Statistical Modelling with Stata: Binary Outcomes

Mark Lunt

Centre for Epidemiology Versus Arthritis University of Manchester

12/12/2023

Cross-tabulation

	Exposed	Unexposed	Total
Cases	а	b	a + b
Controls	С	d	c + d
Total	a + c	b + d	a + b + c + d

- Simple random sample: fix a + b + c + d
- Exposure-based sampling: fix *a* + *c* and *b* + *d*
- Outcome-based sampling: fix a + b and c + d

- Compares observed to expected numbers in each cell
- Expected under null hypothesis: no association
- Works for any of the sampling schemes
- Says that there is a difference, not what the difference is

Measures of Association

Relative Risk
$$=$$
 $\frac{\frac{a}{a+c}}{\frac{b}{b+d}} == \frac{a(b+d)}{b(a+c)}$
Risk Difference $=$ $\frac{a}{a+c} - \frac{b}{b+d}$
Odds Ratio $=$ $\frac{\frac{a}{c}}{\frac{b}{d}} == \frac{ad}{cb}$

- All obtained with cs disease exposure[, or]
- Only Odds ratio valid with outcome based sampling

Crosstabulation in stata

. cs back_p sex, or

	sex Exposed	Unexposed	 Total		
Cases Noncases	637 1694	445 1739	1082 3433	-	
Total	2331	2184	4515	-	
Risk	.2732733	.2037546	.2396456		
	Point	estimate	 [95% Cor	nf. Interval]	
Risk difference Risk ratio Attr. frac. ex. Attr. frac. pop Odds ratio	.0695187 1.341188 .2543926 .1497672 1.469486		.04476 1.206183 .1709386 1.27969	7 .0942704 3 1.491304 5 .329446 9 1.68743	(Cornfield)
-	+	chi2(1) =	29.91 Pr>0	chi2 = 0.0000	

Limitations of Tabulation

- No continuous predictors
- Limited numbers of categorical predictors

Introduction Generalized Linear Models Logistic Regression Other GLM's for Binary Outcomes

Linear Regression and Binary Outcomes

- Can't use linear regression with binary outcomes
 - Distribution is not normal
 - · Limited range of sensible predicted values
- Changing parameter estimation to allow for non-normal distribution is straightforward
- Need to limit range of predicted values

Introduction Generalized Linear Models Logistic Regression Other GLM's for Binary Outcomes

Example: CHD and Age

Introduction Generalized Linear Models Logistic Regression Other GLM's for Binary Outcomes

Example: CHD by Age group

Introduction Generalized Linear Models Logistic Regression Other GLM's for Binary Outcomes

Example: CHD by Age - Linear Fit

Introduction Generalized Linear Models Logistic Regression Other GLM's for Binary Outcomes

Generalized Linear Models

Linear Model

$$Y = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p + \varepsilon$$

$$\varepsilon$$
 is normally distributed

Introduction Generalized Linear Models Logistic Regression Other GLM's for Binary Outcomes

Generalized Linear Models

Linear Model

$$Y = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p + \varepsilon$$

- ε is normally distributed
- Generalized Linear Model

$$g(Y) = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p + \varepsilon$$

 ε has a known distribution

Introduction Generalized Linear Models Logistic Regression Other GLM's for Binary Outcomes

Probabilities and Odds

Probability	Odds				
p	$\Omega={oldsymbol ho}/(1-{oldsymbol ho})$				
0.1 = 1/10	0.1/0.9 = 1:9 = 0.111				
0.5 = 1/2	0.5/0.5 = 1:1 = 1				
0.9 = 9/10	0.9/0.1 = 9:1 = 9				

Introduction Generalized Linear Models Logistic Regression Other GLM's for Binary Outcomes

Probabilities and Odds

Introduction Generalized Linear Models Logistic Regression Other GLM's for Binary Outcomes

Advantage of the Odds Scale

- Just a different scale for measuring probabilities
- Any odds from 0 to ∞ corresponds to a probability
- Any log odds from $-\infty$ to ∞ corresponds to a probability
- Shape of curve commonly fits data

Introduction Generalized Linear Models Logistic Regression Other GLM's for Binary Outcomes

The binomial distribution

- Outcome can be either 0 or 1
- Has one parameter: the probability that the outcome is 1
- Assumes observations are independent

Introduction Generalized Linear Models Logistic Regression Other GLM's for Binary Outcomes

The Logistic Regression Equation

$$\log\left(\frac{\hat{\pi}}{1-\hat{\pi}}\right) = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p$$

$$Y \sim \text{Binomial}(\hat{\pi})$$

- Y has a binomial distribution with parameter π
- $\hat{\pi}$ is the predicted probability that Y = 1

Introduction Generalized Linear Models Logistic Regression Other GLM's for Binary Outcomes

Parameter Interpretation

- When x_i increases by 1, $\log(\hat{\pi}/(1-\hat{\pi}))$ increases by β_i
- Therefore $\hat{\pi}/(1-\hat{\pi})$ increases by a factor e^{β_i}
- For a dichotomous predictor, this is exactly the odds ratio we met earlier.
- For a continuous predictor, the odds increase by a factor of *e*^{β_i} for each unit increase in the predictor

Introduction Generalized Linear Models Logistic Regression Other GLM's for Binary Outcomes

Odds Ratios and Relative Risks

Introduction Generalized Linear Models Logistic Regression Other GLM's for Binary Outcomes

Logistic Regression in Stata

. logistic chd age						
Logistic regression		Numbe	r of obs	=	100	
			LR ch: Prob :	12(1) > chi2	=	29.31
Log likelihood = -53.6765		Pseud	o R2	=	0.2145	
chd Odds Ratio	Std. Err.	Z	₽> z	[95%	Conf.	Interval]
age 1.117307	.0268822	4.61	0.000	1.065	842	1.171257

Introduction Generalized Linear Models Logistic Regression Other GLM's for Binary Outcomes

- Lots of options for the predict command
- p gives the predicted probability for each subject
- xb gives the linear predictor (i.e. the log of the odds) for each subject

Introduction Generalized Linear Models Logistic Regression Other GLM's for Binary Outcomes

Plot of probability against age

Introduction Generalized Linear Models Logistic Regression Other GLM's for Binary Outcomes

Plot of log-odds against age

Introduction Generalized Linear Models Logistic Regression Other GLM's for Binary Outcomes

Other Models for Binary Outcomes

- Can use any function that maps $(-\infty,\infty)$ to (0, 1)
 - Probit Model
 - Complementary log-log
- Parameters lack interpretation

Introduction Generalized Linear Models Logistic Regression Other GLM's for Binary Outcomes

The Log-Binomial Model

- Models $\log(\pi)$ rather than $\log(\pi/(1-\pi))$
- Gives relative risk rather than odds ratio
- Can produce predicted values greater than 1
- May not fit the data as well if outcome is not rare
- Stata command: glm varlist, family(binomial) link(log)
- If association between log(π) and predictor non-linear, lose simple interpretation.

Introduction Generalized Linear Models Logistic Regression Other GLM's for Binary Outcomes

Log-binomial model example

Discrimination and Calibration Goodness of Fit Influential Observations Poorly fitted observations Separation

Logistic Regression Diagnostics

- Discrimination and Calibration
- Goodness of Fit
- Influential Observations
- Poorly fitted Observations

Discrimination and Calibration Goodness of Fit Influential Observations Poorly fitted observations Separation

Discrimination and Calibration

Discrimination Subjects with higher predicted probabilities more likely to have the event

Calibration Predicted probability is a good measure of probability of the event.

Discrimination and Calibration Goodness of Fit Influential Observations Poorly fitted observations Separation

Problems with R^2

- Multiple definitions
- Lack of interpretability
- Low values
 - Can predict P(Y = 1) perfectly, not predict Y well at all if $P(Y = 1) \approx 0.5$.

Discrimination and Calibration Goodness of Fit Influential Observations Poorly fitted observations Separation

Hosmer-Lemeshow test

- Detects lack of calibration
- Very like χ^2 test
- Divide subjects into groups
- Compare observed and expected numbers in each group
- Want to see a non-significant result
- Command used is estat gof
- Can always improve model by adding non-linear or interaction terms

Discrimination and Calibration Goodness of Fit Influential Observations Poorly fitted observations Separation

Hosmer-Lemeshow test example

. estat gof, group(5) table

Logistic model for chd, goodness-of-fit test

(Table collapsed on quantiles of estimated probabilities)						
Group Prob Obs_1 B	Exp_1 Obs_0 Exp_0 Total					
1 0.1690 2	2.1 18 17.9 20					
	4.9 16 16.1 21 8.7 12 12.3 21					
4 0.7336 15	15.1 8 7.9 23					
+	12.2 3 2.8 15					
number of observations - 100						
number of groups	= 5					
Hosmer-Lemeshow chi2(3) = 0.05 Prob > chi2 = 0.9973						

Discrimination and Calibration Goodness of Fit Influential Observations Poorly fitted observations Separation

Sensitivity and Specificity

	Test +ve	Test -ve	Total
Cases	а	b	a + b
Controls	С	d	c + d
Total	a + c	b + d	a + b + c + d

- Sensitivity:
 - Probability that a case classified as positive
 - *a*/(*a*+*b*)
- Specificity:
 - Probability that a non-case classified as negative

Sensitivity and Specificity in Logistic Regression

- Sensitivity and specificity can only be used with a single dichotomous classification.
- Logistic regression gives a probability, not a classification
- Can define your own threshold for use with logistic regression
- Commonly choose 50% probability of being a case
- Can choose any probability: sensitivity and specificity will vary
- Why not try every possible threshold and compare results: ROC curve

Discrimination and Calibratic Goodness of Fit Influential Observations Poorly fitted observations Separation

- Shows how sensitivity varies with changing specificity
- Gives a measure of discrimination
- Larger area under the curve = better
- Maximum = 1
- Tossing a coin would give 0.5
- Command used is lroc

Discrimination and Calibratio Goodness of Fit Influential Observations Poorly fitted observations Separation

ROC Example

Discrimination and Calibration Goodness of Fit Influential Observations Poorly fitted observations Separation

Influential Observations

- Residuals less useful in logistic regression than linear
- Can only take the values $1 \hat{\pi}$ or $-\hat{\pi}$.
- Grouping by covariate pattern may help: observed outcome can now lie between 0 and 1 if multiple observations have same pattern
- Leverage does not translate to logistic regression model
- $\Delta \hat{\beta}_i$ measures effect of *i*th observation on parameters
- \bullet Obtained from <code>dbeta</code> option to <code>predict</code> command
- Plot against $\hat{\pi}$ to reveal influential observations

Discrimination and Calibratio Goodness of Fit Influential Observations Poorly fitted observations Separation

Plot of $\Delta \hat{\beta}_i$ against $\hat{\pi}$

Discrimination and Calibration Goodness of Fit Influential Observations Poorly fitted observations Separation

Effect of removing influential observation

. logistic chd	age if dbeta	< 0.2					
Logistic regression				Number	of obs	=	98
				LR chi	2(1)	=	32.12
				Prob >	chi2	=	0.0000
Log likelihood = -50.863658				Pseudo	R2	=	0.2400
chd	Odds Ratio	Std. Err.	Z	₽> z	[95%	Conf.	Interval]
age	1.130329	.0293066	4.73	0.000	1.074	324	1.189254

Discrimination and Calibration Goodness of Fit Influential Observations Poorly fitted observations Separation

Poorly fitted observations

- Can be identified by residuals
 - Deviance residuals: predict varname, ddeviance
 - $\chi^2 \mbox{ residuals: predict } varname, \mbox{ dx2}$
- Not influential: omitting them will not change conclusions
- May need to explain fit is poor in particular area
- Plot residuals against predicted probability, look for outliers

Cross-tabulation Regression Diagnostics Poorly fit

Discrimination and Calibration Goodness of Fit Influential Observations Poorly fitted observations Separation

- Need at least one case and one control in each subgroup to calculate odds for that subgroup
- If you have lots of subgroups, this may not be true
- In which case, log(OR) for that group is $-\infty$ or ∞
- Stata will drop all subjects from that group (unless you use the option asis)
- Not a problem with continuous predictors

