
Cross-tabulation
Regression
Diagnostics

Statistical Modelling with Stata: Binary
Outcomes

Mark Lunt

Centre for Epidemiology Versus Arthritis
University of Manchester

12/12/2023



Cross-tabulation
Regression
Diagnostics

Cross-tabulation

Exposed Unexposed Total
Cases a b a + b
Controls c d c + d
Total a + c b + d a + b + c + d

Simple random sample: fix a + b + c + d
Exposure-based sampling: fix a + c and b + d
Outcome-based sampling: fix a + b and c + d
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The χ2 Test

Compares observed to expected numbers in each cell
Expected under null hypothesis: no association
Works for any of the sampling schemes
Says that there is a difference, not what the difference is
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Measures of Association

Relative Risk =
a

a+c
b

b+d

==
a(b + d)

b(a + c)

Risk Difference =
a

a + c
− b

b + d

Odds Ratio =
a
c
b
d

==
ad
cb

All obtained with cs disease exposure[, or]

Only Odds ratio valid with outcome based sampling
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Crosstabulation in stata

. cs back_p sex, or

| sex |
| Exposed Unexposed | Total

-----------------+------------------------+------------
Cases | 637 445 | 1082

Noncases | 1694 1739 | 3433
-----------------+------------------------+------------

Total | 2331 2184 | 4515
| |

Risk | .2732733 .2037546 | .2396456
| |
| Point estimate | [95% Conf. Interval]
|------------------------+------------------------

Risk difference | .0695187 | .044767 .0942704
Risk ratio | 1.341188 | 1.206183 1.491304

Attr. frac. ex. | .2543926 | .1709386 .329446
Attr. frac. pop | .1497672 |

Odds ratio | 1.469486 | 1.27969 1.68743 (Cornfield)
+-------------------------------------------------

chi2(1) = 29.91 Pr>chi2 = 0.0000
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Limitations of Tabulation

No continuous predictors
Limited numbers of categorical predictors
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Introduction
Generalized Linear Models
Logistic Regression
Other GLM’s for Binary Outcomes

Linear Regression and Binary Outcomes

Can’t use linear regression with binary outcomes
Distribution is not normal
Limited range of sensible predicted values

Changing parameter estimation to allow for non-normal
distribution is straightforward
Need to limit range of predicted values
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Example: CHD and Age
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Example: CHD by Age group
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Example: CHD by Age - Linear Fit
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Generalized Linear Models

Linear Model

Y = β0 + β1x1 + . . .+ βpxp + ε

ε is normally distributed

Generalized Linear Model

g(Y ) = β0 + β1x1 + . . .+ βpxp + ε

ε has a known distribution
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Generalized Linear Models

Linear Model

Y = β0 + β1x1 + . . .+ βpxp + ε

ε is normally distributed

Generalized Linear Model

g(Y ) = β0 + β1x1 + . . .+ βpxp + ε

ε has a known distribution
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Probabilities and Odds

Probability Odds
p Ω = p/(1− p)
0.1 = 1/10 0.1/0.9 = 1:9 = 0.111
0.5 = 1/2 0.5/0.5 = 1:1 = 1
0.9 = 9/10 0.9/0.1 = 9:1 = 9
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Probabilities and Odds
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Advantage of the Odds Scale

Just a different scale for measuring probabilities
Any odds from 0 to∞ corresponds to a probability
Any log odds from −∞ to∞ corresponds to a probability
Shape of curve commonly fits data
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The binomial distribution

Outcome can be either 0 or 1
Has one parameter: the probability that the outcome is 1
Assumes observations are independent
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The Logistic Regression Equation

log

(
π̂

1− π̂

)
= β0 + β1x1 + . . .+ βpxp

Y ∼ Binomial(π̂)

Y has a binomial distribution with parameter π
π̂ is the predicted probability that Y = 1
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Parameter Interpretation

When xi increases by 1, log (π̂/(1− π̂)) increases by βi

Therefore π̂/(1− π̂) increases by a factor eβi

For a dichotomous predictor, this is exactly the odds ratio
we met earlier.
For a continuous predictor, the odds increase by a factor of
eβi for each unit increase in the predictor
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Odds Ratios and Relative Risks
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Logistic Regression in Stata

. logistic chd age

Logistic regression Number of obs = 100
LR chi2(1) = 29.31
Prob > chi2 = 0.0000

Log likelihood = -53.676546 Pseudo R2 = 0.2145

------------------------------------------------------------------------------
chd | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
age | 1.117307 .0268822 4.61 0.000 1.065842 1.171257

------------------------------------------------------------------------------
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Predict

Lots of options for the predict command
p gives the predicted probability for each subject
xb gives the linear predictor (i.e. the log of the odds) for
each subject
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Plot of probability against age
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Plot of log-odds against age
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Other Models for Binary Outcomes

Can use any function that maps (−∞,∞) to (0, 1)
Probit Model
Complementary log-log

Parameters lack interpretation
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The Log-Binomial Model

Models log(π) rather than log(π/(1− π))

Gives relative risk rather than odds ratio
Can produce predicted values greater than 1
May not fit the data as well if outcome is not rare
Stata command: glm varlist, family(binomial)
link(log)

If association between log(π) and predictor non-linear, lose
simple interpretation.
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Log-binomial model example
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Logistic Regression Diagnostics

Discrimination and Calibration
Goodness of Fit
Influential Observations
Poorly fitted Observations
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Discrimination and Calibration
Discrimination Subjects with higher predicted probabilities

more likely to have the event
Calibration Predicted probability is a good measure of

probability of the event.
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Problems with R2

Multiple definitions
Lack of interpretability
Low values

Can predict P(Y = 1) perfectly, not predict Y well at all if
P(Y = 1) ≈ 0.5.
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Hosmer-Lemeshow test

Detects lack of calibration
Very like χ2 test
Divide subjects into groups
Compare observed and expected numbers in each group
Want to see a non-significant result
Command used is estat gof

Can always improve model by adding non-linear or
interaction terms



Cross-tabulation
Regression
Diagnostics

Discrimination and Calibration
Goodness of Fit
Influential Observations
Poorly fitted observations
Separation

Hosmer-Lemeshow test example

. estat gof, group(5) table

Logistic model for chd, goodness-of-fit test

(Table collapsed on quantiles of estimated probabilities)
+--------------------------------------------------------+
| Group | Prob | Obs_1 | Exp_1 | Obs_0 | Exp_0 | Total |
|-------+--------+-------+-------+-------+-------+-------|
| 1 | 0.1690 | 2 | 2.1 | 18 | 17.9 | 20 |
| 2 | 0.3183 | 5 | 4.9 | 16 | 16.1 | 21 |
| 3 | 0.5037 | 9 | 8.7 | 12 | 12.3 | 21 |
| 4 | 0.7336 | 15 | 15.1 | 8 | 7.9 | 23 |
| 5 | 0.9125 | 12 | 12.2 | 3 | 2.8 | 15 |
+--------------------------------------------------------+

number of observations = 100
number of groups = 5

Hosmer-Lemeshow chi2(3) = 0.05
Prob > chi2 = 0.9973
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Sensitivity and Specificity

Test +ve Test -ve Total
Cases a b a + b
Controls c d c + d
Total a + c b + d a + b + c + d

Sensitivity:
Probability that a case classified as positive
a/(a + b)

Specificity:
Probability that a non-case classified as negative
d/(c + d)
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Sensitivity and Specificity in Logistic Regression

Sensitivity and specificity can only be used with a single
dichotomous classification.
Logistic regression gives a probability, not a classification
Can define your own threshold for use with logistic
regression
Commonly choose 50% probability of being a case
Can choose any probability: sensitivity and specificity will
vary
Why not try every possible threshold and compare results:
ROC curve
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ROC Curves

Shows how sensitivity varies with changing specificity
Gives a measure of discrimination
Larger area under the curve = better
Maximum = 1
Tossing a coin would give 0.5
Command used is lroc
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ROC Example
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Influential Observations

Residuals less useful in logistic regression than linear
Can only take the values 1− π̂ or −π̂.
Grouping by covariate pattern may help: observed
outcome can now lie between 0 and 1 if multiple
observations have same pattern
Leverage does not translate to logistic regression model
∆β̂i measures effect of i th observation on parameters
Obtained from dbeta option to predict command
Plot against π̂ to reveal influential observations
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Plot of ∆β̂i against π̂
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Effect of removing influential observation

. logistic chd age if dbeta < 0.2

Logistic regression Number of obs = 98
LR chi2(1) = 32.12
Prob > chi2 = 0.0000

Log likelihood = -50.863658 Pseudo R2 = 0.2400

------------------------------------------------------------------------------
chd | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
age | 1.130329 .0293066 4.73 0.000 1.074324 1.189254

------------------------------------------------------------------------------
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Poorly fitted observations

Can be identified by residuals
Deviance residuals: predict varname, ddeviance
χ2 residuals: predict varname, dx2

Not influential: omitting them will not change conclusions
May need to explain fit is poor in particular area
Plot residuals against predicted probability, look for outliers
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Separation

Need at least one case and one control in each subgroup
to calculate odds for that subgroup
If you have lots of subgroups, this may not be true
In which case, log(OR) for that group is −∞ or∞
Stata will drop all subjects from that group (unless you use
the option asis)
Not a problem with continuous predictors


