geometrical
configuration is realized in the unbound state. The probability densities of forming
or breaking bonds between the wall at (x∗, y∗, 0) and the sphere take the form

K∗
off,sph(L

∗, %, &) = K∗
off,eq exp

[
('∗ − '∗

ts)
(L∗ − !∗)2

2k∗
BT ∗

]
(7.13a)

K∗
on,sph(L

∗, %, &) = K∗
on,eq exp

[
−'∗

ts
(L∗ − !∗)2

2k∗
BT ∗

]
P∗

sph(L
∗, %, &) (7.13b)

respectively. Here k∗
B is Boltzmann’s constant, T ∗ is the absolute temperature, '∗

[Nm−1] is the spring constant of one molecular bond, and '∗
ts [Nm−1] is the spring

constant of the transition state (see [6]) used to distinguish catch ('∗ < '∗
ts) from slip

('∗ > '∗
ts) bonds.

P∗
sph(L

∗, %, &) is defined as the probability density that a free bond (i.e., one an-
chored to the wall only) lies within the region defined by the point (x∗, y∗, 0) (on the
wall) and the two angles % and &. Note that K∗

on,sph has dimension [s−1].
We assume that the energy associated with tilting a bond from its vertical position

is independent of & and of the form 1
2 '∗

(%2 for some '∗
( ≥ 0 (with % and & defined in
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Equation (7.11)). Hence we assume a Boltzmann distribution for Psph of the form

Psph(L∗, %, &) =
exp

[
− '(%2

]

N
, '( ≡ '∗

(

2k∗
BT ∗ (7.14)

with the normalization factor

N =
$∫

−$

$/2∫

0

exp
[
−'()2] d)d* = $3/2'−1/2

( erf
(
$'1/2

( /2
)

(7.15)

In Equation (7.14), '∗
( [N ·m] is the torsional spring constant, that is, the moment that

has to be exerted about the bond’s anchorage point on the wall in order to tilt the bond
from the vertical by one radian. Its dimensionless counterpart '( compares '∗

( with
thermal fluctuation energy. The limit '( → 0 therefore represents the limit in which
the bonds are allowed to explore freely all possible angles under thermal fluctuations.
For '( → ∞, all the bonds are restricted to the vertical, Psph(L∗, %, &) → +Dirac(%),
and no sliding can occur between the bound cylinder and the wall, as was assumed in
the models of [6] and others. To our knowledge, no experimental data are presently
available to determine the actual value of '( for the bonds that mediate cell adhesion.
However, some adhesion molecules (e.g., P-selectins) have been reported to have a
persistence length of 0.35 nm [10], that is, an order of magnitude less than their length.
This suggests that '( # 1, at least during the initial stage of cell rolling, which is
principally mediated by P-selectin/PSGL-1 interactions.

For the sake of generality, however, we make no assumption on the magnitude of
'( in the derivation of the present model. This is motivated by various applications
in which tiltable microstructures may represent a resistive force to a sliding motion:
for example, cell adhesion on synthetic substrates made of micropillars of well-
characterized bending stiffnesses (see, for example, [27]), or the mechanical effects
of microvilli in neutrophil rolling [4].

To make the forthcoming analysis easier, we define binding rates K∗
off,cart [s−1] and

K∗
on,cart [m−2s−1] for a given bond (L∗, %, &) at (x∗, y∗, 0) in terms of the bond’s

cartesian coordinates (X∗, Y∗, H∗) (Figure 7.2). Equating the binding rates within the
same infinitesimal volume (see Figure 7.3) in both sets of coordinates yields:

K∗
on,cart(X

∗, Y∗, H∗)dX∗dY∗ = K∗
on,sph(L

∗, %, &)d%d& (7.16)

with the relationship between (L∗, %, &) and (X∗, Y∗, H∗) given by Equa-
tion (7.11). Because the dissociation rate is defined on a per-bond basis, we have
K∗

off,cart(X
∗, Y∗, H∗) = K∗

off,sph(L
∗, %, &). Substituting in Equation (7.13),

K∗
off,cart(H

∗, X∗, Y∗) = K∗
off,eq exp

[
('∗ − '∗

ts)
(L∗ − !∗)2

2k∗
BT ∗

]
(7.17a)

K∗
on,cart(H

∗, X∗, Y∗) = K∗
on,eq exp

[
−'∗

ts
(L∗ − !∗)2

2k∗
BT ∗

]
P∗

cart(X
∗, Y∗, H∗) (7.17b)
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Figure 7.3 Rate of binding between a receptor and an infinitesimal surface on the
sphere.

where P∗
cart [m−2] is defined such that, for any cone " (with vertex (x∗, y∗, 0)),

∫∫

"

P∗
cart(X

∗, Y∗, H∗)dX∗dY∗ =
∫∫

"

Psph(L∗, %, &)d%d& (7.18)

A change of variables on the RHS of Equation (7.18) leads from Equation (7.14) to

P∗
cart(X

∗, Y∗, H∗) =
exp

[
− '(%2

]

N
H∗

√
X∗2 + Y∗2L∗2

(7.19)

where the second term on the RHS is the determinant of the Jacobian matrix of the
transformation from (L∗, %, &) to (H∗, X∗, Y∗). In what follows we use cartesian
coordinates.

We now evaluate the consummated bond density inRw. For a given point (x∗, y∗, 0)

on the wall (in Rw), let A∗
tot g∗

w(x∗, y∗, X∗, Y∗, t∗) +x∗+y∗+X∗+Y∗ be the number of
bonds that are attached between the infinitesimal patch of area +x∗+y∗ at (x∗, y∗, 0)

on the wall and the infinitesimal patch of area1

+X∗+Y∗
√

1 +
(

∂h∗
w

∂x∗

)2
at (x∗ + X∗, y∗ + Y∗, h∗

w(x∗ + X∗, y∗ + Y∗, t∗))

on the sphere at time t∗ (see Figure 7.4).

1The denominator comes from the projection of the rectangle of area +X∗+Y∗ on the wall onto the sphere.
It is approximately equal to one near the base of the sphere and will not contribute to the leading order
solution.
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(x*+ X*, y*+ Y*, hw)
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*

Figure 7.4 The bond density g∗
w(x∗, y∗, X∗, Y∗, t∗) is defined as the density of bonds

in the grayed volume at some time t∗.

The evolution equation for the bond density g∗
w between the fixed wall and the

moving sphere is obtained (in Rw) by equating the rate of change in g∗
w with sponta-

neous bond formation, spontaneous bond breakage, and bond advection by horizontal
sliding:

∂g∗
w

∂t∗
+ ∂

∂X∗ [U∗g∗
w] = K∗

on(h
∗
w(x∗ + X∗, y∗ + Y∗, t∗), X∗, Y∗)√

1 +
(

∂h∗
w

∂x∗

)2

−
K∗

off

(
h∗

w(x∗ + X∗, y∗ + Y∗, t∗), X∗, Y∗)g∗
w√

1 +
(

∂h∗
w

∂x∗

)2
(7.20)

with g∗
w → 0, as X∗ → −∞ (for U∗ > 0) or |Y∗| → ∞.

The effects of the translational motion of the sphere are embedded in the dependence
on time of the reaction rates. As defined in Equation (7.17), these depend on the
vertical distance h∗

w(x∗ + X∗, y∗ + Y∗, t∗) between the ligands on the sphere and the
wall and changes of h∗

w with time as the sphere moves past (see Equation (7.9)).
We now express Equation (7.20) in the reference frame of the center

of the sphere, Rs. For a given point (x∗
s , y∗

s , 0) on the wall (in Rs), let
A∗

tot g∗
s (x

∗
s , y∗

s , X∗, Y∗) +x∗
s +y∗

s +X∗+Y∗ be the number of bonds that are attached be-
tween the infinitesimal patch of area +x∗

s +y∗
s at (x∗

s , y∗
s , 0) on the wall and the infinites-

imal patch of area

+X∗+Y∗
√

1 +
(

∂h∗
w

∂x∗

)2
at (x∗

s + X∗, y∗
s + Y∗, h∗

s (x
∗
s + X∗, y∗

s + Y∗))
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on the sphere. In Rs, the center of the sphere is fixed, the sphere rotates about ey, and
the wall slides underneath the sphere. At each point on the (xs, ys)-plane, the height
between the wall and the sphere does not vary with time. We assume that the sphere
has reached a steady state and that there are uniform and continuous distributions
of adhesion molecules both on the sphere and the wall. Hence we expect the bond
distribution g∗

s at each point on the (xs, ys)-plane to remain constant.
The evolution equation for g∗

s is obtained from a change of frame of reference
from Rw to Rs in Equation (7.20). The coordinates in Rs of a point attached to the
wall (e.g., a receptor) and the height between this point and the sphere vary in time
according to the parametrization

y∗
s = y∗, x∗

s (t
∗) = x∗ − V∗t∗ and h∗

s (x
∗
s (t

∗), y∗
s ) = h∗

w(x∗, y∗, t∗) (7.21)

Similarly, the bond densities in each frame of reference satisfy

g∗
w(x∗, y∗, X∗, Y∗, t∗) = g∗

s (x
∗
s (t

∗), y∗
s , X∗, Y∗) (7.22)

The time derivative in Equation (7.20), which describes nonequilibrium effects in
the binding kinetics, concerns g∗

w, defined in Rw where the height between the wall
and the sphere (on which the reaction rates depend) varies. Changing to Rs, where
this height is fixed, transforms the time-dependent problem to a purely spatial one.
Applying the chain rule to Equation (7.22) with Equation (7.21b) yields:

∂g∗
w

∂t∗
= ∂x∗

s

∂t∗
(t∗)

∂g∗
s

∂x∗
s

= −V∗ ∂g∗
s

∂x∗
s

(7.23)

InRs, nonequilibrium effects in the formation of bonds appears through the translation
speed V∗ of the sphere and the streamwise inhomogeneities of the bond distribution
∂g∗

s /∂x∗
s .

In Rs, using Equations (7.22) and (7.23), Equation (7.20) therefore becomes

−V∗ ∂g∗
s

∂x∗
s

+ ∂
∂X∗ [U∗g∗

s ] = K∗
on(h

∗
s (x

∗
s + X∗, y∗

s + Y∗), X∗, Y∗)√
1 +

(
∂h∗

w
∂x∗

)2

− K∗
off(h

∗
s (x

∗
s + X∗, y∗

s + Y∗), X∗, Y∗)g∗
s√

1 +
(

∂h∗
w

∂x∗

)2
(7.24)

with g∗
s → 0, as X∗ → −∞ (for U∗ > 0) or |Y∗| →∞

where h∗
s has been defined in Equation (7.10). Note that Y∗ and y∗

s play the roles of
parameters. This is a consequence of our assumption that the sphere rotates about
an axis that is always perpendicular to the streamwise direction. In what follows we
consider bond densities defined in Rs, and therefore drop the subscript s.
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Figure 7.5 Schematic view of the forces exerted by an individual bond.
Note that er = −X

L ex − Y
L ey − H

L ez, e( = −HX
DL ex − HY

DL ey + D
L ez.

7.3.3 Forces and Torques

Each bond locally exerts a force on the sphere that can be broken into (1) the ex-
tensional force, which is related to the bond stretch by Hooke’s law (we assume,
however, that bonds do not resist compression), and (2) the torsional force, which
is proportional to the angle % formed by the bond with the vertical (see Figure 7.5).
They are defined, respectively, by

f∗E = '∗ max(L∗ − !∗, 0)er and f∗T = '∗
(L∗−1% er (7.25)

The number of bonds in the O(!∗R∗) adhesion area is expected to scale like
A∗

totKeq!∗R∗. The net adhesive force F∗
adh exerted on the sphere is the sum of that

due to bond stretching F∗
E and bond tilting F∗

T, which are thus expected to scale like
A∗

totKeq'∗!∗2R∗ and A∗
totKeq'∗

(R∗, respectively:

F∗
adh =

∫∫

R2
f∗adhdx∗

s dy∗
s , with f∗adh =

∫∫

R2
g∗(f∗E + f∗T

)
dX∗dY∗ (7.26)

the force density exerted on the sphere per surface area on the wall.
Similarly, the adhesive torque T∗

adh about the center of the sphere can be separated
into the contribution from bond stretching T∗

E and bond tilting T∗
T. Furthermore,

distinguishing vertical and horizontal adhesion forces, we have

T∗
adh · ey =

∫∫

R2

∫∫

R2
g∗((x∗

s + X∗)ex − (R∗ + !∗ − h∗
s )ez)

× (f∗E + f∗T)dX∗dY∗dx∗
s dy∗

s · ey (7.27a)

=
∫∫

R2

∫∫

R2
g∗(R∗ + !∗ − h∗

s )(f
∗
E + f∗T) · exdX∗dY∗dx∗

s dy∗
s

+
∫∫

R2

∫∫

R2
g∗(x∗

s + X∗)(f∗E + f∗T) · ezdX∗dY∗dx∗
s dy∗

s (7.27b)
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The first term on the RHS of Equation (7.27b) is the torque created by hori-
zontal friction forces on the base of the sphere. It scales like A∗

totKeq'∗(!∗R∗)2 or
A∗

totKeq'∗
(R∗2, depending on whether the forces arise primarily through bond stretch-

ing or bond tilting, respectively. The second term in Equation (7.27) is the torque
created by the asymmetry of vertical adhesive forces between the front and the back
of the sphere. Although from straightforward scaling arguments it appears to be
O(

√
!∗/R∗) smaller than the first term, there are cases, as explained below, where

it becomes dominant. This can arise as a consequence of the nontrivial dependence
between the adhesive forces and the unknown variables U∗ and V∗, as detailed below.

As in Equations (7.5a,b), the horizontal force and torque balance about the center
of mass of an adhesive sphere moving near a wall in a shear flow, at steady state, are,
respectively:

6$#∗R∗(R∗G∗Fs + V∗| ln "|(Ft + Fr) − U∗| ln "|Fr) + (F∗
E + F∗

T) · ex = 0
(7.28a)

−4$#∗R∗2(R∗G∗Ts + 2V∗| ln "|(Tt + Tr) − 2U∗| ln "|Tr) + (T∗
E + T∗

T) · ey = 0
(7.28b)

where the coefficients with subscripts s, r, and t are the O(1) functions of " intro-
duced in Equation (7.2). The main difference from (7.5a,b) is that there is now no
explicit relationship between V∗ and "∗. The adhesive forces and torque are also no
longer treated as unknowns, but rather as (nonlinear) functions of V∗ and U∗, so that
Equation (7.28) is a closed system of two equations for two unknowns. For different
parameter values, it models both regimes of no adhesion (as in Section 7.2.1) and
ideal adhesion (as in Section 7.2.2), as well as the transition between the two.

7.3.4 Nondimensionalization

From Equation (7.28), we have, for the horizontal force balance and torque balances:

(
G∗

K∗
off,eq

Fs + V∗| log "|
R∗K∗

off,eq
(Ft + Fr) − U∗| log "|

R∗K∗
off,eq

Fr

)

+
A∗

totK
∗
eq

(
'∗!∗2FE + '∗

(FT
)

6$#∗R∗K∗
off,eq

· ex = 0 (7.29a)

(
G∗

K∗
off,eq

Ts + 2
V∗| log "|
R∗K∗

off,eq
(Tt + Tr) − 2

U∗| log "|
R∗K∗

off,eq
Tr

)

−
A∗

totK
∗
eq

(
'∗!∗2TE + '∗

(TT
)

4$#∗R∗K∗
off,eq

· ey = 0 (7.29b)
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TABLE 7.1 Typical Parameter Values for Neutrophils and Microbeads
Rolling

Symbol Definition Neutrophils Microbeads Ref.

R∗ Cell radius 4#m 2–20 #m [28]
!∗ Bond length 10–300 nm 70 nm [30,31]
G∗ Shear rate 40–2000 s−1 2–2000 s−1

A∗
tot Receptor density 10–102 #m−2 0–800 #m−2 [18]

K∗
off,eq Reverse rate 1–10 s−1 1–10 s−1 [3,25]

K∗
on,eq Forward rate 1–100 s−1 1–10 s−1 [18,25]

'∗ Spring constant 0.01–5 dyn cm−1 5 dyn cm−1 [10,30]
'∗

(/2k∗
BT ∗ Resistance to

bending
0–103 ≈ 0

G Dimensionless
shear rate

1–104 1–104

C Visco-adhesive
parameter

1–104 1–106

respectively. We then introduce the following dimensionless variables and parameters

h∗
s = !∗H, L∗ = !∗L, V∗ = V√

"R∗K∗
off,eq, U∗ = U"R∗K∗

off,eq (7.30a)

G∗ = GK∗
off,eq, K∗

off = eoffK∗
off,eq, K∗

on = eon
K∗

on,eq

!∗ , g∗ = g
Keq

!∗2
(7.30b)

, = '∗
ts

'∗ , - = '∗!∗2

k∗
BT ∗ , C = A∗

totKeq'∗!∗2

#∗R∗K∗
off,eq

, and k = '∗
(

2'∗!∗2
(7.30c)

where - and -k compare the stretching and torsion energy to thermal fluctuations,
respectively, and , models the response of the bonds to extensional strain (with , < 1
for slip bonds and , > 1 for catch bonds, [6]). k therefore compares the magnitude
of adhesion forces arising from bond tilting to those due to bond stretching. C is the
visco-adhesive parameter, relating extensional bond forces to hydrodynamic forces.
Typical values of the parameters are shown in Table 7.1.

Bonds are elongated horizontally by the sliding motion of the sphere with a time
scale !∗/U∗ (see Figure 7.6a) and stretched vertically as the sphere rolls past the
site where the bond is anchored to the wall with a time scale (!∗R∗)1/2/V∗ (see Fig-
ure 7.6b). The dimensionless ratios U∗/K∗

off,eq!∗R∗ and V∗/K∗
off,eq(!

∗R∗)1/2 therefore
compare bonds’ characteristic lifetime with advection mechanisms occurring at the
microscopic level of the bonds.

The full dimensionless problem becomes, from Equations (7.29) and (7.30),

G6$Fs + √
"V| log "|6$(Ft + Fr) − "U| log "|6$Fr + C(FE + kFT) · ex = 0

(7.31a)

G4$Ts + √
"V| log "|8$(Tt + Tr) − "U| log "|8$Tr − C(TE + kTT) · ey = 0

(7.31b)
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Figure 7.6 Schematic view of the advection time scales of consummated bonds.
(a) Advection of a tiltable bond by sliding; (b) advection of a bond beneath a sphere
(as viewed in Rs).

Here, FE, FT, TE, and TT are functions of U and V, derived from (Equations (7.26)
and (7.27)) in terms of force densities as

FE =
∫∫

R2
F̂E(xs, ys)dxsdys, FT =

∫∫

R2
F̂T(xs, ys)dxsdys (7.32a)

T · ey =
∫∫

R2
F̂x(xs, ys)dxsdys + √

"

∫∫

R2
F̂z(xs, ys)xsdxsdys + O(") (7.32b)

where

F̂x(xs, ys) = (F̂E(xs, ys) + F̂T(xs, ys)) · ex (7.33a)

F̂z(xs, ys) = (F̂E(xs, ys) + F̂T(xs, ys)) · ez (7.33b)
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Using Equation (7.25) and Figure 7.5, the adhesive force densities are expressed in
terms of g as

F̂E(xs, ys) =
∫∫

R2
−g(xs, ys, X, Y) max(L − 1, 0)

[
X
L

ex + H
L

ez

]
dXdY (7.34a)

F̂T(xs, ys) =
∫∫

R2
g(xs, ys, X, Y)

[
− HX

DL2 arctan
D
H

ex + D
L2

arctan
D
H

ez

]
dXdY

(7.34b)

where H, L, and D are functions of xs, ys, X, and Y, derived from (Equations (7.10)
through (7.12)),

H(xs, ys, X, Y) = d + 1
2 (xs + ys + √

"(X + Y))2 (7.35a)

L(xs, ys, X, Y) =
√

H(xs, ys, X, Y)2 + X2 + Y2, (7.35b)

D(X, Y) =
√

X2 + Y2 (7.35c)

Following Equations (7.24) and (7.17), the bond density g(xs, ys, X, Y) satisfies
the PDE

−V
∂g
∂xs

+ U
∂g
∂X

= eon(H(xs, ys, X, Y), X, Y) − eoff(H(xs, ys, X, Y), X, Y)g

(7.36a)

with errors of O("). The reaction rates are given by

eoff(H(xs, ys, X, Y), X, Y) = exp
[
(1 − ,)

-

2
(L − 1)2

]
(7.37a)

eon(H(xs, ys, X, Y), X, Y) = exp
[
−-

(
,

2
(L − 1)2 + k arctan2

(
D
H

))]
H

NL3

(7.37b)

where the normalization factor N is defined in Equation (7.15). Note from Equa-
tion (7.36) that g depends on ys and Y only parametrically.

We seek U and V as solutions of Equations (7.31) throuth (7.37) and parametrized
by G, C, ", d, k, ,, and -. The solution strategy is as follows. Using Equations (7.32)
through (7.37) we first determine numerically the adhesive forces and torques FE,
FT, TE, and TT as functions of U and V for a sample of parameter values. The
system in Equation (7.31) then becomes an algebraic system of two equations for the
two unknowns U and V, which we solve numerically. We expect that this nonlinear
system has multiple solutions in some regions of parameter space. The numerical
integration is undertaken, for each point on a fine grid in (U, V) space, using the
subroutine d03pcf in the NAG library to solve the PDE (Equation (7.36)) and the
subroutines e01baf (spline interpolation) and e02bdf (spline integration) for the
integrals Equations (7.34) and (7.32). The resulting data set is then fitted by 2-D
spline interpolants, allowing us to implement FE, FT, TE, and TT as smooth functions
of U and V (and parametrized by ", d, k, ,, and -).
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7.4 Numerical Results

7.4.1 Nonlinear Force-Velocity and Torque-Velocity Relations

We first compute each component of the adhesion forces and torque for a large range of
values of U and V (by solving the differential Equation (7.36) numerically, substituting
in Equation (7.34), and integrating over the whole sphere using Equation (7.32)).
We do so for fixed values of the parameters that describe the bonds’ properties:
,, -, k, for a fixed height d separating the sphere from the wall and a fixed value
of ".

Figure 7.7 shows a brief summary of how friction force densities between two
adhesive surfaces depend on their relative sliding speed. Here the two surfaces are
flat and parallel, and are separated by a constant height H0 (so that the dependence in
xs is lost in Equation (7.36), which effectively becomes an ODE). The nonlinearity in
the force-velocity relationship has been described in [24] for the 2-D case of a rigid
cylinder and remains qualitatively the same for the 3-D case. When there is no sliding,
the bond distribution g is symmetric and there is no net lateral force on the upper plate.
At low speeds, bonds are tilted sideways, providing a frictional force opposing the
motion. At high speeds, the rapid motion of the plate causes bond breakage (leading
to a reduction in the magnitude of g) and a drop in the frictional force.

Figure 7.8 shows the torque exerted by the bonds about the center of the sphere,
plotted as a function of V for the special case U = 0. The left part of the figure explains
qualitatively how advective effects in the bonds’ formation can lead to a nonlinearity
between the torque and the translation speed. When the sphere is static, the total bond
density is symmetric. As the sphere rolls slowly over the wall, nonequilibrium effects
delay bond formation at the front of the adhesive region, where the surfaces approach
vertically, and delay bond breakage at the rear of the adhesive region, where surfaces
are separating. The asymmetry in bond density creates a net torque that opposes rolling
motion. At high speeds, bonds form less easily and break more readily, leading to a
reduction in the adhesive torque.

Figure 7.9 summarizes these results, and shows how the friction force and the torque
exerted on a sphere depend nonlinearly on both U and V. The data are computed only
for √"U < V, which corresponds, physically, to U∗ < V∗ (i.e., "∗ > 0). The
remainder of the domain is not relevant for a sphere in a shear flow. The horizontal
adhesive force is always negative (acting against the sliding motion, with U > 0)
and has a minimum that scales approximately like O(min(−1, −k)). The torque
exerted about the center of the sphere can change sign: it is negative when it comes
predominantly from friction forces (and its minimum is then O(min(−1, −k))) and it
is positive when it comes predominantly from the nonlinear advective effect described
in Figure 7.8 (its maximum is then O(1)). The asymptotic behaviors of the different
components of FE, FT, TE, and TT for U # 1, U + 1, V # 1, or V + 1 are
addressed elsewhere [23].
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Figure 7.7 Schematic of the consummated bond density between two sliding sur-
faces. (Left) bond density between two plates for (A) U = 0; (B) U = O(1);
(C) U + 1. (Right) Corresponding horizontal friction force density exerted on the
upper plate. Values of the parameters: V = 0, H0 = 1, k = 0, , = 0.9, and - = 1.
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Figure 7.8 Schematic of the consummated bond density between a wall and a
sphere rolling without sliding (U = 0). (Left) bond density between two plates for
(A) V = 0; (B) V = O(1); (C) V + 1. (Right) Corresponding total torque exerted
by the bonds about the center of the sphere, as defined in Equation (7.32b). Values of
the parameters: V = 0, k = 0, " = 10−2, , = 0.9 and - = 1.
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Figure 7.9 Net horizontal force and torque exerted by the bonds on the sphere
and net adhesive torque as computed numerically by solving Equation (7.36) and
integrating Equations (7.34) and (7.32). " = 10−2, , = 0.9, and - = 1; (a,b) k = 0;
(c,d) k = 10. (Continued)

7.4.2 Steady-State Motion of a Sphere in a Shear Flow

Eliminating the parameter G from the force balance in Equation (7.31) yields one
equation for the two unknowns U and V, which we can solve numerically using the
interpolated values of the adhesion forces and torque functions. To each point on
this solution curve in the (U, V) space there corresponds a unique value of G that is
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Figure 7.9 (Continued ).

easily determined by substituting U and V into Equation (7.31a). We therefore obtain
a curve in the 3-D space (G, U, V) that describes the steady states of the sphere and
we plot the projections of this curve onto the (G, U) and (G, V) planes. Results for
different values of k, ", and C are compared.

Figure 7.10 shows U and V at steady state as the shear rate G varies. The results
are shown for four different values of C, all other parameters being fixed (" = 10−4).

For C = 10−2 (relatively weak adhesion forces), when G ! 0.05, both the slid-
ing speed and the translation speed are approximately equal to the hydrodynamic
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Figure 7.10 (a) Sliding speed U and (b) translation speed V of the sphere, solutions
of Equation (7.31), versus the shear rate G for different values of the visco-adhesive
parameter C. Dashed curves represent (presumably) unstable states. The dot-dashed
lines show the solutions derived in Equation (7.4) for a sphere moving at its free
hydrodynamic velocity (Vh) and in Equation (7.7) for a sphere rolling without sliding
(Vns). The three different types of motion for an adhesive sphere are identified for the
case C = 104. Here k = 10, d = 1, " = 10−4, , = 0.9, and - = 1.
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velocities Uh and Vh (see Equation (7.4)), respectively: the sphere behaves as it
would in the absence of bonds and we call this state “free flowing.” However, for
small values of G, the sliding speed is nearly two orders of magnitude smaller than
Uh and V ≈ Vns (see Equation (7.7)); the motion is thus similar to a “tank-treading”
sphere (i.e., one that rolls without sliding). The transition between these two states is
smooth and occurs for G between 0.01 and 0.05.

For C = 1, the behavior of the sphere is similar and the same two qualitatively
distinct steady states are observed. The sliding speed of the “tank-treading” sphere is
reduced from the case C = 10−2 by an additional two orders of magnitude, whereas
the translation speed remains V ≈ Vns. However, in this case, the transition between
tank-treading and free motion is abrupt and there exists a region of bistability (between
G ≈ 0.25 and G ≈ 0.4) similar to that described in [24] for 2-D adhesive rolling
of a cylinder. Increasing or decreasing the shear rate above and below the critical
values makes the sphere describe a hysteresis loop between “tank-treading” and “free
flowing.”

For C = 100, the effects of adhesive forces are no longer limited to reducing the
sliding speed but they also affect the translation speed. For G " 0.8, the latter is
one order of magnitude smaller than Vns, the translation speed of a tank-treading
sphere. Because the sphere moves very slowly (in the frame of reference of the wall),
we call this state “firm arrest.” For 0.8 " G " 8, the translation speed is close to
Vns, and U is much smaller than Uh. Perhaps surprisingly, the sliding speed here
increases approximately as the cube of the shear rate (with slope 3 in Figure 7.10a).
This contrasts with the tank-treading case discussed above (where the shear–velocity
relation was linear) and indicates that different physical mechanisms might be in-
volved (by means of asymptotic analysis, we show in [23] how this behavior emerges
from Equations (7.31) through (7.37)). We call this state the “intermediate state”. The
transition between “firm arrest” and “intermediate state” is smooth, for G ≈ 0.8. For
3.2 " G " 5.4, there is bistability between “intermediate state” and “free-flowing.”

For C = 104, the same three distinct behaviors are observed. In addition, the
transition between “firm arrest” and the “intermediate state” exhibits, in this case, a
region of bistability between the two states (with critical shear rates G ≈ 8.7 and
G ≈ 22). The bistability between the “intermediate state” and “free flowing” occurs
for 38 " G " 65.

Figure 7.11 shows U and V computed for " = 10−2 instead of 10−4 (all other
parameters remaining unchanged). The behavior is qualitatively the same, except
that the transition between the tank-treading (or intermediate) states and the free-
flowing state is always smooth (regardless of the value of C). The tank-treading
behavior observed for small values of C and G is less significant than for " = 10−4

(in the sense that the relative change of U compared to Uh is smaller). For C = 104,
the region of bistability between firm arrest and the intermediate state is found for
68 " G " 221. The critical shear rates are approximately ten times larger than those
found for " = 10−4.

The effect of varying k, the parameter that compares adhesive forces due to bond
tilting to that due to bond stretching, is shown in Figure 7.12, where U and V are
computed for k = 0 (“floppy bonds”) and k = 100 (“stiff bonds”). For comparison,
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Figure 7.11 As for Figure 7.10 but with " = 10−2.

the other parameters are the same as in Figure 7.10, which was obtained for k = 10.
In all cases, the three different states are observed and so are the different regions
of bistability. Qualitatively, bonds’ resistance to tilting does not seem to affect the
sphere’s behavior. Quantitatively, we find that the sliding speed scales as 1/k for
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Figure 7.12 As for Figure 7.10 but with (a, b) k = 0; (c, d) k = 100.
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Figure 7.12 (Continued ).
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k + 1 in the tank-treading and firm arrest regimes. The translational speed V scarcely
changes as k varies.

In summary, three different regimes can be identified: (1) either the sphere adheres
to the wall (the bonds preventing both sliding motion and translational motion); (2) or
the sphere tank-treads on the wall (the bonds preventing sliding motion); (3) or the
sphere is free from adhesive forces (with most of the bonds broken). These three
regimes may overlap for some values of the parameters, giving rise to regions of
bistability. They are shown in Figure 7.13, where the state diagram of the sphere is
reported in (G, C)-parameter space.
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Figure 7.13 State diagram of the sphere. (a) " = 10−2; (b) " = 10−4. The wedges
are the critical shear rates that bound the different bistable regions. Dotted lines:
k = 0; solid lines: k = 10; dashed lines: k = 100. Values of the other parameters:
d = 1, , = 0.9, and - = 1.
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7.5 Discussion
In a previous theoretical study, we described the effects of sliding friction on the
motion of a cylinder in a shear flow [24]; we emphasized the nonlinear relationship
between sliding speed and adhesion forces. Our model has here been extended to
the 3-D case of an adhesive sphere near a wall. Conceptually, the binding between
the wall and a moving object occurs in a similar way in 2-D or in 3-D, but qualitative
differences in the hydrodynamics induce more dramatic changes. For instance, the
horizontal velocity of a cylinder scales as "1/2G∗R∗, whereas a sphere moves faster, as
G∗R∗/| log "|. These velocities determine the time scale for bonds to be advected from
the leading edge to the trailing edge of the rolling cell. Comparing this to the time scale
for bond breakage gives a critical shear rate beyond which binding kinetics cannot be
assumed to be at equilibrium (as in the so-called rapid kinetics assumption). This shear
rate is G∗

neq ∼ K∗
off,eq in 2-D and G∗

neq ∼ "1/2| log "|K∗
off,eq in 3-D. For physiological

parameter values (see Table 7.1) and in the limit " # 1, it makes little sense, in 3-D,
to assume rapid kinetics (although it can be formally justified in 2-D). For this reason,
we incorporated nonequilibrium binding kinetics effects in the present 3-D adhesion
model.

In addition to the nonlinearity between adhesive friction and sliding speed (see
Figure 7.7), nonequilibrium binding introduces another nonlinear relation, between
the torque exerted on the sphere by adhesion molecules and the translation speed
(Figure 7.8). The advection of bonds from the front to the back of the rolling sphere,
when it occurs on a time scale comparable to (or shorter than) bonds’ characteristic
lifetime, causes an accumulation of consummated bonds near the back of the sphere.
This asymmetry generates a torque about the center of the sphere that tends to impede
the rolling motion.

As the shear rate varies, the sphere’s motion at steady state exhibits a variety of pos-
sible features, characterized by the sphere’s translation and sliding velocities (V and U,
respectively). The behavior depends on the visco-adhesive parameter C that compares
adhesion forces to viscous forces exerted on the sphere. Results also vary with the
separation distance !∗ between the sphere and the wall. Physically, this distance is de-
termined by a vertical balance of forces on the sphere. However, the net vertical force
depends strongly on the nature of nonspecific interactions between the sphere and the
wall, and is therefore inherently very system dependent. For the sake of simplicity,
!∗ was chosen as a fixed parameter in our model and assumed to be comparable to
the bonds’ unstretched length !∗ (results are given for !∗ = !∗, principally).

Typically, as the shear rate increases, we observe a transition from a regime where
adhesion is important (the sphere is in the “tank-treading” state) to a regime where
the sphere is transported freely by the flow (the “free-flowing” state). The transition is
abrupt and there exists a bistable region where both regimes are stable (Figures 7.10
through 7.13). Depending on the bonds’ physical properties and the aspect ratio !∗/R∗

between bonds’ unstressed length and the radius of the sphere, the tank-treading
regime can itself be subdivided into two qualitatively distinct regimes: (1) the
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“intermediate state” where the sphere rolls almost without sliding and at a velocity
smaller than, but comparable to, the velocity it would have without adhesive binding
(and in this case the translation speed does not depend on the strength of the bonds); (2)
the “firm arrest” state where the sphere sticks to the wall and rolls much more slowly,
at a velocity that scales like the inverse of (some measure of) the strength of the bonds.

To our knowledge, no experiments have been conducted that explicitly demonstrate
the bistability of adhering cells in a shear flow. However, some published results sug-
gest signs of shear-induced hysteresis. For instance, in an flow-chamber experiment,
leukocytes entering an adhesive region are observed to adhere in large numbers when
the shear rate is approximately 100 s−1 and in very small numbers for higher shear
rates (≈250 s−1) [22]. However, tracking already adherent cells reveals that they re-
main bound for shear rates up to approximately 400 to 1000 s−1, thus indicating that
there exists a range of shear rates where both unbound and bound states are (to some
extent) stable. Recently it has been argued that this hysteresis is a consequence of the
catch-bond behavior of the L-selectin–PSGL-1 pair, namely that the bonds’ rate of
dissociation is lowered by an increase in the exerted traction [5]. The authors also pro-
pose a ‘shear-controlled on rate’ as a possible explanation. Our analysis proposes an
alternative explanation because a similar macroscopic behavior can be observed when
using Dembo et al.’s model [6] with slip bonds, accounting also for the effects of bond
tilting. Also, in our model, neither the rate of formation nor the rate of dissociation
of individual bonds is directly modified by the sliding motion of the sphere.

Accounting for cell deformability is expected to lead to significant differences in
the scalings of adhesion forces. The adhesion area at the base of the sphere would in-
crease with the deformability, enhancing adhesive effects dramatically. Concurrently,
asymmetries in cell deformation may break the reversibility of the Stokes equation
and generate a net viscous lift force that tends to detach the cell from the wall. Further
investigation is therefore required to elucidate how the state diagram in Figure 7.13
is modified by membrane deformation.
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