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0.1 Cross-tabulation

If we are interested in the association between two binary variables, for example the presence
or absence of a given disease and the presence or absence of a given exposure. Then we can
simply count the number of subjects with the exposure and the disease; those with the exposure
but not the disease, those without the exposure who have the disease and those without the
exposure who do not have the disease. We can than put these numbers into a 2 × 2 table, as
shown in Table 0.1.

Exposed Unexposed Total

Cases a b a + b
Controls c d c + d

Total a + c b + d a + b + c + d

Table 0.1: Presentation of data in a two-by-two table

If our sample has been randomly selected from a given population, then the proportions in
each cell (i.e. a/(a+ b+ c+ d) etc.) will differ from the proportions in the population only by
random variation. However, there are two other widely used sampling schemes for which this is
not the case. Both sampling schemes can be thought of as stratified samples, in which subjects
are sampled from two different strata.

The first scheme is exposure-based sampling, in which a fixed number of exposed subjects
and a fixed number of unexposed subjects are sampled. In this case, the prevalence of the
disease in the exposed and unexposed subjects (a/(a + c) and b/(b + d)) are unaffected, but
the proportion of exposed subjects is fixed by the sampling scheme, and need not reflect the
proportion in the populationa.

The alternative is outcome-based sampling, often referred to as a case-control study, in which
we sample a fixed number of cases (a+ b) and a fixed number of controls (c+ d). In this case,
the prevalence of the disease in our sample ((a + b)/(a + b + c + d) is fixed by the design, and
does not reflect the prevalence in the population.

If there is no association between the exposure and disease, we would expect the prevalence
of the disease to be the same in the exposed as it is in the unexposed. Since a+ b subjects have
the disease, the overall prevalence of disease is a+b

a+b+c+d . There are a + c exposed subjects, so

we would expect (a+b)×(a+c)
a+b+c+d subjects who are exposed and ill. This is the expected value of a,

under the null hypothesis that the prevalence does not vary with the exposure, and this works
for all sampling schemes.

We can calculate expected values for b, c and d in a similar fashion. If the observed values
are sufficiently far from their expected values under the null hypothesis, we can conclude that

the null hypothesis is unlikely to be true. This can be done by calculating (O−E)2

E for each cell
of the table (where O is the observed value and E is the expected value) and summing them for
the four cells in the table. This sum will follow a χ2 distribution on 2 degree of freedom if the
null hypothesis is true, so a P -value can be obtained as the probablity of the observing a higher
value from this distribution. This hypothesis test is referred to as the χ2-test.

To perform a χ2-test in stata, the command to use is tabulate, with the chi2 option. So if
the variable exposure contains the exposure data and disease contains the disease information,
the full command for a χ2-test is

aIn fact, it generally won’t, because the reason for sampling in this way is usually that the exposure is rare, and
we need to artificially increase the number of exposed subjects in our sample in order to increase our power.
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0.2 Modelling Approaches

tabulate exposure disease, chi2

0.1.1 Measures of Effect

Rather than simply testing the null hypothesis that the exposure does not affect the outcome,
we may wish to quantify the effect. Most commonly, we are interested in the relative risk and
its confidence interval, but this is not the only possibility. For example, if we are particularly
interested in the absolute risk of a particular outcome, we can use the risk difference (i.e. the
difference between the prevalence in the unexposed and the prevalence in the exposed.

However, if we have outcome-based sampling, the relative risk and the risk difference are
meaningless, because the overall prevalence of the disease in our sample is fixed by the design,
and does not reflect the prevalence in the population. However, the odds ratio will take the
same value for any of the sampling schemes, and hence it can still be used with outcome-based
sampling.

In stata, the relative risk and risk difference are most easily obtained using the command

cs disease var exposure var

The odds ratio can be obtained from the command by adding the option or at the end of the
command.

Relative Risk =
a
a+c
b
b+d

=
a(c+ d)

c(a+ b)

Risk Difference =
a

a+ c
− b

b+ d

Odds Ratio =
a
c
b
d

=
ad

cb

0.1.2 Limitations of Tabulation

Whilst tabulation can be useful when initially exploring data, it is not sufficient for complex
analysis. This is primarily because continuous variables cannot be included in the analysis, only
categorical variables. In addition, only a single variable can be analysed at a time. There are
more complex tabulations that can be used to allow for more than one variable, but these also
have drawbacks: the more variables are included in the model, the more “sparse” the tables
become (i.e. the fewer observations in each cell of the table), and the inference from the table
becomes less robust.

0.2 Modelling Approaches

0.2.1 Linear Regression and dichotomous outcomes

To understand what we are doing with logistic regression, consider an example taken from [1].
In this example, we wish to predict the probability that a person has coronary heart disease
(CHD) from their age. A sccatter plot of CHD against age is, at first sight, uninformative: see
Figure 0.1
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Figure 0.1: Scatter plot of CHD against against age

This illustrates one of the problems with using a linear model for a dichotomous outcome:
the outcome variable Y is clearly not normally distributed. It can only take one of two values:
0 or 1. Hence, to model this data, we will need to use a different error distribution.

However, the scatter plot does suggest that those with CHD tend to be older than those
without. We can confirm this by dividing subjects up into age groups, and plotting the propor-
tion of subjects with CHD in each group against the mean age in that group. The results are
illustrated in Figure 0.2, which confirms that the probability of CHD increases as age increases.

Notice that although the observed values of Y are either 0 or 1, the predicted outcome (Ŷ )
can take any value between 0 and 1. For example, there are 10 subjects between 20 and 30,
of whom 1 had CHD. Therefore, the proportion of subjects with CHD is 0.1, although there
is nobody in the sample with a value of 0.1 for the CHD variable. Ŷ can also be thought of
as the mean of Y in the subgroup: since 1 subject has Y = 1 and 9 have Y = 0, the mean of
Y = (9× 0 + 1× 1) /10 = 0.1.

Notice also that the estimates for each age group do not lie on a straight line: the line
becomes flatter as the proportion of subjects with CHD approaches 0 or 1. This is common
when there is a strong association between a continuous risk factor and a dichotomous outcome:
the strong association means that the slope is steep when the risk is around 0.5, but it has to
flatten out as it approaches 0 and 1 so that it does not exceed these values. If we were to fit a
straight line to this data, the predicted probability of CHD would be less than 0 for the very
youngest subjects in this dataset, as shown in Figure 0.3.

Clearly, we cannot use the linear regression model for this data, since this would give pre-
dicted values ranging from −∞ to∞, and even within the age range we are considering it would
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Figure 0.2: Scatter plot of proportion of CHD against against mean age

produce meaningless predicted values. In order to find a suitable model, we need to consider
the relationship between probabilities and odds.

0.2.2 Probabilities and Odds

A probability is a number between 0 and 1 (inclusive): 0 means the event in question never
happens, 1 means it always happens, and 0.5 means it happens half of the time. Another scale
that is useful for measuring probabilities is the odds scale, familiar to those who like betting on
the horses. If the probability of an event occuring in p, then the odds (Ω) of it occuring are
p : 1− p, which is often written as a fraction Ω = p/(1− p). Hence if the probability of an event
is 0.5, the odds are 1:1, whilst if the probability is 0.1, the odds are 1:9.

Why is the odds scale useful ? Primarily because it can take any value from 0 to ∞. Both
p and 1 − p have to be positive, so p/(1 − p) must be positive. As p → 0, p/(1 − p) → 0,
whilst as p → 1, 1 − p gets extremely small so p/(1 − p) gets extremely large: for example, if
p = 0.99,Ω = 0.99/0.01 = 99, whilst if p = 0.999,Ω = 0.999/0.001 = 999.

So, if p ranges from 0 to 1, p/(1 − p) ranges from 0 to ∞. If we now take logs, then
log (p/(1− p)) ranges from −∞ to ∞. Hence, we can model

g(p) = log

(
p

(1− p)

)
(0.1)

rather than p: as g(p) goes from −∞ to∞, p goes from 0 to 1. Figure 0.4 shows the relationship
between p and g(p): you will see that the shape of this curve is very similar to that in Figure
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Figure 0.3: Scatter plot of proportion of CHD against against mean age with overlaid linear
model

0.2, suggesting that using this link would give a good fit to that data. It is also symmetric, since
if the odds of an event happening are Ω, the odds of it not happening are 1/Ω.

It is important to remember that there is a one-to-one correspondance between odds and
probabilities: if you know the probability (p) of an event occurring, you can calculate the odds
(Ω = p/(1− p)), and if you know the odds you can calculated the probability (p = Ω/(1 + Ω)).
So the odds scale is just a different scale that can be used to measure probabilities.

0.2.3 The Binomial Distribution

Suppose you toss a coin 10 times: what is the probability that you get a) 10 heads, b) 5 heads,
c) no heads. Intuitively, you think that getting 5 heads should happen more often than getting
10 or none. Getting 10 heads would be seen as being unusual, but not impossible. However,
getting 4 or 6 heads would be seen as less unusual.

The binomial distribution can be used to determine how unusual getting 10 heads would be
in this case. It requires two parameters: the probability of a success (in this case 0.5, assuming
that the coin we use is fair), and the number of trials that we carry out (in this case 10). The
number of heads we get has to be a whole number from 0 to 10 inclusive, and from the binomial
distribution we can calculate how like each of these outcomes is.

The binomial distribution is appropriate whenever:

1. the outcome we are interested in is dichotomous (we can think of it as a success or a
failure); and
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Figure 0.4: Relationship between proportion and log-odds

2. we are considering a number of independent trials.

Therefore, the binomial distribution is appropriate to use as an error distribution in logistic
regression.

0.2.4 The Logistic Regression Model

So, the logistic regression model is

log

(
π̂

(1− π̂)

)
= β0 + β1x1 + . . .+ βpxp

Y ∼ Binomial(π̂)

where π̂ is the predicted probability that Y = 1, given the values of x1 . . . xp.

Parameter Interpretation

In a simple linear model Y = β0 + β1x, if x increases by 1, Y increases by β1. In a logistic
regression model, it is log (π̂/(1− π̂) which increases by β1. What does this mean in the real
world ?

Suppose that the predicted probability of the event of interest is p0 when x = 0 and p1 when
x = 1, Then we have

log

(
p̂0

1− p̂0

)
= β0
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and

log

(
p̂1

1− p̂1

)
= β0 + β1

So

log

(
p̂1

1− p̂1

)
= log

(
p̂0

1− p̂0

)
+ β1

If we exponentiate both sides of this equation we get

e
log

(
p̂1

1−p̂1

)
= e

log

(
p̂0

1−p̂0

)
+β1

which simplifies to

p̂1
1− p̂1

=
p̂0

1− p̂0
× eβ1 (0.2)

In other words, when x increases by 1, the odds of a positive outcome increase by a factor
of eβ1 . Hence eβ1 is called the odds ratio for a unit increase in x.

The interpretation of β0 is slightly different, since there is no variable associated with this

coefficient. However, we can say that if x = 0, log
(

π̂
(1−π̂)

)
= β0, so π̂

(1−π̂) = eβ0 . In other words,

β0 is the log of the odds of a positive outcome when all of the predictor variables take the value
0 (it is analogous to the intercept in a linear model, which is the value taken by Y when all the
predictor variables are 0).

Odds Ratios and Relative risks If p is small, then Ω ≈ p, since 1 − p ≈ 1. Thus, odds
are very similar to probabilities provided that p is small, and odds ratios are then very similar
to relative risks. However, if the outcome of interest is more common, then the difference is
greater. Figure 0.5shows a plot of Ω against p, showing clearly how similar they are for small p
but how they diverge increasingly as p increases.

0.2.5 Logistic Regression in Stata

There are two commands for performing logistic regression in stata, logistic and logit. They
are almost identical: the only difference is that by default, logistic produces a table of odds
ratios whilst logit produces a table of coefficients. However, either can be used, and there are
options to get coefficients from logistic and odds ratios from logit.

The basic syntax for both commands is the same:

logistic depvar
[

varlist
]

where depvar is the outcome variable and varlist are the predictors. Stata assumes that
depvar takes the value 0 if the event of interest did not take place and 1 if it didb. The vari-
ables in varlist can be categorical (if you use the construction logistic depvar i.indepvar),
continuous or a mixture of the two.

Here is an example of performing logistic regression using stata. We will look at the same
example as at the beginning of this chapter, using age to predict the presence of coronary heart
disease, with the data taken from [1]. The results of running the command logistic chd age

are given below:

bIn fact, it will take any value not equal to 0 or missing as meaning the event took place, but that is not usually
a sensible way of coding your data
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Figure 0.5: Comparison of Odds and Probability

. logistic chd age

Logistic regression Number of obs = 100
LR chi2(1) = 29.31
Prob > chi2 = 0.0000

Log likelihood = -53.676546 Pseudo R2 = 0.2145

chd Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

age 1.117307 .0268822 4.61 0.000 1.065842 1.171257

This is very similar to the output from linear regression wich you are familiar with. There
is no ANOVA table, since that is not meaningful in logistic regression. There is an overall
model likelihood ratio χ2-statistic (29.31) and its corresponding p-value at the top. R2 cannot
be calculated for a logistic regression model, but there are a number of surrogates that can be
used, one of which is given by stata as the “Pseudo R2”. More details can be found in section
0.3.2

Then there is a table of odds ratios. In this case, it only contains a single entry, since we
only have a single predictor variable. The odds ratio is given as 1.12, with a 95% confidence
interval of (1.07, 1.17). This means that for each year increase in age, the odds of CHD increase
by a factor of 1.12. There is also a z-statistic for testing the null hypothesis that the odds ratio
is 1, and the result of that significance test (p = 0.000, the effect of age is highly significant).

If we were to use the coef option of the logistic command, we would get the coefficients of
the logistic regression model rather than odds ratios:
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. logistic chd age, coef

Logistic regression Number of obs = 100
LR chi2(1) = 29.31
Prob > chi2 = 0.0000

Log likelihood = -53.676546 Pseudo R2 = 0.2145

chd Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .1109211 .0240598 4.61 0.000 .0637647 .1580776
_cons -5.309453 1.133655 -4.68 0.000 -7.531376 -3.087531

The top part of the output is identical: only the table of coefficients is different. We now
have two coefficients: age and cons. The reason that we did not have cons in the previous is
example is that this coefficient corresponds to β0, and, as we have seen, eβ0 is not an odds ratio,
it is simply the odds of having CHD when age is 0, and it was therefore not appropriate to put
it in a column labelled “Odds Ratios”. (As with linear regression, the value of β0 is often not
of interest, since it lies outside the range of the data, and corresponds to a situation in which
we are not interested (in this case, the prevalence of CHD in newborn babies)).

Using predict after logistic

Having fitted our logistic regression model, we can use the predict command to obtain addi-
tional variables in our dataset. There are a variety of diagnostic statistics which can be obtained:
we will meet some of them in Section 0.3.3. For now, we will only consider two options: the
predicted probability and the linear predictor.

The predicted probability can be generated using the command predict it varname, p.
Lets do this with the CHD data. If we enter the commands

logistic chd age

predict pred, p

graph twoway scatter pred age

we will get a scatter plot of the predicted probability of CHD at each age, which should look
something like Figure 0.6 (I have overlaid the proportion of subjects in each age-band, as shown
in figure 0.2)

The change in the probability of having CHD as age increases is clearly non-linear: it in-
creases slowly at young ages, more rapidly arounnd ages 40–50 and slowly again thereafter. This
echoes what we see when we look at the prevalence by ageband.

However, this non-linearity is a consequence of the link function that we have chosen. By
using the logit link, we are assuming that the log of the odds of CHD does increase linearly
with age. We can see that if we obtain the linear predictor from the predict command using the
option xb, and plot that against age, as seen in Figure 0.7:

predict lp, xb

graph twoway scatter lp age

0.2.6 Other Possible Models for Proportions

There are many advantages to using the logit link for modelling proportions, but it is not the
only possible link function.
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Figure 0.6: Scatter plot of predicted probability of CHD against age

0.2.7 Log-binomial

One perceived drawback of the logit link is that the model is linear in the log of the odds of
the outcome, and the model coefficients can be transformed into odds ratios. People are more
familiar with using probabilities than odds, and would prefer to have relative risks than odds
ratios. Unfortunately, the logit link can only provide odds ratios (although, as we have seen,
these are numerically close to relative risks if the prevalence is low).

In order to obtain relative risks, we need to use a log link, i.e. model

log π̂ = β0 + β1x

When x increases by one, we add β to log π̂, which is equivalent to multiplying π̂ by eβ.

This can be done, and such a model, with a log link and and a binomial error distribution, is
called a log-binomial model. Such models are gaining in popularity in epidemiology, but there
are a number of concerns which should be borne in mind:

1. If log π̂ can take any value from −∞ to ∞, π̂ can take any value from 0 to ∞. So a log-
binomial model can produce predicted values that are greater than 1 (but not less than
0)

2. A logistic regression model assumes that the probability of a positive outcome increases
linearly on a logit scale, whilst a log-binomial model assumes a linear increase on a log scale.
If all of the predicted probabilities are small, then there will be little difference between the
logistic regression model and the log-binomial model. However, if the outcome is common,
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Figure 0.7: Scatter plot of linear predictor from logistic regression model for CHD against age

the can be a considerable difference in the predicted probabilities from the two models,
and it will be an empirical decision which model fits better.

3. The log-binomial model is not symmetric. That is, if q is the probability that the event
in question does not take place, and we estimate q using a log-binomial model, it is not
true that q̂ = 1− π̂, which would be the case if we used logistic regression. If the outcome
in question is common, it may be necessary to model q, since modelling p could produce
predicted probabilities greater than 1.

The glm command can be used in stata to fit a log-binomial model (in fact, this command
can be used to fit any Generalised Linear Model, hence the name). The stata command, and
resulting output, for fitting this model are shown below
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0.3 Logistic Regression Diagnostics

. glm chd age, link(log) fam(binom) eform

Iteration 0: log likelihood = -101.27916
Iteration 1: log likelihood = -57.187516

(output omitted )

Iteration 50: log likelihood = -54.740594 (backed up)
convergence not achieved

Generalized linear models No. of obs = 100
Optimization : ML: Newton-Raphson Residual df = 98

Scale parameter = 1
Deviance = 109.4811885 (1/df) Deviance = 1.117155
Pearson = 95.42977676 (1/df) Pearson = .9737732

Variance function: V(u) = u*(1-u) [Bernoulli]
Link function : g(u) = ln(u) [Log]
Standard errors : OIM

Log likelihood = -54.74059424 AIC = 1.134812
BIC = -341.8254897

chd Risk Ratio Std. Err. z P>|z| [95% Conf. Interval]

age 1.047654 .00875 5.57 0.000 1.030644 1.064945

Warning: parameter estimates produce inadmissible mean estimates in one or
more observations.

This produces a relative risk estimate of 1.05 per year increase in age, with a 95% confidence
interval (1.03, 1.06). Notice the warning at the bottom of the output that some predicted values
are inadmissable. This means that we have predicted probabilities greater than 1. We can see
this by plotting the predicted probabilities against age, as seen in Figure 0.8

In this case, we clearly get a better fit from the logistic regression model: the assumption
made by the log-binomial model that the probability of CHD increases exponentially with age
is not borne out by the data. However, this needs to be checked for each individual model.

In particular, the problem in this example arises from the fact that age is a continuous
variable. If all of the predictors are categorical, the issue of the choice of link is far less important
(since all variables can only take the values either 0 or 1), and the difference between the logistic
and log-binomial models will be less.

0.2.8 Other Link Functions

The log link function can be used because it produces coefficients that are more easily inter-
pretable than the odds ratios that are produced by logistic regression. There are also other link
functions that have been used historically, such as the probit function and the complementary
log-log link. Both of these link functions produce predicted values in the range 0-1, but the co-
efficients from these models do not have a straightforward interpretation, and they are therefore
not as useful as the logistic regression models. The link functions that can be used in glm can
be found using the command help glm.

0.3 Logistic Regression Diagnostics

Having produced a logistic regression model, we need to check how good it is. There are two
components to this: how well it fits the data overall (discussed in Section 0.3.2) and whether
there are any individual observations with either a poor fit or an undue influence on the overall
fit of the model (discussed in Section 0.3.3).
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Figure 0.8: Comparison of predictions from logistic regression and log-binomial models

0.3.1 Discrimination and Calibration

Two terms often used when talking about how good a logistic regression model is are calibration
and discrimination. Discrimination refers to how well the model distinguishes between subjects
at high and low risk of the outcome. Calibration refers to how closely the predicted probabilities
are to the true probabilities. It is possible to have good discrimination without good calibration:
if a model developed in a population with high prevalence is applied to a population with low
prevalence, the calibration will be poor: the predicted probabilities will be higher than the
observed probabilities. However, the discrimination may still be as good: subjects with high
predicted probabilities may be more likely to have the event than those with low probabilities,
even if the actual predicted probabilities are all too high.

0.3.2 Goodness of Fit

R2

Whilst R2 is a very valuable measure of how well a linear regression model fits, it is far less
useful with logistic regression. For one thing, there are a number of different ways in which it can
be calculated, all of which give the same answer for linear regression but different answers for
logistic regression. A comparison of 12 different statistics was made by Mittlböck and Schemper
[2], who recommended using either the square of the Pearson correlation coefficient between the
observed outcomes and the predicted probabilities, or an alternative measure based on the sum
of the squares of the differences between the observed outcomes and the predicted probabilities.
The pseudo-R2 produced by stata is based on the log-likelihood, and was not recommended as

16



0.3 Logistic Regression Diagnostics

it lacks an easily understood interpretation.

It should also be noted that R2 values tend to be very low for logistic regression models, much
lower than for linear regression models. This is because we are trying to predict the outcome,
whereas the model only gives us the probability of the outcome. So, for example, suppose we
have two groups of subjects, a high risk group and a low risk group, and we know which group
each subject belongs to. If the prevalence is 0.45 in the low risk group and 0.55 in the high risk
group, then the pseudo-R2 value produced by stata for a logistic regression of group predicting
outcome is less than 0.01, despite identifying the high risk and low risk groups perfectly. If the
prevalences were 0.1 and 0.9 respectively, the pseudo-R2 value would be 0.53. Hence, R2 is a
poor choice for an overall assessment of the fit of the model.

Hosmer-Lemeshow test

A better way of assessing the fit of a logistic regression model is compare the expected and
observed numbers of positives for different subgroups of the data. If the observed and expected
numbers are sufficiently close, then we can assume that we have an adequate model. This test
assesses calibration.

How do we select these subgroups ? If all the predictor variables are categorical, then there
are only a limited number of covariate patterns that are possible. For example, if we considered
age in 5 age-bands and sex as our only predictors, then there are 10 possible covariate patterns,
no matter how many subjects in our dataset. We could therefore compare the observed and
expected numbers of positives in each of these 10 subgroups.

However, if we treated age as continous variable, it is quite possible that there are no two
subjects in the dataset with exactly the same age, and therefore there are as many different
covariate patterns as there are subjects. We therefore need another way to group the data.

One suggestion, now widely used, was made by Hosmer & Lemeshow [3]. They rank the
subjects according to their predicted probability of a positive outcome, and then divide them
into a number of equally sized groups. A χ2-statistic can be calculated from the expected and
observed numbers of positive outcomes in each group. The number of groups to use is arbitrary,
but 10 is common.

If this statistic is unusually large, then the differences between the observed and expected
values are greater than we would expect by chance, and our model is not adequate. This may
be becasue we have missed out an important predictor variable, misspecified the association
between one or more predictors and the outcome (e.g. assumed a linear association between the
predictor and the logit of the outcome when this is not in fact the case) or omitted one or more
important interactions between the variables in the model. We would have to go back to our
original logistic regression model and see if changin the model improved the fit to an acceptable
level.

This Hosmer-Lemeshow test is implemented in stata using the command estat gof. With-
out any options, this treats each covariate pattern as a distinct group, which is often not useful
if there are continuous predictors. The option group enables you to choose the number of groups
yourself. The results of applying this test to the CHD data is given below:
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. estat gof, group(10)

Logistic model for chd, goodness-of-fit test

(Table collapsed on quantiles of estimated probabilities)

number of observations = 100
number of groups = 10

Hosmer-Lemeshow chi2(8) = 2.22
Prob > chi2 = 0.9734

In the above example, the fit of the model would be considered to be adequate, since a χ2

value of 2.22 on 8 degrees of freedom is not large: p = 0.97. So our model fits the data well.

ROC Curves

Another intuitively appealing way to assess the fit of a logistic regression model is to see what
proportion of true positives it classifies as being positive (the sensitivity) and what proportion
of true negatives it classifies as being negative (the specificity). Unfortunately, the output of a
logistic regression is not a classification as positive or negative, but a predicted probability of
being positive or negative.

Of course, we can choose one particular probability as our threshold, and count how many
positives and negatives are above and below the threshold, but the choice of threshold will
always be arbitrary. The stata command estat classification will produce sensitivities and
specificities for you. By default, it uses a probability of 0.5 as the threshold, but this can be
changed with the option cutoff.

A better idea is to measure the sensitivity and specificity at every possible threshold. We
can then plot the sensitivity and specificity against the chosen threshold, as shown in Figure 0.9
(which was produced using the stata command lsens.

If we say that everybody with a probability more than 0.1 counts as a positive, we will have
a very sensitive test, but it will not be very specific. As the threshold increases, the sensitivity
decreases and the specificity increases, until nobody at all is classed as positive (sensitivity =
0%, specificity = 100%).

However, this is not a very efficient summary of the fit of the model. We can improve matters
by plotting the sensitivity against (1 - the specificity) to give a receiver operating characteristic
(ROC) curve as shown in Figure 0.10 (which was produced using the stata command lroc.

The bottom left corner of this graph corresponds to the right hand side of the previous graph
(sensitivity is 0%, specificity 100%), whilst the top right corner corresponds to the left hand side
( sensitivity 100%, specificity 0%). Ideally, we would like to reach the top left corner, since there
sensitivity is 100% and specificity is 100%. The closer we approach this point, the better the
model.

The results of the goodness of fit can therefore be summed up in a single number: the area
under the ROC curve (often abbreviated to AUC). If this area reaches 1, then the curve must
pass through the top left corner, and the model is perfect. It can be shown that the area under
the curve is the probability that, if one one positive subject and one negative subject are selected
at random, the positive subject has a higher predicted probability than the negative subject.
It is thus a measure of discrimination. The diagonal line represents an area under the curve of
0.5, which is the discrimination that you would expect if you tossed a coin to identify positive
subjects, rather than use a logistic regression model.
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0.3 Logistic Regression Diagnostics
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Figure 0.9: Sensitivity and specificity by predicted probability

0.3.3 Assessing Fit of Individual Points

The residuals from a linear model are vital in determining whether or not the data satisfies
the assumptions of a linear model. However, if the logistic regression model is based on data
from individual subjects (which is what we have considered so far), the residuals from a logistic
regression model are far less useful. This is because the outcome variable can only take the
values 0 and 1, so the residual can only take the values 1− π̂ or −π̂.

However, there are some diagnostics available. We can assess how great an influence an
individual point has on the coefficients of the logistic regression model and on any lack of overall
fit in the model. Any points with unduly high influence should be investigated to ensure that
the data has been recorded correctly. The effect of removing the influential point on the model
should also be investigated, and if necessary the results presented both with and without the
influential point(s).

The concept of leverage in a linear model does not translate directly to a logistic model.
However, there is a quantity ∆β̂i which measures the amount that the logistic regression model
parameters change when the ith observation is omitted from the model. This can be obtained
from stata using the dbeta option to the predict command after a logistic regression model
has been fitted. A plot of ∆β̂i against π̂ for each observation (or each covariate pattern) will
reveal observations which have a large effect on the regression parameters. It is not possible to
give a numerical value to determine which points are influential: you need to identify outliers
by eye.

As an example, Figure 0.11 is a plot of ∆β̂i against π̂ for each observation in the CHD
dataset.
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Figure 0.10: ROC curve

You will notice that there is one point which has far more influence than the others. This
corresponds to subjects aged 25, 1 of whom had CHD and one did not. This gives an observed
prevalence of 0.5, compared to a predicted prevalence of 0.07, which will tend to reduce the
slope of the logistic regression model by pulling the regression line upwards. However, excluding
these two subjects has very little effect on the logistic regression model: the odds ratio increased
from 1.12 per year to 1.13 per year.

. logistic chd age if dbeta < 0.2

Logistic regression Number of obs = 98
LR chi2(1) = 32.12
Prob > chi2 = 0.0000

Log likelihood = -50.863658 Pseudo R2 = 0.2400

chd Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

age 1.130329 .0293066 4.73 0.000 1.074324 1.189254

In addition, we can use residuals to identify individual points for which the model fits poorly.
Stata provides two different kinds of residuals for this: ∆X2

i , obtained by using the dx2 option
to predict; and ∆Di, obtained by using the ddeviance option. Again, these statistics can be
plotted against π̂, and outlying observations identified by eye. Such observations do not need
to be omitted from the analysis, since they are not having an undue influence on the regression
parameters, but it may be important to point out areas in which the predictions from the model
are poor.
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Figure 0.11: Plot of β̂i against π̂

0.3.4 Problems of separation

It can happen that one of the predictor variables predicts the outcome perfectly. For example,
suppose that we are interested in the effect of gender on our outcome, but we only have a single
woman in our sample. The odds ratio for women compared to men will be either 0 (if the one
woman does not have the outcome of interest), or ∞ if she does. Unfortunately, odds of 0 and
∞ correspond to a linear predictor of −∞ or∞, and stata cannot handle infinite numbers (that
should not be taken as criticism, nor can any other stats package, or indeed computer program).
It will therefore report that “gender determines outcome exactly” and drop the woman from the
regression model.

This problem arises when there is a particular combination of indicator variables for which
there are no cases (or every subject is a case). The problem is most common when modelling
interactions between predictors with several categories, since this involves dividing subjects into
a large number of subgroups. The only solution is to collapse categories together until there is
at least one case and one control for each combination of the indicator variables. If one of the
categorical variables can be fitted as a continuous variable, this might also help.
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