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1 Modelling Categorical Outcomes

If the outcome that you wish to model is a categorical variable with more than 2 categories,
a more complex model than logistic regression is required. The exact model will depend on
whether the categorical variable is nominal or ordinal.

1.1 Nominal Outcomes

1.1.1 Cross-Tabulation

We have seen previously that a 2 × 2 table could be used to examine an association between two
dichotomous variables. In fact, the same approach can be used for any two categorical variables,
irrespective of the number of categories. If the variable used to define the rows of the table has
R categories, and the variable used to define the columns has C categories, you end up with an
R× C table. The expected number of observations in each cell which lies at the intersection of
row r and column c can be calculated as

Erc = Pr × Pc ×N =
Nr ×Nc

N
(1.1)

where

Pr Proportion of the sample that is in row r.

Pc Proportion of the sample that is in column c.

N Total sample size.

Nr Number of observations that are in row r.

Nc Number of observations that are in column c.

Just as in the dichotomous case, we can calculated a test statistic by summing (Orc−Erc)2

Erc

for each cell in the table. However, we will now have R×C terms to add, and this statistic will
follow a χ2 distribution on (R − 1) × (C − 1) degrees of freedom if the null hypothesis is true.
In stata, this test can be performed in exactly the same way as the χ2-test for 2 × 2 tables, the
only difference being the number of categories in the two variables passed to the command.

For example, consider the table below, drawn up to see if males and females tend to have dif-
ferent preferences for their medical insurance (data taken from stata’s built in Health Insurance
dataset, and can be loaded into stata with the command webuse sysdsn1).

Females Males Total

Indemnity 234 (50.7%) 60 (39.0%) 294 (47.7%)
Prepaid 196 (42.4%) 81 (52.6%) 277 (45.0%)
No Insurance 32 (6.9%) 13 (8.4%) 45 (7.3%)

Total 462 (100%) 154 (100%) 616 (100%)

Table 1.1: A 3 by 2 table

A smaller proportion of men than women have indemnity insurance, whereas a larger pro-
portion of men than women have prepaid or no insurance. We can quantify these differences
with what stata calls the “Relative Risk Ratio”. The relative risk of having prepaid rather than
indemnity insurance in males is 0.526

0.390 = 1.35, whereas in females it is 0.42
0.51 = 0.84. The relative

risk ratio is therefore 1.35
0.84 = 1.61. Similarly, the relative risk ratio for no insurance rather than

indemnity is 0.08/0.39
0.07/0.51 = 1.58
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1.1 Nominal Outcomes

1.1.2 Multinomial Logistic Regression

Whilst it is possible to use a tabulation to get some information about the magnitude of the
association between a categorical predictor and a categorical outcome. However, there are
occasions when we want to include multiple predictors at the same time, some of which may
be quantitative. It is possible to extend the notion of logistic regression to the case where the
outcome has more than two categories: this is known as multinomial logistic regression.

Multiple Logistic Regressions

It is easiest to think of multinomial logistic regression as a series of dichotomous logistic regres-
sions. If our outcome variable has R possible categories, we choose one of the categories as our
reference or baseline category, and perform R − 1 binary logistic regressions, with the outcome
taking the value 0 for the reference category in each case, and the value 1 for one particular
outcome category (and is considered missing for the other possible outcome categories.

So in the data presented above, we could do a logistic regression of prepaid vs indemnity,
and a second logistic regression of no insurance vs indemnity. In this case, indemnity is our
reference category. The output of performing these two logistic regressions
. logistic insure1 male

------------------------------------------------------------------------------

insure1 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

male | 1.611735 .3157844 2.44 0.015 1.09779 2.36629

_cons | .8376068 .0811033 -1.83 0.067 .6928203 1.012651

------------------------------------------------------------------------------

. logistic insure2 male

------------------------------------------------------------------------------

insure2 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

male | 1.584375 .5693029 1.28 0.200 .7834322 3.204163

_cons | .1367521 .0257746 -10.56 0.000 .0945154 .1978636

------------------------------------------------------------------------------
. logistic insure1 male

------------------------------------------------------------------------------

insure1 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

male | 1.611735 .3157844 2.44 0.015 1.09779 2.36629

_cons | .8376068 .0811033 -1.83 0.067 .6928203 1.012651

------------------------------------------------------------------------------

. logistic insure2 male

------------------------------------------------------------------------------

insure2 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

male | 1.584375 .5693029 1.28 0.200 .7834322 3.204163

_cons | .1367521 .0257746 -10.56 0.000 .0945154 .1978636

------------------------------------------------------------------------------

You can see that the odds ratios calculated by the two logistic regressions correspond to
the relative risk ratios we calculated from Table 1.1. However, I suggest that you think of
them as relative risk ratios rather than odds ratios, since they are only odds ratios if you
ignore any possible outcome other than the reference outcome and the one being predicted.
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1 Modelling Categorical Outcomes

In that case, P (referenceoutcome) = 1 − P (regressionoutcome), so that the relative risk
P (regressionoutcome)
P (referenceoutcome) = P (regressionoutcome)

1−P (regressionoutcome) , which is the odds of the regression outcome. The
ratio of the relative risks is then a ratio of odds.

Combining Multiple Logistic Regressions

Rather then perform multiple logistic regressions in this way, it is possible to fit a single model
covering all possible outcomes. Rather than a single linear predictor, as in binary logistic
regression, there will need to be R − 1, corresponding to the separate logistic regressions that
could be fitted. If we represent the linear predictor for the ith observation when comparing the
jth outcome to the reference outcome (which we will take to be R) as LPij , then probability the
the outcome for the ith observation takes the value j can be calculated as

P (Yi = j|Xi) =


exp(LPij)

1+
∑R

m=2 exp(LPim)
if j < R

1
1+

∑R
m=2 exp(LPim)

if j = R
(1.2)

Multinomial Logistic Regression in Stata

The stata command for fitting this model is mlogit. To fit a multinomial logistic regression
model for the above data, the command would be

mlogit insure male

The output from the above command would be

Multinomial logistic regression Number of obs = 616

LR chi2(2) = 6.38

Prob > chi2 = 0.0413

Log likelihood = -553.40712 Pseudo R2 = 0.0057

------------------------------------------------------------------------------

insure | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

Indemnity | (base outcome)

-------------+----------------------------------------------------------------

Prepaid |

male | .477311 .1959283 2.44 0.015 .0932987 .8613234

_cons | -.1772065 .0968274 -1.83 0.067 -.3669847 .0125718

-------------+----------------------------------------------------------------

Uninsure |

male | .46019 .3593233 1.28 0.200 -.2440708 1.164451

_cons | -1.989585 .1884768 -10.56 0.000 -2.358993 -1.620177

------------------------------------------------------------------------------

All of this output has exactly the same interpretation as the output we have seen previously,
except that since we have three possible outcomes, so we have 2 linear predictors. Stata chose
indemnity as the reference outcome (we will see how to change that shortly), and produced two
linear predictors, one for comparing prepaid to indemnity, the other comparing no insurance to
indemnity. In each case, the linear predictor takes the form

LP = β0 + β1 × male

with β0 taking the values -0.177 for the prepaid LP an -1.990 for the uninured LP. The coefficients
β1 take the values 0.477 and 0.460 respectively.
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1.1 Nominal Outcomes

More often than not, these coefficients are not particularly meaningful, and we would prefer
to see relative risk ratios. This can be achieved using the rrr option. We can also change the
outcome used as the reference with the baseoutcome() option. For example, the command

mlogit insure male, rrr baseoutcome(3)

produces the following output:
. mlogit insure male, baseoutcome(3) rrr

Iteration 0: log likelihood = -556.59502

Iteration 1: log likelihood = -553.40794

Iteration 2: log likelihood = -553.40712

Iteration 3: log likelihood = -553.40712

Multinomial logistic regression Number of obs = 616

LR chi2(2) = 6.38

Prob > chi2 = 0.0413

Log likelihood = -553.40712 Pseudo R2 = 0.0057

------------------------------------------------------------------------------

insure | RRR Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

Indemnity |

male | .6311637 .2267918 -1.28 0.200 .312094 1.276435

_cons | 7.3125 1.378237 10.56 0.000 5.053987 10.58029

-------------+----------------------------------------------------------------

Prepaid |

male | 1.017268 .3605507 0.05 0.961 .50786 2.037639

_cons | 6.125 1.167805 9.51 0.000 4.215161 8.900163

-------------+----------------------------------------------------------------

Uninsure | (base outcome)

------------------------------------------------------------------------------

The likelihood ratio χ2 in this case is 6.38 on 2 degrees of freedom, suggesting that there
is a significant association between sex and insurance type. Howeve, the individual RRRs are
not statistically significantly different from 1. That is because we have chosen to use Uninsured
as our reference outcome, and this has the smallest numbers, and hence lowest power to detect
differences. There is, in fact, a statistically significant difference between the RRRs for Indemnity
and Prepaid, as we saw in the previous model, but our choice of reference category means that
it is not automatically presented as part of the output. We can use lincom to recover it, as we
will see in section 1.1.2.

predict Using predict after mlogit is slightly complicated by the fact that there are multiple
linear predictors. You therefore need to either provide multiple variables for the predictions to
be put into, or specify which one particular prediction you want (if you provide a single variable
name, stata assumes you want outcome 1, which may or may not be useful). The most useful
options to predict after mlogit are p, which gives the predicted probability for each outcome,
and xb, which gives the linear predictor for each outcome (or 0 for the baseline outcome). For
example, we the command

predict prob*, p

would create 3 new variables, called prob1, prob2 and prob3, containing the predicted proba-
bilities of belonging having each of the 3 types of insurance.
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1 Modelling Categorical Outcomes

lincom The command lincom can also be uaed after the mlogit command, but again the
multiple linear predictors make it more complicated. You cannot simple use a variable name
(or cons) to identify a coefficient, you also need to specify which linear predictor the coeffienct
belongs to. We do this by putting the value of the relevant outcome in square brackets before the
variable name. For example, suppose that we want to test whether there is a statistically signif-
icant difference between the coefficients for male in the prepaid and uninsured linear predictors.
We can do this with the command

lincom [Prepaid]male - [Uninsure]male

and get the following output:
( 1) [Prepaid]male - [Uninsure]male = 0

------------------------------------------------------------------------------

insure | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

(1) | .017121 .3544302 0.05 0.961 -.6775495 .7117916

------------------------------------------------------------------------------

As you might have expected, the difference between the relative risk ratios is not statistically
significant.

1.2 Ordinal Variables

If the variable that you want to predict is ordinal, rather than nominal, there are a number of
possible approaches.

1. Ignore the ordinal nature of the variable, treat it as nominal

2. Ignore the ordinal nature of the variable, treat it as interval

3. Respect the ordinal nature of the variable.

Options 1 and 2 may seem inappropriate if the data is ordinal, but both can be useful in certain
circumstances.

Option 1 may be the best approach if different predictors are important at different levels of
the outcome variable. For example, with an ordinal pain rating, rated as none, mild, moderate,
severe, it may be that a particular variable reduces the probability of reporting “none”, but
has no impact on the level of pain reported. In this case, the variable may be ordinal, but the
association between predictors and outcome is not, and an ordinal regression model may not fit
well.

Option 2 can be useful for ordinal data with lots of possible values, such as a visual analog
scale. Technically, this is an ordinal variable, but it is usually appropriate to treat it as interval.

Option 2 is also commonly used when the ordinal variable is a predictor, rather than the
outcome. It does make the assumption that each time the predictor goes up 1 category, the
outcome goes up by an equal amount, which is quite a strong assumption. Ways of testing
this assumption and including the predictor in the most appropriate way are outlined in section
1.2.2. Option 2 for predictor variables is also the basis of the “test for trend”, discussed in
section 1.2.1.

1.2.1 Trend Test

We have seen that the χ2-test can be used to test for an association betwen two categorical
variables. However, it treats any deviation of the observed values from the expected values in
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1.2 Ordinal Variables

the same way. It does not specifically test if observations in higher categories of one variable
tend to be in higher (or lower) categories of the second variable. However, the χ2 statistic can
be broken down into two components, one of which measures the linear trend, and the other
deviations around that trend.

As an example, consider the data in Table 1.2. This is looking to see if there is an association
between the reading score (dichotomised as “High” or “Low”) and the writing score (categorised
into 4 ordinal levels, labelled 0, 1, 2, 3 for ease of interpretation when we get round to doing
some regression).

Reading Score Writing Score
Low High

0 18 (82%) 4 (28%)
1 42 (53%) 37 (47%)
2 10 (19%) 42 (81%)
3 4 ( 9%) 43 (91%)

Table 1.2: Association between reading and writing scores

The proportion of children with high writing scores increases as the reading score increases.
The χ2 statistic is 51.2 on 3 degrees of freedom, giving p < 0.001 and suggesting there is an
association, but saying nothing about how the association works.

This χ2 statistic can be decomposed into two parts, one testing the trend for the proportion
to increase as the ordinal predictor increases and on testing for variation around this trend. The
test is sometimes referred to as the Cochran-Armitage test, and it can be performed in stata
with a user-written command ptrend:

trend test]

. ptrendi 4 18 0 \ 37 42 1 \ 42 10 2 \ 43 4 3

+------------------------+

| r nr _prop x |

|------------------------|

1. | 4 18 0.182 0.00 |

2. | 37 42 0.468 1.00 |

3. | 42 10 0.808 2.00 |

4. | 43 4 0.915 3.00 |

+------------------------+

Trend analysis for proportions

------------------------------

Regression of p = r/(r+nr) on x:

Slope = .24784, std. error = .03548, Z = 6.984

Overall chi2(3) = 51.222, pr>chi2 = 0.0000

Chi2(1) for trend = 48.781, pr>chi2 = 0.0000

Chi2(2) for departure = 2.441, pr>chi2 = 0.2951

Here, the χ2 test for trend is highly significant, the test for departures from a linear trend is
non-significant.

This trend test appears regularly in the literature, and was developed by two highly re-
spected statisticians. However, I would suggest that it is never the best analysis available. The
reasoning behind it is perfectly sound, but if you look at the mathematics, it is exactly equiva-
lent to performing a linear regression, and we have seen that linear regression with dichotomous
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1 Modelling Categorical Outcomes

outcomes is not a good idea. However, we can combine the idea of the Cochran-Armitage test
with logistic regression as outlined in section 1.2.2.

1.2.2 Ordinal Predictors

We have seen that we can include a categorical predictor in a logistic regression model by putting
an i. before the variable’s name. If we create a variable called oread containing the ordinal read-
ing score and a variable called gwrite containing the dichotomous writing score, we can perform

a logistic regression.

. logistic gwrite i.oread

Logistic regression Number of obs = 200

LR chi2(3) = 55.25

Prob > chi2 = 0.0000

Log likelihood = -104.16821 Pseudo R2 = 0.2096

------------------------------------------------------------------------------

gwrite | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

oread |

1 | 3.964286 2.366622 2.31 0.021 1.230296 12.7738

2 | 18.9 12.38441 4.49 0.000 5.232435 68.2684

3 | 48.375 36.80353 5.10 0.000 10.89005 214.888

|

_cons | .2222222 .122838 -2.72 0.007 .0752087 .656609

------------------------------------------------------------------------------

. testparm i.oread

( 1) [gwrite]1.oread = 0

( 2) [gwrite]2.oread = 0

( 3) [gwrite]3.oread = 0

chi2( 3) = 40.22

Prob > chi2 = 0.0000

Performing testparm i.oread will test whether there is any association between oread and
gwrite. It is conceptually, but not mathematically, comparable to the overall χ2-test.

To get a test for trend, we add oread as a continuous variable a to the model. We can still
only have 3 coefficients for oread altogether, so one coefficient will need to be dropped. For
this reason, it is important to add oread before i.oread, otherwise it will be dropped as the
unidentifiable 4th coefficient.
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1.2 Ordinal Variables

. logistic gwrite oread i.oread

note: 3.oread omitted because of collinearity

Logistic regression Number of obs = 200

LR chi2(3) = 55.25

Prob > chi2 = 0.0000

Log likelihood = -104.16821 Pseudo R2 = 0.2096

------------------------------------------------------------------------------

gwrite | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

oread | 3.643681 .9240332 5.10 0.000 2.216545 5.989686

|

oread |

1 | 1.087989 .5068218 0.18 0.856 .4366229 2.711083

2 | 1.423578 .7522192 0.67 0.504 .5053657 4.010112

3 | 1 (omitted)

|

_cons | .2222222 .122838 -2.72 0.007 .0752087 .656609

------------------------------------------------------------------------------

. testparm oread

( 1) [gwrite]oread = 0

chi2( 1) = 26.00

Prob > chi2 = 0.0000

. testparm i.oread

( 1) [gwrite]1.oread = 0

( 2) [gwrite]2.oread = 0

chi2( 2) = 0.49

Prob > chi2 = 0.7844

Now, the testparm oread tests the linear trend effect of oread whilst the testparm i.oread

tests the departures around the linear trend. In this case, the latter test is not significant, whilst
the trend test is, so the best way to include oread in our model is as a continuous predictor.

It should be noted that the test for trend using logistic regression is testing linearity on
the log-odds scale, where as ptrend tests for linearity on the probability scale. However, the
important thing is whether the effect is linear in the model you are using, and for dichotomous
outcomes, the appropriate model is logistic.

1.2.3 Ordinal Outcomes

There are a number of possible approaches when the outcome variable is ordinal. A simple
crosstabulation can be used to calculate and ordinal odds ratio. This approach can then be
extended to produce a model predicting the probaility of being in each outcome category, re-
specting the ordinal nature of the data in a number of different ways.

We will explore these methods by applying them to the data in Table 1.3. This compares
two treatments, A and B, with the outcome being an ordinal variable with 4 levels: “Healed”,
“Improved”, “No change” and “Worse”. On treatment A, most subjects are in the “Healed” and
“Improved” categories, while on treatment B, most subjects are in the “No change” or “worse”
categories, sugggesting that treatment A is better.
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1 Modelling Categorical Outcomes

Treatment A Treatment B Total

Healed 12 (38%) 5 (16%) 17 (27%)
Improved 10 (31%) 8 (25%) 18 (28%)
No Change 4 (13%) 8 (25%) 12 (19%)
Worse 6 (19%) 11 (34%) 17 (27%)

Total 32 (100%) 32 (100%) 34 (100%)

Table 1.3: Ordinal Outcome Example

Crosstabulation with Ordinal outcomes

From this Table 1.3, we could calculate three odds ratios, by dichotomising the outcome in 3
ways: “Healed” vs “Improved”, “No Change” and “Worse”; “Healed” and “Improved” vs “No
Change” and “Worse”; or “Healed” “Improved”, “No Change” vs “Worse”. These odds ratios
can be calculated as in we saw for 2 by two tables:

OR1 = (12)×(8+8+11)
5×(10+4+6) = 3.2 (1.3)

OR2 = (12+10)×(8+11)
(5+8)×(4+6) = 3.2 (1.4)

OR3 = (12+10+4)×11
(5+8+8)×6 = 2.3 (1.5)

This is as much as we can do with cross-tabulation. However, the 3 odds ratios above are not
too dissimilar. Would it be reasonable to assume they are all estimates of the same population
parameter ? And if so, what is our best estimate of the value of that parameter ?

Ordinal Regression

We can get an estimate of this parameter using ordinal logistic regression, sometimes referred to
as ordered polytomous logistic regression. I’ll show how this works in Stata first, then explain
what is happening in the background.

Suppose we have a variable treatmentA containing 1 for those on treatment A and 0 for
those on treatment B, and a variable y containing 1 for “Worse”, 2 for “No Change”, 3 for
“Improved” and 4 for “Healed”. We could fit an ordinal logistic regression with the command

ologit y treatment, or

(the or says that we want to see odds ratios rather then coefficients, since we don’t know what
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1.2 Ordinal Variables

the coefficients might mean yet). The output we get is

Iteration 0: log likelihood = -87.993692

Iteration 1: log likelihood = -85.260015

Iteration 2: log likelihood = -85.249205

Iteration 3: log likelihood = -85.2492

Ordered logistic regression Number of obs = 64

LR chi2(1) = 5.49

Prob > chi2 = 0.0191

Log likelihood = -85.2492 Pseudo R2 = 0.0312

------------------------------------------------------------------------------

y | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

treatmentA | 2.932027 1.367426 2.31 0.021 1.175407 7.313878

-------------+----------------------------------------------------------------

/cut1 | -.5635603 .3435512 -1.236908 .1097877

/cut2 | .3179999 .3363157 -.3411668 .9771666

/cut3 | 1.616945 .396272 .8402663 2.393624

------------------------------------------------------------------------------

predict By default, the command predict after ologit gives predicted probabilities for each
outcome, exactly the same as it does after mlogit. There is now only a single linear predictor,
so if you use the xb option, you only need to give a single new variable. However, if you want the
probabilities of each possible outcome, you need to give as many variables as there are outcomes.

1.2.4 Alternatives

There are a number of alternatives to the ordered polytomous regression model for ordinal
data[1, 2]. One approach is to assume that there is a normally distributed latent variable
underlying the ordinal outcome, and that there are thresholds in this latent variable which
define which category is manifest. This is the ordinal probit model, which can be fitted with
oprobit.

Another approach to ordinal data is the Stereotype Regression model. This can be thought
of as lying between the ordered polytomous model and the multinomial model, in that it allows
variables to affect different transitions in different ways. If a variable has an effect on the
transition from level 1 to level 2, but not on the transition from level 2 to level 3, a stereotype
regression model is a useful way to model this. Stereotype regression models can be fitted with
the command slogit.
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2 Modelling Categorical Outcomes: Practical

2.1 Practical For Session 8: Categorical Outcomes

Datasets

The datasets that you will use in this practical can be accessed via http from within stata.
However, the directory in which they are residing has a very long name, so you can save yourself
some typing if you create a global macro for this directory. You can do this by entering

global basedir http://personalpages.manchester.ac.uk/staff/mark.lunt

global datadir $basedir/stats/8 categorical/data

(In theory, the global variable datadir could have been set with a single command, but fitting
the necessary command on the page would have been tricky. Far easier to use two separate
commands as shown above). If you wish to run the practical on a computer without internet
access, you would need to:

1. Obtain copies of the necessary datasets

2. Place them in a directory on your computer

3. Define the global macro $datadir to point to this directory.

2.1.1 Binomial & Multinomial Logistic Regression

The data used for this section was collected as part of a survey of alligator food choices in 4
lakes in Florida. The largest contributor to the volume of the stomach contents was used as the
outcome variable food, and the charactertics of the alligators are their length (dichotomised as
≤ 2.3m and > 2.3m), their gender and which of the four lakes they were caught in.

1.1 Load the alligators data into stata with the command use $datadir/alligators, and
familiarise yourself with the values used for each of the variables and their meanings with
the command label list

1.2 Create a new variable invertebrate which takes the value 0 if the main food was fish, 1
if the main food was invertebrates and missing if the main food was anything else. This
can be done with the command gen invertebrate = food - 1 if food < 3

1.3 Produce a cross-tabulation of food against length, with the command

tabulate invertebrate size, co

You should see that whilst fish and invertebrates are equally common in the smaller
alligators, the larger ones are more likely to eat fish than invertebrates.

1.4 Obtain an odds ratio for the effect of size on the probability that the main food is either
fish or invertebrates with

logistic invertebrate size

Is size a significant predictor of food choice ?

1.5 Now create another outcome variable which compares the probability that the main food
is reptiles to the probability that the main food is fish with

gen reptile = (food == 3) if (food == 1) | (food == 3)
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2.1 Practical For Session 8: Categorical Outcomes

1.6 Obtain an odds ratio for the effect of size on the probability that the main food is either
fish or reptiles with

logistic reptile size

Is size a significant predictor of this food choice ?

1.7 Now use mlogit food size, rrr to get the odds ratios for the effect of size on all food
choices. Which food category is the comparison group ?

1.8 Check that the odds ratios for the invertebrate vs. fish and reptile vs. fish comparisons
are the same as before.

1.9 Are larger alligators more likely to choose reptiles rather than invertebrates ? You can
test this with

lincom [Reptile]size - [Invertebrate]size, eform

What is the odds ratio for size in this food choice ?

1.10 Generate a new variable to enable you to check this result using a single logistic regression
model (gen rep inv = food == 3 if food == 3 | food == 2). Perform the logistic
regression with

logistic rep inv size

Are the results the same as you got with lincom ?

1.11 Now we are going to look at the influence of the lakes on the food choices. Produce a
table of main food choice against lake with

tabulate food lake, co chi2

Does the primary food differ between the 4 lakes ?

1.12 What proportion of alligators from Lake Hancock had invertebrates as their main food
choice ?

1.13 How does this proportion compare to the other three lakes ?

1.14 Now fit a multinomial logistic regression model with

mlogit food i.lake, rrr

Look at the LR χ2 statistic at the top: does this suggest that the primary food differs
between the lakes ?

1.15 What is the odds ratio for preferring invertebrates to fish in lake Oklawaha compared to
Lake Hancock ? Does this agree with what you saw in the table ?
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1.16 Confirm your answer to the previous question by using the command logistic

invertebrate i.lake

2.1.2 Using mlogit

This section uses the dataset $datadir/politics, which contains information on the effect of
gender and race on political party identification.

1.17 Use label list to find out the meanings of the variables

1.18 Use mlogit party race, rrr to determine the effect of race on party affiliation. How
does being black affect the odds of being a republican rather than a democrat ?

1.19 How does being black affect the odds of being an independent rather than a democrat ?

1.20 Use tabulate party race, co to confirm that your answers to the previous questions
are sensible.

1.21 What is the odds ratio for being a republican rather than a democrat for women compared
to men (use mlogit party gender, rrr to find out).

1.22 Fit a multinomial model in which party identification is predicted from both race and
gender (mlogit party race gender, rrr).

1.23 Add the interaction between race and gender, to see if the race influence differs between
men and women. Is this difference statistically significant ?

2.1.3 Ordinal Models

This section uses the data in $datadir/housing. This data concerns levels of satisfaction among
tenants of different types of housing, according how much contact they have with other residents
and how much influence they feel they have over the management of their housing.

1.24 Use label list to find out the meanings of the variables.

1.25 Does the degree of satisfaction depend on which type of housing the tenant lives in ?
(Use ologit satisfaction i.housing to find out).

1.26 Of which type of housing are the tenants most satisfied ?

1.27 Test whether influence and contact are significant predictors of satisfaction

1.28 Create a multivariate model for predicting satisfaction from all of the variables that were
significant univariately. Are these predictors all independently significant ? (You may
need to use testparm for categorical predictors).
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1.29 Does the effect of influence depend on which type of housing a subject lives in ? (Fit an
interaction term and use testparm to test its significance).
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