Nominal Outcomes

Ordinal Variables

Categorical Outcomes

Mark Lunt

Centre for Epidemiology Versus Arthritis
University of Manchester

29/11/2022

Nominal Outcomes

- Categorical, more than two outcomes
- No ordering on outcomes

R by C Table: Example

<table>
<thead>
<tr>
<th></th>
<th>Females</th>
<th>Males</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indemnity</td>
<td>234 (51%)</td>
<td>60 (40%)</td>
<td>294 (48%)</td>
</tr>
<tr>
<td>Prepaid</td>
<td>196 (42%)</td>
<td>81 (53%)</td>
<td>277 (45%)</td>
</tr>
<tr>
<td>No Insurance</td>
<td>32 (7%)</td>
<td>13 (8%)</td>
<td>45 (7%)</td>
</tr>
<tr>
<td>Total</td>
<td>462 (100%)</td>
<td>154 (100%)</td>
<td>616 (100%)</td>
</tr>
</tbody>
</table>

$\chi^2 = 6.32$, 2 degrees of freedom, $p = 0.04$

`tab insure male, co chi2`
Analysing an R by C Table

- \(\chi^2 \)-test: says if there is an association
- Need to assess what that association is
- Can calculate odds ratios for each row compared to a baseline row

<table>
<thead>
<tr>
<th>Females</th>
<th>Males</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indemnity</td>
<td>234</td>
<td>60</td>
</tr>
<tr>
<td>Prepaid</td>
<td>196</td>
<td>81</td>
</tr>
<tr>
<td>No Insurance</td>
<td>32</td>
<td>13</td>
</tr>
<tr>
<td>Total</td>
<td>462</td>
<td>154</td>
</tr>
</tbody>
</table>

- Prepaid vs Indemnity
 - OR for males = \(\frac{81 \times 234}{60 \times 196} \approx 1.61 \)
- No Insurance vs Indemnity
 - OR for males = \(\frac{13 \times 234}{60 \times 32} \approx 1.58 \)

Multiple Logistic Regression Models

- Previous results can be duplicated with 2 logistic regression models
 - Prepaid vs Indemnity
 - No Insurance vs Indemnity
- Logistic regression model can be extended to more predictors
- Logistic regression model can include continuous variables

```
.logistic insure1 male
```

```
.logistic insure2 male
```

```
      insure1 | Odds Ratio Std. Err. z  P>|z| [95% Conf. Interval]  
---------+--------------------------------------------------
    male | 1.611735   .3157844  2.44  0.015     1.09779    2.36629  

      insure2 | Odds Ratio Std. Err. z  P>|z| [95% Conf. Interval]  
---------+--------------------------------------------------
    male | 1.584375   .5693029  1.28  0.200     .7834322    3.204163  
```
It would be convenient to have a single analysis give all the information.

- Can be done with multinomial logistic regression.
- Also provides more efficient estimates (narrower confidence intervals) in most cases.

Multinomial Regression Example

```stata
.mlogit insure male, rrr
```

```
Multinomial logistic regression
Number of obs = 616
LR chi2(2) = 6.38
Log likelihood = -553.40712 Pseudo R2 = 0.0057

------------------------------------------------------------------------------
insure | RRR Std. Err. z  P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
Prepaid | 1.611735 .3157844 2.44 0.015 1.09779 2.36629
-------------+----------------------------------------------------------------
Uninsure | 1.584375 .5693021 1.28 0.200 .7834329 3.20416
------------------------------------------------------------------------------
(Outcome insure==Indemnity is the comparison group)
```

Multinomial Regression in Stata

- Command `mlogit`
- Option `rrr` (Relative risk ratio) gives odds ratios, rather than coefficients.
- Option `baseoutcome` sets the baseline or reference category.

Using `predict` after `mlogit`

- Can predict probability of each outcome
 - Need to give `k` variables
 - `predict p1-p3, p`
 - Can predict probability of one particular outcome
 - Need to specify which with `outcome` option
 - `predict p2, p outcome(2)`
Using `predict` after `mlogit`: Example

```
. by male: sum p1-p3

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p1</td>
<td>477</td>
<td>.506</td>
<td>0</td>
<td>.506</td>
<td>.506</td>
</tr>
<tr>
<td>p2</td>
<td>477</td>
<td>.424</td>
<td>0</td>
<td>.424</td>
<td>.424</td>
</tr>
<tr>
<td>p3</td>
<td>477</td>
<td>.069</td>
<td>0</td>
<td>.069</td>
<td>.069</td>
</tr>
</tbody>
</table>
```

```
-> male = 0

Variable | Obs  | Mean   | Std. Dev. | Min     | Max     |
----------|------|--------|-----------|---------|---------|
| p1       | 477  | .506   | 0         | .506    | .506    |
| p2       | 477  | .424   | 0         | .424    | .424    |
| p3       | 477  | .069   | 0         | .069    | .069    |
```

```
-> male = 1

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>167</td>
<td>.389</td>
<td>0</td>
<td>.389</td>
<td>.389</td>
</tr>
<tr>
<td>p2</td>
<td>167</td>
<td>.526</td>
<td>0</td>
<td>.526</td>
<td>.526</td>
</tr>
<tr>
<td>p3</td>
<td>167</td>
<td>.084</td>
<td>0</td>
<td>.084</td>
<td>.084</td>
</tr>
</tbody>
</table>
```

Using `lincom` after `mlogit`

- Can use `lincom` to
 - test if coefficients are different
 - calculate odds of being in a given outcome category
- Need to specify which outcome category we are interested in
- Normally, use the option `eform` to get odds ratios, rather than coefficients

```
. lincom [Prepaid]male - [Uninsur]male
(1)  [Prepaid]male - [Uninsur]male = 0

insure | Coef.  Std. Err.  z     P>|z|   [95% Conf. Interval]
----------+-------------------+-----+-------+--------------------------------------------------
(1) | .017121  .3544299  0.05  0.961  -.6775487 .7117908
```

Using `lincom` after `mlogit`

- Can ignore ordering, use multinomial model
- Can use a test for trend
- Can use an ordered logistic regression model
- χ²-test tests for any differences between columns (or rows)
- Not very powerful against a linear change in proportions
- Can divide the χ²-statistic into two parts: linear trend and variations around the linear trend.
- Test for trend more powerful against a trend
- Has no power to detect other differences
- Often used for ordinal predictors

Test for Trend: Example

<table>
<thead>
<tr>
<th></th>
<th>Treatment A</th>
<th>Treatment B</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healed</td>
<td>12 (38%)</td>
<td>5 (16%)</td>
<td>17 (27%)</td>
</tr>
<tr>
<td>Improved</td>
<td>10 (31%)</td>
<td>8 (25%)</td>
<td>18 (28%)</td>
</tr>
<tr>
<td>No Change</td>
<td>4 (13%)</td>
<td>8 (25%)</td>
<td>12 (19%)</td>
</tr>
<tr>
<td>Worse</td>
<td>6 (19%)</td>
<td>11 (34%)</td>
<td>17 (27%)</td>
</tr>
<tr>
<td>Total</td>
<td>32 (100%)</td>
<td>32 (100%)</td>
<td>34 (100%)</td>
</tr>
</tbody>
</table>

Test for Trend: Results

```
. ptrend 12 5 1 \\ 10 8 2 \\ 4 8 3 \\ 6 11 4
```

```
+------------------------+
| r nr _prop x |
+------------------------+
1. | 12 5 0.706 1.00 |
2. | 10 8 0.556 2.00 |
3. | 4 8 0.333 3.00 |
4. | 6 11 0.353 4.00 |
+------------------------+
```

Regression of p = r/(r+nr) on x:
Slope = -.12521, std. error = .0546, Z = 2.293

```
Overall chi2(3) = 5.909, pr>chi2 = 0.1161
Chi2(1) for trend = 5.259, pr>chi2 = 0.0218
Chi2(2) for departure = 0.650, pr>chi2 = 0.7226
```

Test for Trend: Caveat

- Test for trend only tests for a linear association between predictors and outcome.
- U-shaped or inverted U-shaped associations will not be detected.
- Trend test depends on values assigned to levels of ordinal variable
Test for Trend in Stata

- Test for trend often used, should know about it
- Not implemented in base stata:
 - see http://www.stata.com/support/faqs/stat/trend.html
- Very rarely the best thing to do:
 - If trend variable is the outcome, use ordinal logistic regression
 - If trend variable is a predictor:
 - fit both categorical & continuous, testparm categoricals
 - if non-significant, use continuous variable
 - if significant, use categorical variables
 - Trend test, but uses appropriate regression model

```
.regress write oread i.oread
note: 6.oread omitted because of collinearity
```

```
Source | SS df MS Number of obs = 200
-------------+------------------------------ F( 5, 194) = 22.77
Model | 6612.82672 5 1322.56534 Prob > F = 0.0000
Residual | 11266.0483 194 58.0724138 R-squared = 0.3699
-------------+------------------------------ Adj R-squared = 0.3536
Total | 17878.875 199 89.843593 Root MSE = 7.6205

------------------------------------------------------------------------------
write | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
oread | 3.288889 1.606548 2.05 0.042 .1203466 6.457431
  2 | -6.669841 6.339542 -1.05 0.294 -19.17311 5.833432
  3 | -3.666385 4.761676 -0.77 0.442 -13.05768 5.724914
  4 | .3641026 3.568089 0.10 0.919 -6.673124 7.401329
  5 | .4233918 2.825015 0.15 0.881 -5.148294 5.995078
  6 | 0 (omitted)
_ones | 42.71111 9.158732 4.66 0.000 24.64764 60.77458
------------------------------------------------------------------------------
```

```
.testparm i.oread
( 1) 2.oread = 0
( 2) 3.oread = 0
( 3) 4.oread = 0
( 4) 5.oread = 0
F( 4, 194) = 1.36
Prob > F = 0.2497
```

Fitting an ordinal predictor

Dose Response

- Don’t confuse trend with dose response
 - All three models may have significant trend test
 - Only first model has a dose-response effect
 - Other models better fitted using categorical variables

<table>
<thead>
<tr>
<th>Genetic Model</th>
<th>Genotype</th>
<th>aa</th>
<th>aA</th>
<th>AA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additive(dose-response)</td>
<td>0</td>
<td>0.1</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Dominant</td>
<td>0</td>
<td>0.2</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Recessive</td>
<td>0</td>
<td>0</td>
<td>0.2</td>
<td></td>
</tr>
</tbody>
</table>
Ordinal Regression: Example

<table>
<thead>
<tr>
<th></th>
<th>Treatment A</th>
<th>Treatment B</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healed</td>
<td>12 (38%)</td>
<td>5 (16%)</td>
<td>17 (27%)</td>
</tr>
<tr>
<td>Improved</td>
<td>10 (31%)</td>
<td>8 (25%)</td>
<td>18 (28%)</td>
</tr>
<tr>
<td>No Change</td>
<td>4 (13%)</td>
<td>8 (25%)</td>
<td>12 (19%)</td>
</tr>
<tr>
<td>Worse</td>
<td>6 (19%)</td>
<td>11 (34%)</td>
<td>17 (27%)</td>
</tr>
<tr>
<td>Total</td>
<td>32 (100%)</td>
<td>32 (100%)</td>
<td>34 (100%)</td>
</tr>
</tbody>
</table>

Ordered Polytomous Logistic Regression

\[
\log\left(\frac{p_i}{1-p_i} \right) = \alpha_i + \beta x
\]

Where:
- \(p_i \) = probability of being in a category up to and including the \(i^{th} \) category
- \(\alpha_i \) = Log-odds of being in a category up to and including the \(i^{th} \) category if \(x = 0 \)
- \(\beta \) = Log of the odds ratio for being in a category up to and including the \(i^{th} \) category if \(x = 1 \), relative to \(x = 0 \)
- \(\alpha \) and \(\beta \) take different values for different values of \(i \), \(\beta \) does not
Nominal Outcomes
Ordinal Variables
Trend Test
Linear regression: ordinal predictors
Cross-tabulation: ordinal outcomes
Ordinal Regression: ordinal outcomes

Ordinal Regression in Stata

- **ologit** fits ordinal regression models
- Option **or** gives odds ratios rather than coefficients
- Can compare likelihood to **mlogit** model to see if common odds ratio assumption is valid
- **predict** works as after **mlogit**

Ordinal Regression in Stata: Example

```
. ologit outcome treat, or
Iteration 3: log likelihood = -85.2492
Ordered logit estimates
Number of obs = 64
LR chi2(1) = 5.49
Prob > chi2 = 0.0191
Log likelihood = -85.2492 Pseudo R2 = 0.0312

------------------------------------------------------------------------------
outcome | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--------------------------------------------------
treat | 2.932028 1.367427 2.31 0.021 1.175407 7.31388
------------------------------------------------------------------------------
```

Ordinal Regression Caveats

- Assumption that same β fits all outcome categories should be tested
 - AIC, BIC or LR test compared to **mlogit** model
- User-written **gologit2** can also be used
 - Allows for some variables to satisfy proportional odds, others not
 - Option **autofit()** selects variables that violate proportional odds
- There are a variety of other, less widely used, ordinal regression models: see Sander Greenland: *Alternative Models for Ordinal Logistic Regression*, Statistics in Medicine, 1994, pp1665-1677.