Statistical Modelling with Stata: Binary Outcomes

Mark Lunt

Centre for Epidemiology Versus Arthritis
University of Manchester

22/11/2022
Cross-tabulation

<table>
<thead>
<tr>
<th></th>
<th>Exposed</th>
<th>Unexposed</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
<td>a</td>
<td>b</td>
<td>a + b</td>
</tr>
<tr>
<td>Controls</td>
<td>c</td>
<td>d</td>
<td>c + d</td>
</tr>
<tr>
<td>Total</td>
<td>a + c</td>
<td>b + d</td>
<td>a + b + c + d</td>
</tr>
</tbody>
</table>

- Simple random sample: fix $a + b + c + d$
- Exposure-based sampling: fix $a + c$ and $b + d$
- Outcome-based sampling: fix $a + b$ and $c + d$
The χ^2 Test

- Compares observed to expected numbers in each cell
- Expected under null hypothesis: no association
- Works for any of the sampling schemes
- Says that there is a difference, not what the difference is
Measures of Association

Relative Risk = \(\frac{a}{a+c} \times \frac{b}{b+d} = \frac{a(b + d)}{b(a + c)} \)

Risk Difference = \(\frac{a}{a + c} - \frac{b}{b + d} \)

Odds Ratio = \(\frac{a}{b} \times \frac{c}{d} = \frac{ad}{cb} \)

- All obtained with \(cs \) disease exposure[, or]
- Only Odds ratio valid with outcome based sampling
Crosstabulation in Stata

```
. cs back_p sex, or

<table>
<thead>
<tr>
<th></th>
<th>Exposed</th>
<th>Unexposed</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
<td>637</td>
<td>445</td>
<td>1082</td>
</tr>
<tr>
<td>Noncases</td>
<td>1694</td>
<td>1739</td>
<td>3433</td>
</tr>
<tr>
<td>Total</td>
<td>2331</td>
<td>2184</td>
<td>4515</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Point estimate</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk difference</td>
<td>.0695187</td>
<td>.044767 .0942704</td>
</tr>
<tr>
<td>Risk ratio</td>
<td>1.341188</td>
<td>1.206183 1.491304</td>
</tr>
<tr>
<td>Attr. frac. ex.</td>
<td>.2543926</td>
<td>.1709386 .329446</td>
</tr>
<tr>
<td>Attr. frac. pop</td>
<td>.1497672</td>
<td></td>
</tr>
<tr>
<td>Odds ratio</td>
<td>1.469486</td>
<td>1.27969 1.68743 (Cornfield)</td>
</tr>
</tbody>
</table>

chi2(1) = 29.91  Pr>chi2 = 0.0000
```
Limitations of Tabulation

- No continuous predictors
- Limited numbers of categorical predictors
Linear Regression and Binary Outcomes

- Can’t use linear regression with binary outcomes
 - Distribution is not normal
 - Limited range of sensible predicted values
- Changing parameter estimation to allow for non-normal distribution is straightforward
- Need to limit range of predicted values
Example: CHD and Age
Example: CHD by Age group

Proportion of subjects with CHD
Mean age

0.2 0.4 0.6 0.8
20 30 40 50 60
Example: CHD by Age - Linear Fit

Proportion of subjects with CHD vs. Age

- Fitted values
- Proportion of subjects with CHD

Graph showing the linear fit of the proportion of subjects with CHD against age.
Generalized Linear Models

- **Linear Model**
 \[
 Y = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p + \varepsilon
 \]
 \(\varepsilon\) is normally distributed

- **Generalized Linear Model**
 \[
 g(Y) = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p + \varepsilon
 \]
 \(\varepsilon\) has a known distribution
Generalized Linear Models

- **Linear Model**
 \[Y = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p + \varepsilon \]
 \[\varepsilon \text{ is normally distributed} \]

- **Generalized Linear Model**
 \[g(Y) = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p + \varepsilon \]
 \[\varepsilon \text{ has a known distribution} \]
Probabilities and Odds

<table>
<thead>
<tr>
<th>Probability p</th>
<th>Odds $\Omega = p/(1 - p)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 = 1/10</td>
<td>0.1/0.9 = 1:9 = 0.111</td>
</tr>
<tr>
<td>0.5 = 1/2</td>
<td>0.5/0.5 = 1:1 = 1</td>
</tr>
<tr>
<td>0.9 = 9/10</td>
<td>0.9/0.1 = 9:1 = 9</td>
</tr>
</tbody>
</table>
Probabilities and Odds

![Graph showing the relationship between proportion and log odds. The graph plots a curve that starts near 0 at a log odds of -5 and approaches 1 near a log odds of 5.](image)
Advantage of the Odds Scale

- Just a different scale for measuring probabilities
- Any odds from 0 to ∞ corresponds to a probability
- Any log odds from $-\infty$ to ∞ corresponds to a probability
- Shape of curve commonly fits data
The binomial distribution

- Outcome can be either 0 or 1
- Has one parameter: the probability that the outcome is 1
- Assumes observations are independent
The Logistic Regression Equation

$$\log \left(\frac{\hat{\pi}}{1 - \hat{\pi}} \right) = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p$$

$$Y \sim \text{Binomial}(\hat{\pi})$$

- Y has a binomial distribution with parameter π
- $\hat{\pi}$ is the predicted probability that $Y = 1$
Parameter Interpretation

- When x_i increases by 1, $\log(\hat{\pi} / (1 - \hat{\pi}))$ increases by β_i
- Therefore $\hat{\pi} / (1 - \hat{\pi})$ increases by a factor e^{β_i}
- For a dichotomous predictor, this is exactly the odds ratio we met earlier.
- For a continuous predictor, the odds increase by a factor of e^{β_i} for each unit increase in the predictor
Odds Ratios and Relative Risks

Graph showing the relationship between proportion and odds, with two lines indicating different trends.
. logistic chd age

Logistic regression

Number of obs = 100
LR chi2(1) = 29.31
Prob > chi2 = 0.0000
Pseudo R2 = 0.2145

Log likelihood = -53.676546

--
 chd | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+---
 age | 1.117307 .0268822 4.61 0.000 1.065842 1.171257
--
Predict

- Lots of options for the `predict` command
- `p` gives the predicted probability for each subject
- `xb` gives the linear predictor (i.e. the log of the odds) for each subject
Plot of probability against age
Plot of log-odds against age
Other Models for Binary Outcomes

- Can use any function that maps \((-\infty, \infty)\) to \((0, 1)\)
 - Probit Model
 - Complementary log-log
- Parameters lack interpretation
The Log-Binomial Model

- Models $\log(\pi)$ rather than $\log(\pi/(1 - \pi))$
- Gives relative risk rather than odds ratio
- Can produce predicted values greater than 1
- May not fit the data as well if outcome is not rare
- **Stata command**: `glm varlist, family(binomial) link(log)`
- If association between $\log(\pi)$ and predictor non-linear, lose simple interpretation.
Log-binomial model example

The graph illustrates logistic predictions and log-binomial predictions of the proportion of subjects with CHD against age. The logistic predictions are shown by a blue line, the log-binomial predictions by a red line, and the proportion of subjects with CHD is represented by green dots.
Logistic Regression Diagnostics

- Goodness of Fit
- Influential Observations
- Poorly fitted Observations
Discrimination and Calibration

Discrimination Subjects with higher predicted probabilities more likely to have the event

Calibration Predicted probability is a good measure of probability of the event.

![Graph showing discrimination and calibration](image-url)
Problems with R^2

- Multiple definitions
- Lack of interpretability
- Low values
 - Can predict $P(Y = 1)$ perfectly, not predict Y well at all if $P(Y = 1) \approx 0.5$.
Hosmer-Lemeshow test

- Detects lack of calibration
- Very like χ^2 test
- Divide subjects into groups
- Compare observed and expected numbers in each group
- Want to see a non-significant result
- Command used is `estat gof`
. estat gof, group(5) table

Logistic model for chd, goodness-of-fit test

(Table collapsed on quantiles of estimated probabilities)

| Group | Prob | Obs_1 | Exp_1 | Obs_0 | Exp_0 | Total |
|-------+--------+-------+-------+-------+-------+-------|
1	0.1690	2	2.1	18	17.9	20
2	0.3183	5	4.9	16	16.1	21
3	0.5037	9	8.7	12	12.3	21
4	0.7336	15	15.1	8	7.9	23
5	0.9125	12	12.2	3	2.8	15

+--+

number of observations = 100
number of groups = 5
Hosmer-Lemeshow chi2(3) = 0.05
Prob > chi2 = 0.9973
Sensitivity and Specificity

<table>
<thead>
<tr>
<th></th>
<th>Test +ve</th>
<th>Test -ve</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
<td>a</td>
<td>b</td>
<td>a + b</td>
</tr>
<tr>
<td>Controls</td>
<td>c</td>
<td>d</td>
<td>c + d</td>
</tr>
<tr>
<td>Total</td>
<td>a + c</td>
<td>b + d</td>
<td>a + b + c + d</td>
</tr>
</tbody>
</table>

- **Sensitivity:**
 - Probability that a case classified as positive
 - $a/(a + b)$

- **Specificity:**
 - Probability that a non-case classified as negative
 - $d/(c + d)$
Sensitivity and Specificity in Logistic Regression

- Sensitivity and specificity can only be used with a single dichotomous classification.
- Logistic regression gives a probability, not a classification.
- Can define your own threshold for use with logistic regression.
- Commonly choose 50% probability of being a case.
- Can choose any probability: sensitivity and specificity will vary.
- Why not try every possible threshold and compare results: ROC curve.
ROC Curves

- Shows how sensitivity varies with changing specificity
- Gives a measure of discrimination
- Larger area under the curve = better
- Maximum = 1
- Tossing a coin would give 0.5
- Command used is `lroc`
ROC Example

Area under ROC curve = 0.7999
Influential Observations

- Residuals less useful in logistic regression than linear
- Can only take the values $1 - \hat{\pi}$ or $-\hat{\pi}$.
- Grouping by covariate pattern may help: observed outcome can now lie between 0 and 1 if multiple observations have same pattern
- Leverage does not translate to logistic regression model
- $\Delta \hat{\beta}_i$ measures effect of i^{th} observation on parameters
- Obtained from `dbeta` option to `predict` command
- Plot against $\hat{\pi}$ to reveal influential observations
Plot of $\Delta \hat{\beta}_i$ against $\hat{\pi}$

Pr(chd)
Effect of removing influential observation

```
. logistic chd age if dbeta < 0.2

Logistic regression

Number of obs = 98
LR chi2(1) = 32.12
Prob > chi2 = 0.0000
Pseudo R2 = 0.2400

Log likelihood = -50.863658

------------------------------------------------------------------------------
chd | Odds Ratio  Std. Err.     z  P>|z|   [95% Conf. Interval]
-------------+--------------------------------------------------
age |  1.13033   .029307   4.73  0.000  1.074324  1.189254
------------------------------------------------------------------------------
```
Poorly fitted observations

- Can be identified by residuals
 - Deviance residuals: `predict varname, ddeviance`
 - χ^2 residuals: `predict varname, dx2`
- Not influential: omitting them will not change conclusions
- May need to explain fit is poor in particular area
- Plot residuals against predicted probability, look for outliers
Separation

- Need at least one case and one control in each subgroup
- If you have lots of subgroups, this may not be true
- In which case, log(OR) for that group is $-\infty$ or ∞
- Stata will drop all subjects from that group (unless you use the option `asis`)
- Not a problem with continuous predictors