From Raw Sensor Data to Semantic Web Triples
Information Flow in Semantic Sensor Networks

Nikolaos Konstantinou, Ph.D.
Autonomic and Grid Computing group
Athens Information Technology
Lecture Outline

• Introduction
• Sensor data
• Semantic web
• Context-awareness
• The GSN middleware
• Exposing sensor data as triples
• Semantic Integration using SPARQL
Introduction

• The Situation
 – Decrease in the value of sensors encourage the shift from Desktop to Ubiquitous Computing

• The Problem
 – Extracting meaning from a network of deployed sensors

• Why is this a problem?
 – Raw sensor data is useless unless properly annotated
 – Limited resources in terms of processing, storage capabilities and bandwidth

• What is the suggested solution?
 – Establish ways to automatically process and manage the data
Concepts involved (1)

• Context-awareness
 – Context-aware systems are able to sense and measure their environment and include these measurements in their behavior

• Data fusion
 – Combine information and data residing at disparate sources, in order to achieve improved accuracies and more specific inferences than could be achieved by the use of a single data source alone
 – Data fusion spans various levels, from signal and object refinement (low level) to situation and threat assessment (high level)
Concepts involved (2)

• Information Integration
 – Unify information originating from various sources in order to allow its processing as a whole
 – Obstacles include
 • Heterogeneity in source schemas and data
 • Various Technical Spaces
 • Semantic and syntactic differences

• *Semantic* Information Integration
 – The resulting integration scheme carries its semantics

• Information Merging
 – Unification of the information at the implementation level
Concepts involved (3)

• Information Aggregation
 – Report the mean value of a set of measurements
 – E.g. the average temperature of a set of temperature sensors

• Information Annotation
 – Inclusion of metadata next or in the actual data
 – E.g. ID3 tags in mp3

• *Semantic* Information Annotation
 – Unambiguously define information
 – Third parties can understand the information
Lecture Outline

• Introduction
• Sensor data
• Semantic web
• Context-awareness
• The GSN middleware
• Exposing sensor data as triples
• Semantic integration using SPARQL
Sensors and Sensor Data (1)

• Sensors are devices that measure physical properties
 – Temperature, motion, light, humidity sensors
 – Also cameras, microphones, GPS-enabled smartphones

• Sensors provide data that can be
 – Streamed data
 • Audio/Video content
 – Event-based
 • Temperature measurement
 • RFID tag read
 • Light curtain interrupt
Sensors and Sensor Data (2)

• Why is sensor data any different than other forms of data, e.g. multimedia?
 – Synchronization issues
 • Apply acceptance thresholds
 – Erroneous measurements
 • Apply aggregation
 – Limited resources in the nodes
 • Caution when designing *where* the actual processing takes place
 • Keep a sliding window
 • Heavy process in the Gateway Nodes
 – Streaming may lead to packet losses
 • Reconstruct, or take decisions based on what you have
Sensor Network Topologies (1)

- Sink nodes collect information
 - Higher processing capabilities
Sensor Network Topologies (2)

Multi-Hop Sensor Networks

Mesh Topology
Serial Topology
Tree Topology

Star Topology

System Monitoring, Browsing and Control

Sensor Node
Sink Node
Gateway Node

Sensor Network
Sensor Network
Internet

Single-Hop Sensor Networks
Lecture Outline

- Introduction
- Sensor Data
- Semantic Web
- Context-Awareness
- The GSN Middleware
- Exposing Sensor Data as triples
- Semantic Integration using SPARQL
Why Semantic Web (1)

• Knowledge in the form of a graph
 - (subject, property, object)

• Information is assigned an unambiguously defined meaning, its semantics
 - Queries can be posed by any third parties
 - Ontology, a well defined vocabulary

• Numerous ontologies already available and interconnected on the Web
 - Can and should be used when integration is a goal
Why Semantic Web (2)

• Enables semantic annotation and integration
• Enables reasoning
 – Extract implicit information from the explicitly asserted
 – Assure concept consistency and satisfiability
• Open source tools available
 – Protégé, Jena, Virtuoso, ...
• Allows information to be exposed as Linked Open Data
The Linked Open Data Cloud

2007

2010

Source: linkeddata.org
Lecture Outline

• Introduction
• Sensor data
• Semantic web
• Context-awareness
• The GSN middleware
• Exposing sensor data as triples
• Semantic integration using SPARQL
Context-awareness: The big picture (1)

- The sensors capture information from the environment
- The signal processing components produce structured information
 - Face detector, Body Tracker, Vehicle tracker, Smoke detection etc.
Context-awareness: The big picture (2)

• The middleware
 – Business logic: Program, configure, monitor and control system behavior
 – Storage layer
 • Support database: limited historicity, sliding window
 • Archive database: enables further processing

• Note the Information/Control duality
Signal Processing Components (1)

• Much work carried out in the AGC lab
 – Image Processing
 • Face Detection/Recognition/Tracking
 • Body Tracking
 – Audio Processing
 • A/V Localization
 • Voice activity detection
Signal Processing Components (2)

• Challenges
 – Processing is resource-hungry
 – Heterogeneous technologies must be combined
 • Production Algorithms in C++, prototypes in Matlab
 • Multidisciplinary skills required
 • Well-defined Interfaces need to be developed using RMI/Sockets/Web services/JNA
 – Video processing differs from streaming processing
 • Processing an avi file differs (greatly!) from processing an rtp stream
Lecture Outline

• Introduction
• Sensor data
• Semantic web
• Context-awareness
• The GSN middleware
• Exposing sensor data as triples
• Semantic integration using SPARQL
Global Sensor Networks (1)

- Open-source, java-based *middleware* solution
- Available online at sf.net/projects/gsn/
- Adaptability
 - Everything is a virtual sensor
 - Virtual sensors rely on wrappers
 - Every data producer can be integrated into the GSN with a virtual sensor and wrapper
Global Sensor Networks (2)

- **Simplicity**
 - Configurable without compiling source code
 - Web application for sensor management
- **Scalability**
 - Allows communication between nodes
 - Allows data aggregation and fusion using an SQL-like declarative language
Global Sensor Networks (3)

• Example
 – Integrating a Signal Processing component (e.g. a Smoke detector) into GSN
Example of data aggregation using GSN

```xml
<output-structure>
  ...
  <field name="TEMPERATURE" type="int" />
  ...
</output-structure>

<storage history-size="24h" />

<streams>
  <stream name="input1">
    <source alias="source1" sampling-rate="1" storage-size="1">
      <address wrapper="temperature">
        <predicate key="sampling-rate">10000</predicate>
      </address>
      <query>select TEMPERATURE from wrapper</query>
    </source>
    <query>select avg(TEMPERATURE) from source1</query>
  </stream>
</streams>
```

- Measured properties
- Sliding window size
- Data source
- Aggregated output
Example of data fusion using GSN

<storage history-size="1h" />
<streams>
 <stream name="teststream" rate="1000">
 <source name="source1" alias="source1" storage-size="100" slide="0" sampling-rate="1">
 <address wrapper="remote-rest">
 <predicate key="HOST">localhost</predicate>
 <predicate key="PORT">22001</predicate>
 <predicate key="QUERY">select FACE_COUNT from doorwatcher</predicate>
 </address>
 <query>select FACE_COUNT AS S1 from wrapper</query>
 </source>
 <source name="source2" alias="source2" storage-size="100" slide="0" sampling-rate="1">
 <address wrapper="remote-rest">
 <predicate key="HOST">localhost</predicate>
 <predicate key="PORT">22002</predicate>
 <predicate key="QUERY">select TAG from touchatag</predicate>
 </address>
 <query>select TAG AS S2 from wrapper</query>
 </source>
 </stream>
 <query>
 select source1.S1 as S1OUT, source2.S2 as S2OUT
 from source1, source2
 where source1.S1 > 0 AND source2.S2="04dddcb9232580"
 </query>
</streams>

source 1

source 2

fused output
The Storage Layer (1)

• Schema according to the Virtual Sensors
 – Virtual Sensor definition example:

```
<virtual-sensor name="temperature" priority="10">
...
<output-structure>
  <field name="ID" type="int" />
  <field name="SENSORTIME" type="time" />
  <field name="TEMPERATURE" type="double" />
  <field name="UNIT" type="varchar(255)" />
</output-structure>
```
The Storage Layer (2)

• Schema according to the Virtual Sensors
 – Schema auto-generated SQL create statement:

 CREATE TABLE `gsn1`.`temperature` (
 `PK` bigint(20) NOT NULL AUTO_INCREMENT,
 `timed` bigint(20) NOT NULL,
 `ID` int(11) DEFAULT NULL,
 `SENSORTIME` time DEFAULT NULL,
 `TEMPERATURE` double DEFAULT NULL,
 `UNIT` varchar(255) DEFAULT NULL,
 PRIMARY KEY (`PK`),
 UNIQUE KEY `temperature_INDEX` (`timed`)
) ENGINE=MyISAM AUTO_INCREMENT=122 DEFAULT CHARSET=latin1
The Storage Layer (3)

• Historical data
 – According to the Virtual Sensor definition
 • Tuple-based: <storage history-size="1"/>
 • Time-based: <storage history-size="1m"/>

• Out-of-the-box support for
 – Mysql
 – SQL Server
 – Oracle
 – H2
 – Can be extended to support other RDBMS’s
The Storage Layer (4)

• Storage Layer can be
 – Centralized (in the Central Control node)
 • Data is pushed to the Central Control node
 – Distributed (in the Gateway nodes)

• Interfaces
 – Legacy (ODBC/JDBC)
 – Web Services (SOAP or RESTful)
 – SPARQL Endpoints
 • Allow Semantic Information Integration
Lecture Outline

• Introduction
• Sensor data
• Semantic web
• Context-awareness
• The GSN middleware
• Exposing sensor data as triples
• Semantic integration using SPARQL
Exposing sensor data as triples (1)

• OpenLink Virtuoso universal server can be used as
 – A web application server
 – A relational database repository
 – A triplestore
 – A web service server

• Open-source version available at http://virtuoso.openlinksw.com/

• Cluster Configuration
 – Parallel and Horizontal scaling
Exposing sensor data as triples (2)

- **Virtuoso RDF Views**
 - Export relational data as triples

- **SPARQL 1.1 support, plus**
 - Full Text Queries
 - Geo Spatial Queries
 - Business Analytics and Intelligence
 - SQL Stored Procedure and Built-In Function exploitation from SPARQL
 - Create, Update, and Delete (SPARUL)

- **Backward-chaining OWL reasoner**
Exposing sensor data as triples (3)

• Using Virtuoso, RDF Data can also be accessible via
 – ODBC/JDBC
 – ADO.NET (Entity Frameworks compatible)
 – OLE DB
 – XMLA (XML for Analysis) data providers / drivers

• Using the “Sponger” RDF-izer, RDF data can be extracted from non-RDF sources (e.g. with XSLT)
Publishing RDF using Virtuoso (1)

- Conductor: a GUI for server administration
- Virtuoso can be used as a DBMS
Publishing RDF using Virtuoso (2)

- Can be combined with GSN to process sensor data streams and export them as RDF
- Create RDF Views over the relational data
Publishing RDF using Virtuoso (3)

- Browseable repository
- A URI for every resource
- Example: Measurement URI
Semantic Sensor Network Example (1)

Mesh topology

3 node types

System monitoring and control node

Gateway nodes

Sink nodes
Semantic Sensor Network Example (2)

• Sink node
 – Operation relies on a relational database
 – Limited historical data
 – Keep a “sliding window”
 • Based on time or tuples
 – Do not have semantic capabilities
 – One Database per Sink node
Semantic Sensor Network Example (3)

• Gateway Node
 – Operation relies on a semantically-enabled knowledge base
 – Supported by inference procedures
 – Maintains historical/archived information
 – One Knowledge Base per Gateway node
 – Appropriate for Higher Level Fusion (e.g. threats, events)
Semantic Sensor Network Example (4)

• Central Control node
 – Monitors and controls the network
 – Provides system-wide services
 • E.g. directory services, secure authentication
 – Can store its view over the network for intelligence extraction
Information Flow

- An Information flow example in a decentralized Semantic Sensor Network
Lecture Outline

• Introduction
• Sensor data
• Semantic web
• Context-awareness
• The GSN middleware
• Exposing sensor data as triples
• Semantic Integration using SPARQL
Semantic integration using SPARQL (1)

- **SPARQL**: An SQL-like language for querying RDF graphs
- **SELECT–FROM–WHERE** syntax
- WHERE conditions are triple patterns
- **SELECT** ?x ?y ?z

 WHERE

 `{ ?x ?y ?z }`

 returns all the triples in the graph
Semantic integration using SPARQL (2)

- XML over HTTP (RESTful approach)

- No create/update/delete capabilities
Semantic integration using SPARQL (3)

- SPARQL queries can be named and stored
 - A query named `sparql-demo` listens to:
 `http://localhost:8890/DAV/sparql-demo`
- Can return results over HTTP (XML by default)
- MIME type of the RDF data
 - `rdf+xml` (default) | `n3` | `turtle` | `ttl`
Semantic integration using SPARQL (4)

- SPARQL results example in RDF/XML

```
<ROOT>
<rs:results rdf:nodid="rset">
  <rs:result rdf:nodid="sol193">
    <rs:binding rdf:nodid="sol193-0" rs:name="x" rs:value rdf:resource="http://localhost:8890/Demo/temperature/PK/4#this"/>
    <rs:binding rdf:nodid="sol193-1" rs:name="y" rs:value rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#type"/>
  </rs:result>
  ...
</rs:results>
</rdf:RDF>
</ROOT>
```
Thank you!

Questions?