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1 Modelling Counts

1.1 Introduction

We can use logistic regression to model the prevalence of a condition, i.e. the proportion of
people who have that condition. However, we have not yet a way to model incidence, i.e. the
rate at which new cases are occurring.

Incidence is not measured as a proportion, but as a rate: the number of events that happen
over a fixed amount of time. If events are happening at a fixed rate λ over a time T , then the
expected number of events to occur is λT . The observed number of events will follow a Poisson
distribution with parameter λT .

1.2 Poisson Regression

1.2.1 Introduction

Poisson regression models the rate at which events occur as a function of the covariates. A rate
can never be negative (that is, the number of events that have occurred can never decrease,
events can’t “unhappen”. We commonly model the logarithm of the rate, since as this value
goes from −∞ to ∞, the rate goes from 0 to ∞.

So the expected number of events, C for a given observation is

E[C] = λT

where

C is the number of events

λ is the rate at which events happen

T is the duration of followup for that observation.

So if we model log(λ) as a linear function of our covariates, we get

log(λ̂) = β0 + β1x1 + . . .+ βpxp

λ̂ = eβ0+β1x1+...+βpxp

E[C] = Tλ

= T × eβ0+β1x1+...+βpxp

= elog(T )+β0+β1x1+...+βpxp

log(E[C]) = log(T ) + β0 + β1x1 + . . .+ βpxp

So if we are going to model the rate, but what we observe is the number of events, we need
to include the log of the exposure time, with a coefficient fixed as 1, in our linear predictor. This
is referred to as the offset.

Since we are modelling the log of the rate, an increase of 1 in a xp corresponds to and increase
of βp in the log rate. This in turn corresponds to multiplying the rate by eβp . So just like logistic
regression, where eβ is more meaningful than β itself, so with Poisson regression. In this case,
eβ is a Rate Ratio.

For each observation in our dataset, we have an observed number of events C, and an
expected number of events elog(T )+β0+β1x1+...+βpxp . We can calculated a χ squared statistic to
test whethere the observed values are further from the expected values that we would expect by
chance if the expected values are modelled correctly. This statistic will follow a χ2 distribution
on N − p− 1 degrees of freedom, where N is our sample size and p is the number of covariates
in our model.

6



1.2 Poisson Regression

Poisson Regression in Stata The basic command for performing Poisson regression in stata
is poisson. The first variable after the command will be the outcome variable, any subsequent
variables will be predictors. You will also almost always want to include an exposure(varname)

option, where varname is the name of a variable giving te duration of exposure for each obser-
vation. In order to get Rate Ratios rather than coefficients in the output, use the option irr

(short for Incidence Rate Ratio).

If you use the predict command after a Poisson regression, the following options are avail-
able:

n (default) expected number of events
(rate × duration of exposure)

ir incidence rate
xb linear predictor, log of the incidence rate

1.2.2 Example

The data in Table 1.1 shows the mortality by age-group and smoking status for a cohort of
British male doctors. The study was set up in 1951, which explains why nearly 80% of the
exposure time was in the smokers.

Smokers Non-smokers
Age Deaths Person-Years Deaths Person-Years

35–44 32 52,407 2 18,790
45–54 104 43,248 12 10,673
55–64 206 28,612 28 5,710
65–74 186 12,663 28 2,585
75–84 102 5,317 31 1,462

Table 1.1: Mortality by Age-Group and Smoking Status among Male British Doctors

If we had a stata dataset containing 10 observations, with a variable agecat containing the
age group and smokes containing the smoking status for that observation, pyears containing
the Person-Years of followup and deaths containing the number of deaths, then we could model
that data with the command

poisson deaths i.agecat i.smokes, exp(pyears) irr

and get the following output:

Poisson regression Number of obs = 10
LR chi2(5) = 922.93
Prob > chi2 = 0.0000

Log likelihood = -33.600153 Pseudo R2 = 0.9321

------------------------------------------------------------------------------
deaths | IRR Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
agecat |
45-54 | 4.410584 .8605197 7.61 0.000 3.009011 6.464997
55-64 | 13.8392 2.542638 14.30 0.000 9.654328 19.83809
65-74 | 28.51678 5.269878 18.13 0.000 19.85177 40.96395
75-84 | 40.45121 7.775511 19.25 0.000 27.75326 58.95885

|
smokes |

Yes | 1.425519 .1530638 3.30 0.001 1.154984 1.759421
_cons | .0003636 .0000697 -41.30 0.000 .0002497 .0005296

ln(pyears) | 1 (exposure)
------------------------------------------------------------------------------

This output shows that mortality increases with increasing age, and is nearly 43% higher in
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1 Modelling Counts

smokers than it is in non-smokers. However, if we check the goodness of fit using the command
estat gof, we find that the fit is poor: the observed values are significantly further from the
expected values than we would expect if the model were correct.

estat gof

Deviance goodness-of-fit = 12.13244
Prob > chi2(4) = 0.0164

Pearson goodness-of-fit = 11.15533
Prob > chi2(4) = 0.0249

This lack of fit can happen if we have not specified the linear predictor correctly. It could be
because we have modelled continuous variables incorrectly, for example assuming that the log
of the rate increases linearly with the variable, when the increase is really quadratic. However,
that cannot be the explanation in this instance, since we have not continuous variables in our
model. With categorical variables, this happens when we are missing interaction terms. In our
example, we are assuming that the rate ratio is the same for all age groups: if this is not the
case, our model will not fit well.

We can use predict with the n option to get the expected number of events, and see how
the expected and predicted numbers differ: these are shown in Table 1.2.

Smokers Non-smokers
Age Deaths pred n Deaths pred n

35–44 32 27.2 2 6.8
45–54 104 98.9 12 17.1
55–64 206 205.3 28 28.7
65–74 186 187.2 28 26.8
75–84 102 111.5 31 21.5

Table 1.2: Expected and Observed Numbers of Deaths in Doctors Study

The expected numbers of deaths are lower than the observed numbers in smokers in the
lowest age groups and in non-smokers in the highest age group. This suggests that the rate ratio
is changing with age, and we need to incorporate that into our model. Including the interaction
between age and smoking in our model gives the following output:

. poisson deaths i.agecat##i.smokes, exp(pyears) irr

Poisson regression Number of obs = 10
LR chi2(9) = 935.07
Prob > chi2 = 0.0000

Log likelihood = -27.53397 Pseudo R2 = 0.9444

-------------------------------------------------------------------------------
deaths | IRR Std. Err. z P>|z| [95% Conf. Interval]

--------------+----------------------------------------------------------------
agecat |
45-54 | 10.5631 8.067701 3.09 0.002 2.364153 47.19623
55-64 | 46.07004 33.71981 5.23 0.000 10.97496 193.3901
65-74 | 101.764 74.48361 6.32 0.000 24.24256 427.1789
75-84 | 199.2099 145.3356 7.26 0.000 47.67693 832.3648

|
smokes |

Yes | 5.736637 4.181256 2.40 0.017 1.374811 23.93711
|

agecat#smokes |
45-54#Yes | .3728337 .2945619 -1.25 0.212 .0792525 1.753951
55-64#Yes | .2559409 .1935392 -1.80 0.072 .0581396 1.126697
65-74#Yes | .2363859 .1788334 -1.91 0.057 .0536612 1.041316
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1.2 Poisson Regression

75-84#Yes | .1577109 .1194146 -2.44 0.015 .0357565 .6956154
|

_cons | .0001064 .0000753 -12.94 0.000 .0000266 .0004256
ln(pyears) | 1 (exposure)

-------------------------------------------------------------------------------

The rate ratio in the baseline 35-44 category is 5.74, much higher than the overall estimate of
1.43 we got previously. The rate ratios in the other age categories are much lower, although the
actual values are not given directly in this output. The estimate in the 45-54 is 5.74× 0.373 =
2.14, lower than the estimate in the youngest age group, but still higher than the overall estimate.

Rather than work out the rate ratios in the various age groups by hand, we can use the
lincom command: that way we get confidence intervals and hypothesis tests as well. To get the
rate ratio in the 75-84 age group, the stata command would be

lincom 1.smokes + 5.age#1.smokes, eform

and the corresponding outcome would be

( 1) [deaths]1.smokes + [deaths]5.agecat#1.smokes = 0

------------------------------------------------------------------------------
deaths | exp(b) Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
(1) | .9047304 .1855513 -0.49 0.625 .6052658 1.35236

------------------------------------------------------------------------------

In this age-group, the rate ratio for smoking is slightly, but not significantly, less than 1.

1.2.3 Constraints

The last Poisson model we fitted, with different rate ratios for each age group, is called a
“staturated” model. This means that there are as many parameters in the model (1 for smoking,
4 for age group, 4 for interactions between smoking and age group and 1 for the constant term)
as there are observations in the dataset. This means that it is possible to fit the data perfectly,
and the observed numbers of deaths in each group will be exactly equal to the expected numbers
of deaths.

It also means that it is not possible to perform a goodness of fit test. The χ2 statistic is 0,
since the observed and expected values are all equal. And the number of degrees of freedom for
the test is also 0, since we have 10 observations and 9 variables in the model.

However, the interaction terms for the 55–64 age group and the 65–74 age group look very
similar. What would happen if we were to force them to be exactly the same ? That would
reduce the number of parameters in our model and enable us to perform a goodness of fit test.
It would also simplify the presentation of our model: we would only need to give 4 rate ratios
for smoking, not 5. Simplifying the presentation of a model is a much more importand reason
for using constraints than enabling a goodness of fit test.

Parameters may be constrained to either equal other paramaters, or to equal a particu-
lar value. The stata command to define a constraint is constraint define n parameter =

expression , where n is an integer that will be used later to identify the constraint, parameter
can be the name of a variable, or a way of identifying a particular level or combination of levels
for categorical variables, and expression can be either another parameter, or a numerical value.

For example, the command to force the rate ratio for age 55–64 to be equal to the rate ratio
for age 65–74 would be

constraint define 1 3.agecat#1.smokes = 4.agecat#1.smokes

We can than fit this constrained model to the data by using the constraint() option of the
poisson command:

. poisson deaths i.agecat##i.smokes, exp(pyears) irr constr(1)
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1 Modelling Counts

Poisson regression Number of obs = 10
Wald chi2(8) = 632.14

Log likelihood = -27.572645 Prob > chi2 = 0.0000

( 1) [deaths]3.agecat#1.smokes - [deaths]4.agecat#1.smokes = 0
-------------------------------------------------------------------------------

deaths | IRR Std. Err. z P>|z| [95% Conf. Interval]
--------------+----------------------------------------------------------------

agecat |
45-54 | 10.5631 8.067701 3.09 0.002 2.364153 47.19623
55-64 | 47.671 34.37409 5.36 0.000 11.60056 195.8978
65-74 | 98.22765 70.85012 6.36 0.000 23.89324 403.8244
75-84 | 199.2099 145.3356 7.26 0.000 47.67693 832.3648

|
smokes |

Yes | 5.736637 4.181256 2.40 0.017 1.374811 23.93711
|

agecat#smokes |
45-54#Yes | .3728337 .2945619 -1.25 0.212 .0792525 1.753951
55-64#Yes | .2461772 .182845 -1.89 0.059 .0574155 1.055521
65-74#Yes | .2461772 .182845 -1.89 0.059 .0574155 1.055521
75-84#Yes | .1577109 .1194146 -2.44 0.015 .0357565 .6956154

|
_cons | .0001064 .0000753 -12.94 0.000 .0000266 .0004256

ln(pyears) | 1 (exposure)
-------------------------------------------------------------------------------

You will see that the table of coefficients now has two identical lines: the interaction term
between age group and smoking is identical for the 55–64 and 65–74 age groups.

1.2.4 Other considerations

1.3 Negative Binomial Regression

Although Poisson regression can be very useful for modelling count variables, I would not rec-
ommend it’s use in general. This is because the variance of the Poisson distribution is equal to
its mean, but this is not the only kind of distribution that a count variable can follow. If you
are modelling a count variable for which the variance is greater than its mean, the variable is
said to be “overdispersed”.

If you use Poisson regression for a variable that is overdispersed, the standard errors for the
model parameters will be too small. This means that hypothesis tests will produce statistically
significant results more than 5% of the time that the null hypothesis is true, and confidence
intervals will be narrower than they should be. It is therefore essential to test for overdispersion
before fitting a Poisson regression model.

Life is made easier by the fact that there is an alternative model for count data which
specifically models the overdispersion. This is the negative binomial regression model. There
are in fact two types of negative binomial regression model, which differ in the way that they
model the overdispersion. They model the variance of the outcome variable Y as either Var(Y )
= µ(1 + δ) or Var(Y ) = µ(1 + αµ). I.e. the overdispersion is either constant (first model) or
proportional to the mean of Y (model 2). Both models reduce to the Poisson model if α or δ are
0. So by fitting one of these models, you not only test whether fitting a Poisson model would
be appropriate, but you also fit it if it is.

The command for fitting negative binomial models in stata is nbreg. Almost all of the
options, and commands that can be run after nbreg are the same as for the command poisson.
The only difference is that the nbregcommand has an overdispersion() option: by default it
uses Var(Y ) = µ(1 + αµ), but with the option overdispersion(constant) it uses Var(Y ) =
µ(1 + δ).
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1.3 Negative Binomial Regression

1.3.1 Overdispersion Example

To see the difference between Poisson regression and negative binomial regression, consider the
output below.

. poisson deaths i.cohort, exposure(exposure) irr

Poisson regression Number of obs = 21
LR chi2(2) = 49.16
Prob > chi2 = 0.0000

Log likelihood = -2159.5158 Pseudo R2 = 0.0113

------------------------------------------------------------------------------
deaths | IRR Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
cohort |

1960-1967 | .7393079 .0423859 -5.27 0.000 .6607305 .82723
1968-1976 | 1.077037 .0635156 1.26 0.208 .959474 1.209005

|
_cons | .0202523 .0008331 -94.80 0.000 .0186836 .0219527

ln(exposure) | 1 (exposure)
------------------------------------------------------------------------------

. nbreg deaths i.cohort, exposure(exposure) irr

Negative binomial regression Number of obs = 21
LR chi2(2) = 0.40

Dispersion = mean Prob > chi2 = 0.8171
Log likelihood = -131.3799 Pseudo R2 = 0.0015

------------------------------------------------------------------------------
deaths | IRR Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
cohort |

1960-1967 | .7651995 .5537904 -0.37 0.712 .1852434 3.160869
1968-1976 | .6329298 .4580292 -0.63 0.527 .1532395 2.614209

|
_cons | .1240922 .0635173 -4.08 0.000 .0455042 .3384052

ln(exposure) | 1 (exposure)
-------------+----------------------------------------------------------------

/lnalpha | .5939963 .2583615 .087617 1.100376
-------------+----------------------------------------------------------------

alpha | 1.811212 .4679475 1.09157 3.005294
------------------------------------------------------------------------------
Likelihood-ratio test of alpha=0: chibar2(01) = 4056.27 Prob>=chibar2 = 0.000

The Poisson model suggests that the rate is significantly lower in the 1960–1967 cohort
than in the baseline cohort. However, the negative binomial model shows that there is highly
significant overdispersion (LR test of alpha = 0 has a P -value given as 0.000). Furthermore,
there a no longer any significant differences between the cohorts once overdispersion is taken
into account.
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2 Modelling Counts: Practical

2.1 Practical For Session 9: Counts

Datasets

The datasets that you will use in this practical can be accessed via http from within stata.
However, the directory in which they are residing has a very long name, so you can save yourself
some typing if you create a global macro for this directory. You can do this by entering

global basedir http://personalpages.manchester.ac.uk/staff/mark.lunt

global datadir $basedir/stats/9 Counts/data

(In theory, the global variable datadir could have been set with a single command, but fitting
the necessary command on the page would have been tricky. Far easier to use two separate
commands as shown above). If you wish to run the practical on a computer without internet
access, you would need to:

1. Obtain copies of the necessary datasets

2. Place them in a directory on your computer

3. Define the global macro $datadir to point to this directory.

2.1.1 Poisson Regression

In this section you will be analysing the dataset $datadir/ships. This is data from Lloyds
of London concerning the rate at which damage occured at different times to different types of
ship. There are 5 types of ship (labelled “A” to “E”), which could have been built in any one of
4 time periods, and sailed during one of two time periods. The aggregate duration of operation
of each type of ship is given by months, and the number of incidents of damage is given by
damage.

1.1 Familiarise yourself with the the meanings of each of the variables with the command

label list

Set the reference categories for type and time built to E and 1975-1979 respectively with
the commands

fvset base 5 type

fvset base 4 built

1.2 Are there any differences in the rates at which damage occurs according to the type of
ship ? The command to test this is

poisson damage i.type, exposure(months) irr

1.3 Are there any differences in the rates at which damage occurs according to the time at
which the ship was built ? The command to test this is

poisson damage i.built, exposure(months) irr

1.4 Are there any differences in the rates at which damage occurs accoding to the time in
which the ship was operated ? (You can work out this command for yourself).
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2.1 Practical For Session 9: Counts

1.5 Now add all three variables into a multivariate poisson model. Use

testparm i.type

to test if type is still significant after adjusting for the other predictors.

1.6 Use

predict pred n

to obtain predicted numbers of damage incidents. Compare the observed and predicted
numbers of incidents with

list type built sailed damage pred n

For which type of ship and which time periods are predicted values furthest from the
observed values ?

1.7 Use estat gof to test whether the model is adequate.

1.8 Add a term for the interaction between ship type and year of construction
(i.type#i.built). Use testparm to determine whether this term is statistically sig-
nificant.

1.9 Does this term affect the adequacy of the model as determined by estat gof ?

2.1.2 Negative Binomial Regression

This section used data concerning childhood mortality in three cohorts, from the dataset $datadir/nbreg.
The children were divided into 7 age-bands, and the number of deaths, and the persons-months
of exposure are recorded in deaths and exposure respectively. For some reason, one model that
converged perfectly well using xi: to define indicators failed when xi: was not used, which is
why ltol(0.000001) has been added to one command below: the model converges with a less
severe tolerance criterion.

1.10 Fit a poisson regression model using only cohort as a predictor:

poisson deaths i.cohort, exposure(exposure) irr

Are there differences in mortality rate between the cohorts ?

1.11 Use estat gof to test whether the poisson model was appropriate

1.12 Fit a negative binomial regression model to test the same hypothesis:

nbreg deaths i.cohort, exposure(exposure) irr

Do you reach the same conclusion about the role of cohort ?

1.13 What is the value of the parameter α, and its 95% confidence interval ?
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1.14 Fit a constant dispersion negative binomial regression model with

nbreg deaths i.cohort, exposure(exposure) dispersion(constant) irr

Is δ significantly greater than 0 in this model ?

1.15 Does this model suggest any different conclusions as to whether the mortality rate differs
between cohorts ?

1.16 One possible source of the extra variation is a change in mortality with age. Fit a model
to test whether mortality varies with age with

nbreg deaths i.age gp, exposure(exposure) irr

Is age a significant predictor of mortality ?

1.17 Would it be appropriate to use Poisson regression to fit this model ?

1.18 Now fit a negative binomial regression model with both age and cohort as predictors
(you will need to add the option ltol(0.000001) to get this model to converge). Use
testparm to determine whether both age and cohort are independently significant pre-
dictors of mortality.

1.19 Is α significantly greater than 0 in this model ?

1.20 Fit the same model using poisson. Does this model agree with the negative binomial
model ?

1.21 Use estat gof to test the adequacy of this model. Is using a Poisson regression model
appropriate in this case ?

2.1.3 Using constraints

This section uses the data on damage to ships from the dataset $datadir/ships again.

1.22 Refit the final Poisson regression model we considered with

poisson damage i.type i.built i.sailed, irr exposure(months)

Which of the incidence rate ratios are not significantly different from 1 ?

1.23 Create predicted numbers of damage incidents with the command

predict pred n

1.24 Define a constraint to force the incidence rate ratio for ships of type D to be equal to 1
with

constraint define 1 4.type = 0

(Note that the constraints are defined on the coefficients of the model, rather than the
incidence rate ratios. If the coefficient is 0, the incidence rate ratio is 1.)
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2.1 Practical For Session 9: Counts

1.25 Fit this model with the command

poisson damage i.type i.built i.sailed, irr exposure(months) constr(1)

How does the output of this command differ from that of the previous Poisson regression
command ?

1.26 Use estat gof to test the adequacy of this model. How does the constrained model
compare to the unconstrained model ?

1.27 Define a second constraint to force the incidence rate ratio for ships of type E to be equal
to 1 with

constraint define 2 5.type = 0

1.28 Fit a Poisson regression model with both of these constraints using the command

poisson damage i.type i.built i.sailed, irr exposure(months) constr(1 2)

(The above command should be entered on one line.)

1.29 How does the adequacy of this model compare to that of the previous one ?

1.30 It appears that the incidence rate ratio for being built in 1965-1969 is very similar to the
incidence rate ratio for being built in 1970-1974. Define a new constraint to force these
parameters to be equal with

constraint define 3 2.built = 3.built

Fit a Poisson regression model with all three constraints using the command

poisson damage i.type i.built i.sailed, irr exposure(months) constr(1 2

3)

(The above command should be entered on one line.) Notice that the lines for 2.built
and 3.built are now identical. In what way do these two lines differ from the lines for
the other constrained values ?

1.31 What do you think is the reason for the difference you have just observed ?

1.32 Use estat gof to test the adequacy of this constrained model. Have the constraints
that you have applied to the model had a serious detrimental effect on the fit of the
model.

1.33 Obtain predicted counts from this constrained model with the command

predict pred cn

17
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1.34 Compare the predictions from the constrained model and the unconstrained model to
each other and to the observed values with

corr damage pred n pred cn

How has the fit of the model been affected by the constraints ?

1.35 If you wish, you can examine the observed and predicted values directly with

list type built sailed damage pred n pred cn

Does this list confirm your answer to the previous question ?

2.1.4 Constraints in Multinomial Logistic Regression

Constraints can be applied to many different types of regression model. However, applying
constraints when using mlogit can be tricky because there are several equations. The syntax is
then similar to the syntax we saw last week for lincom. For this part of the practical, we are
using the same $datadir/alligators dataset that we saw last week.

1.36 Use

label list

to remind yourself of what the variables mean.

1.37 Fit a multinomial logistic regression model to predict food choice from lake with the
command

mlogit food i.lake, rrr

Are there significant differences between lakes in the primary food choice ?

1.38 What are the odds ratios for preferring invertebrates to fish in Lakes Oklawaha, Trafford
and George ?

1.39 It appears that for the choice of invertebrates rather than fish, there is no significant
difference between Lake Oklawaha and Lake Trafford. Define the constraint that corre-
sponds to this with

constraint define 1 [Invertebrate]2.lake = [Invertebrate]3.lake

Fit the model again with this constraint using

mlogit food i.lake, rrr const(1)

1.40 Even Lake George does not appear to be significantly different from Lake Oklawaha and
Lake Trafford. Define a new constraint with

constraint define 2 [Invertebrate]4.lake = [Invertebrate]3.lake

Fit a multinomial logistic regression model with both of these constraints with

mlogit food i.lake, rrr const(1 2)

How does the common odds ratio for all three lakes compare to the 3 separate odds
ratios you calculated previously ?
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