Sampling & Confidence Intervals

Mark Lunt

Centre for Epidemiology Versus Arthritis University of Manchester

25/10/2022

Types of Sample

• Simple Random

- Stratified
- Cluster
- Quota
- Convenience
- Systematic

Principles of Sampling

- Often, it is not practical to measure every subject in a population.
- A reduced number of subjects, a sample, is measured instead.
 - Cheaper
 - Quicker
 - More thorough
- Sample needs to be chosen in such a way as to be representative of the population

Simple Random Sample

- Every subject has the same probability of being selected.
- This probability is independent of who else is in the sample.
- Need a list of every subject in the population (*sampling frame*).
- Statistical methods depend on randomness of sampling.
- Refusals mean the sample is no longer random.

VERSUS

- Divide population into distinct sub-populations.
 - E.g. into age-bands, by gender
- Randomly sample from each sub-population.
 - sampling probability is same for everyone in a sub-population
 - sampling probability differs between sub-populations
- More efficient than a simple random sample if variable of interest varies more between sub-populations than within sub-populations.

Cluster

- Randomly sample groups of subjects rather than subjects
- Whv ?
 - List of subjects not available, list of groups is
 - Cheaper and easier to recruit a number of subjects at the same time.
 - In intervention studies, may be easier to treat groups: randomise hospitals rather than patients.
- Need a reasonable number of clusters to assure representativeness.
- The more similar clusters are, the better cluster sampling works.
- Cluster samples need special methods for analysis

Systematic & Convenience Samples

Systematic Take every nth subject.

- If there is clustering (or periodicity) in the sampling frame, may not be representative.
- Shared surnames can cause problems.
- Randomly order and take every *n*th subject: random.
- Convenience Take a random sample of easily accessible subjects
 - May not be representative of entire population.
 - E.g. people going to G.P. with sore throat easy to identify, not representative of people with sore throat.

- Deliberate attempt to ensure proportions of subjects in each category in a sample match the proportion in the population.
- Often used in market research: guotas by age, gender, social status.
- Variables not used to define the quotas may be very different in the sample and population.
- Proportion of men and of elderly may be correct, not proportions of elderly men.
- Probability of inclusion is unknown, may vary greatly between categories
- Cannot assume sample is representative.

VERSUS

Estimating from Random Samples

- We are interested in what our sample tells us about the population
- We use sample statistics to estimate population values
- Need to keep clear whether we are talking about sample or population
- Values in the population are given Greek letters μ, π..., whilst values in the sample are given equivalent Roman letters m, p....
- Suppose we have a population, in which a variable *x* has a mean μ and standard deviation σ. We take a random sample of size *n*. Then
 - Sample mean \bar{x} should be close to the population mean μ .
 - However, if several samples are taken, \bar{x} in each sample will differ slightly.

Variation of \bar{x} around μ

 How much the means of different samples differ depends on

Sample Size The mean of a small sample will vary more than the mean of a large sample.

Variance in the Population If the variable measured varies little, the sample mean can only vary little.

• I.e. variance of \bar{x} depends on variance of x and on sample size n.

Example

Consider consider a population consisting of 1000 copies of each of the digits $0, 1, \ldots, 9$. The distribution of the values in this population is

- Samples of size 5, 25 and 100
- 2000 samples of each size were randomly generated
- Mean of $x(\bar{x})$ was calculated for each sample
- Histograms created for each sample size separately

- $E(\bar{x}) = \mu$ i.e. on average, the sample mean is the same as the population mean.
- Standard Deviation of $\bar{x} = \frac{\sigma}{\sqrt{n}}$ i.e the uncertainty in \bar{x} increases with σ , decreases with *n*. The standard deviation of the mean is also called the **Standard Error**
- \bar{x} is normally distributed This is true whether or not x is normally distributed, provided n is sufficiently large. Thanks to the *Central Limit Theorem*.

Standard Error

Example: Sampling Distribution of \bar{x}

- Standard deviation of the *sampling distribution* of a statistic
- Sampling distribution: the distribution of a statistic as sampling is repeated
- All statistics have sampling distributions
- Statistical inference is based on the standard error

 $\mu =$ 4.5 $\sigma =$ 2.87

Size of samples	Mean $ar{x}$		S.D. <i>x</i>	
	Predicted	Observed	Predicted	Observed
5	4.5	4.47	1.29	1.26
25	4.5	4.51	0.57	0.57
100	4.5	4.50	0.29	0.30

VERSUS

Why n-1 rather than N

In a population of size N, the variance of x is given by

$$\sigma^2 = \frac{\Sigma (x_i - \mu)^2}{N} \tag{1}$$

This is the *Population Variance* In a sample of size *n*, the variance of *x* is given by

$$s^2 = \frac{\Sigma (x_i - \bar{x})^2}{n-1}$$
 (2)

This is the Sample Variance

Proportions

Suppose that you want to estimate π , the proportion of subjects in the population with a given characteristic. You take a random sample of size *n*, of whom *r* have the characteristic.

- $p = \frac{r}{n}$ is a good estimator for π .
- If you create a variable *x* which is 1 for subjects which have the characteristic and 0 for those who do not, then $p = \bar{x}$
- If the sample is large, *p* will be normally distributed, even though *x* isn't

Population $\sigma^2 = \frac{\Sigma(x_i - \mu)^2}{N}$ Sample $s^2 = \frac{\Sigma(x_i - \bar{x})^2}{n-1}$

- Use n 1 rather than n because we don't know μ, only an imperfect estimate x̄.
- Since x̄ is calculated from the sample (i.e. from the x_i), x_i will tend to be closer to x̄ than it is to μ.
- Dividing by *n* would underestimate the variance
- With a reasonable sample size, makes little difference.

Reference Ranges

If x is normally distributed with mean μ and standard deviation σ , then we can find out all of the percentiles of the distribution. E.g. Median = μ 25^{th} centile = $\mu - 0.674\sigma$ 75^{th} centile = $\mu + 0.674\sigma$ Commonly, we are interested in the interval in which 95% of the population lie, which is from $\mu - 1.96 \sigma$ to $\mu + 1.96\sigma$ This is from the 2.5th centile to the 97.5th centile

- Red lines cut off 5% of data in each tail
- 90% of data lies between lines
- Blue lines are at -1.645, 1.645

register of (z) defined a second seco

- χ^2 distribution
- Red lines cut off 5% of data in each tail
- $\bullet~$ Mean \pm 1.645 \times S.D. covers > 90% of data
- Only 2% < mean 1.645 S.D
- 6.5% > mean + 1.645 S.D.

Non-normal distributions 2: Long-tailed distribution

- t-distribution
- Symmetric, but not normal
- Higher "peak", longer tails than normal
- Red lines cut off 5% of data in each tail
- $\bullet\,$ Blue lines at mean \pm 1.645 S.D.
- $\bullet~$ Mean \pm 1.645 \times S.D. covers > 94% of data

Reference Range Example

Bone mineral density (BMD) was measured at the spine in 1039 men. The mean value was 1.06g/cm² and the standard deviation was 0.222g/cm². Assuming BMD is normally distributed, calculate a 95% reference interval for BMD in men.

 $\begin{array}{rl} \mbox{Mean BMD} &= 1.06 \mbox{g/cm}^2 \\ \mbox{Standard deviation of BMD} &= 0.222 \mbox{g/cm}^2 \\ \Rightarrow & 95\% \mbox{ Reference interval} &= 1.06 \pm 1.96 \times 0.222 \\ &= 0.62 \mbox{g/cm}^2, 1.50 \mbox{g/cm}^2 \end{array}$

- The distribution of \bar{x} approaches normality as *n* gets bigger.
- \bar{x} can be thought of as a random draw from a distribution with mean μ and standard deviation $\frac{\sigma}{\sqrt{n}}$.
- If samples could be taken repeatedly, 95% of the time, the \bar{x} would lie between $\mu 1.96 \frac{\sigma}{\sqrt{n}}$ and $\mu + 1.96 \frac{\sigma}{\sqrt{n}}$.
- As a consequence, 95% of the time, μ would lie between $\bar{x} 1.96 \frac{\sigma}{\sqrt{n}}$ and $\bar{x} + 1.96 \frac{\sigma}{\sqrt{n}}$.
- This is a 95% confidence interval for the population mean.
- If, as is usually the case, σ is unknown, can use its estimate s.

Confidence Interval Example

In 216 patients with primary biliary cirrhosis, serum albumin had a mean value of 34.46 g/l and a standard deviation of 5.84 g/l.

	Standard deviation of <i>x</i>	= 5.84
\Rightarrow	Standard error of \bar{x}	$=\frac{5.84}{\sqrt{216}}$
		= 0.397
\Rightarrow	95% Confidence Interval	$= 34.46 \pm 1.96 \times 0.397$
		= (33.68, 35.24)

So, the mean value of serum albumin in the *population* of patients with primary biliary cirrhosis is probably between 33.68 g/l and 35.24 g/l.

Confidence Intervals for Proportions

- *p* is normally distributed with standard error $\sqrt{\frac{p(1-p)}{n}}$ provided *n* is large enough.
- This can be used to calculate a confidence interval for a proportion.
- Exact confidence intervals can be calculated for small *n* (less than 20, say) from tables of the binomial distribution.
- A reference range for a proportion in meaningless: a subject either has the characteristic or they do not.

Confidence Interval around a Proportion: Example

100 subjects each receive two analgesics, X and Y, for one week each in a randomly determined order. They then state a preference for one drug. 65 prefer X, 35 prefer Y. Calculate a 95% confidence interval for the proportion preferring X.

Standard Error of p =
$$\sqrt{\frac{0.65 \times 0.35}{100}}$$

= 0.0477
 \Rightarrow 95% Confidence Interval = 0.65 ± 1.96 × 0.0477
= (0.56, 0.74)

So, in the general population, it is likely that between 56% and 74% of people would prefer X.

- $\bullet\,$ The ci command produces confidence intervals
- For proportions, you use the binomial option

- Confidence intervals tell us about the *population mean*
- Reference ranges tell us about individual values
- Reference ranges require the variable to be normally distributed
- Confidence intervals do not
 - If sampling distribution of statistic of interest is normal
 - Normality may require reasonable sample size

Sample Size Calculations

- Primary outcome of a study is a statistic (mean, proportion, relative risk, incidence rate, hazard ratio etc)
- The larger the study, the more precisely we can estimate our statistic
- We can calculate how many subjects we need to achieve adequate precision if we
 - know how the distribution of the statistic changes with increasing numbers of subjects
 - Have a definition of "adequate"
- Power-based calculations are more complicated (for next week).

Sample size for precision of mean

Suppose that we want to know μ to a certain level of precision.

• We can be 95% certain that μ lies within

$$\bar{x}\pm\frac{1.96\sigma}{\sqrt{n}}$$

- The width of this interval depends on *n*, which we control.
- Therefore, we can select *n* to give our chosen width.
- Need to use an estimate for σ , for which we can use s.

Sample Size Formula

Suppose we want to fix the width of the 95% confidence interval to 2W, i.e. 95% CI = $\bar{x} \pm W$. Then

$$W = 1.96 \times \text{Standard Error}$$
$$= 1.96 \times \frac{\sigma}{\sqrt{n}}$$
$$\Rightarrow W^{2} = \frac{1.96^{2}\sigma^{2}}{n}$$
$$\Rightarrow n = \left(\frac{1.96\sigma}{W}\right)^{2}$$

Sample Size Example

In the primary biliary cirrhosis example, suppose that we wish to know the mean serum albumin in cirrhosis patients to within 0.5 g/l. How many patients would we need to study (assuming a standard deviation of 5.84 g/l).

$$W = 0.5$$

$$\sigma = 5.84$$

$$\Rightarrow n = \left(\frac{1.96\sigma}{W}\right)^2$$

$$= \left(\frac{1.96 \times 5.84}{0.5}\right)^2$$

$$\approx 524$$

CENTRE FOR EPIDEMIOLOGY VERSUS ARTHRITIS

