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1. Linear Models 2

1.1. Categorical Predictors in Linear Models

So far we have considered models in which both the outcome and predictor variables are con-
tinuous. However, none of the assumptions of the linear model impose any conditions on the
x-variables. The predictor variables in a linear model can have any distribution. This makes it
possible to include categorical predictors (sometimes referred to as factors) in a linear model.

1.1.1. A Dichotomous Variable

Suppose that we are involved in a clinical trial, in which subjects are given either an active
treatment or placebo. We have an outcome measure, Y , that we wish to compare between the
two treatment groups. We can create a variable, x, which has the value 0 for the subjects on
placebo and 1 for the subjects on active treatment. We can then form the linear model

Yi = β0 + β1xi + εi

In this model, β0 is the expected value of Y if x = 0, i.e. in the placebo group. β1 is the expected
increase in Y g as x increases by 1, i.e. the expected difference between the placebo and active
treatment groups.

Does the above model satisfy the assumptions of the linear model ? Well, the mean of Y
is certainly a linear function of x. Whether the individual observations of Y are independent
depends on the experimental design, but if they all represent different individuals they should
be independent. Whether the variance of Y is constant remains to be seen, but since x can
only take two values in this case, it amounts to the variance of Y in the placebo group being
the same as the variance of Y in the active treatment group. Finally, a linear model would
only be appropriate if Y followed a normal distribution. Again, this needs to be tested, but
the assumptions of the linear model can be met as easily for a dichotomous predictor as for a
continuous one.

Here is an example of using a linear model in the above scenario. The data used for this
example was simulated, using the commands

set obs 40

gen x = n > 20

gen Y = 3 + x + invnorm(uniform())

This creates a set of 40 observations, 20 with x=0 and 20 with x=1. Y is normally distributed
with variance 1, and has a mean of 3 if x=0 and 4 if x=1.

When I analysed this data, using regress Y x, I got the following outputa:

aNote that the random number generator is used in generating Y through the function uniform, so if you repeat
this analysis you will not get exactly the same results, but they should be similar.
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1.1. Categorical Predictors in Linear Models

. regress Y x

Source | SS df MS Number of obs = 40

-------------+------------------------------ F( 1, 38) = 10.97

Model | 9.86319435 1 9.86319435 Prob > F = 0.0020

Residual | 34.1679607 38 .89915686 R-squared = 0.2240

-------------+------------------------------ Adj R-squared = 0.2036

Total | 44.031155 39 1.12900398 Root MSE = .94824

------------------------------------------------------------------------------

Y | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

x | .9931362 .2998594 3.31 0.002 .3861025 1.60017

_cons | 3.0325 .2120326 14.30 0.000 2.603262 3.461737

------------------------------------------------------------------------------

What do we conclude from the above output ? Firstly, we can say that x is a significant
predictor of Y (p = 0.002), which in this case means that the outcome differs significantly
between the placebo and active treatment groups. The estimated difference between the two
groups is 0.993, with a 95% confidence interval of (0.39, 1.60), which is close to the true value of
1. The mean value among the placebo group is 3.03, with a confidence interval of (2.60, 3.46),
which is again close to the true value of 3.

Note that the values that x takes need not be 0 and 1: it can take any two values. However,
the interpretation of the coefficients depends on the values that it takes. β0 is the expected value
of Y when x = 0, so if the two groups were given x-values of 1 and 2, β0 would not correspond
the mean value of Y in either of the groups. For this reason, dichotomous variables are always
best coded as 0 and 1.

T-Test

We saw previously that the way to test for a difference in a normally distributed outcome
between two groups is to use a t-test. In fact, the above analysis is exactly equivalent to a t-test,
as the following stata output shows.

Note that the difference between the two groups and its standard error are exactly the same
as in the linear model above, and consequently the p-value from the test the the difference is not
equal to 0 is also exactly the same. Hence we can say that the t-test is a special case of a linear
model. It requires the same assumptions (Y is normally distributed with the same variance in
both groups) and leads to the same conclusions. However, the linear model has the advantage
that it can incorporate adjustment for other variables.
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1. Linear Models 2

. ttest Y, by(x)

Two-sample t test with equal variances

------------------------------------------------------------------------------

Group | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

---------+--------------------------------------------------------------------

0 | 20 3.0325 .2467866 1.103663 2.515969 3.54903

1 | 20 4.025636 .1703292 .7617355 3.669133 4.382139

---------+--------------------------------------------------------------------

combined | 40 3.529068 .1680033 1.062546 3.189249 3.868886

---------+--------------------------------------------------------------------

diff | -.9931362 .2998594 -1.60017 -.3861025

------------------------------------------------------------------------------

diff = mean(0) - mean(1) t = -3.3120

Ho: diff = 0 degrees of freedom = 38

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0

Pr(T < t) = 0.0010 Pr(|T| > |t|) = 0.0020 Pr(T > t) = 0.9990

1.1.2. A Categorical Variable with Several Categories

.

The above method works if there only two categories, but what happens if there are more
than two ? Clearly, we cannot use x = 1, 2, . . . k to represent the k categories, since this is
treating x as a continuous variable: the expected value of Y would be β0 + β1 in group 1,
β0 + 2β1 in group 2 etc.

Instead, we use a series of “dummy” or “indicator” variables. Indicator variables take the
values 0 or 1, and we need to have enough variables that each group has a different combination,
which requires k − 1 variables if we have k groups. We have already seen that we require a
single variable if we have two groups, and table 1.1 below shows how we can use two variables
to determine which one of three groups an observation belongs to.

Group x1 x2
A 0 0
B 1 0
C 0 1

Table 1.1.: Use of indicator variables to identify several groups

Here we have 3 groups, so we need 2 indicator variables. The linear model is therefore

Y = β0 + β1x1 + β2x2 + ε

In this model, β0 is the expected value of Y when x1 = 0 and x2 = 0, i.e. the expected value
of Y in group A. β1 represents the change in Y as x1 increases by 1, i.e. the difference between
group A and group B. β2 represents the change in Y as x2 increases by 1, i.e. the difference
between group A and group C.

Here is an example to illustrate the use of indicator variables, again using simulated data.
There are three groups, with indicator variables x1 and x2 defined as in table 1.1. Y is normally
distributed with variance 1 and mean 3 in group A, 5 in group B and 4 in group C. The results
of analysing this data in stata are given below
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1.1. Categorical Predictors in Linear Models

. regress Y x1 x2

Source | SS df MS Number of obs = 60

-------------+------------------------------ F( 2, 57) = 16.82

Model | 37.1174969 2 18.5587485 Prob > F = 0.0000

Residual | 62.8970695 57 1.10345736 R-squared = 0.3711

-------------+------------------------------ Adj R-squared = 0.3491

Total | 100.014566 59 1.69516214 Root MSE = 1.0505

------------------------------------------------------------------------------

Y | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

x1 | 1.924713 .3321833 5.79 0.000 1.259528 2.589899

x2 | 1.035985 .3321833 3.12 0.003 .3707994 1.701171

_cons | 3.075665 .2348891 13.09 0.000 2.605308 3.546022

------------------------------------------------------------------------------

From this output we can conclude that there are highly significant differences in Y between
the three groups (from the F -statistic, 16.82, which gives a p-value of 0.0000). The mean value
in group A (i.e. when x1 and x2 are both 0) is 3.08, with a 95% confidence interval of (2.61,
3.55), close to the true value of 3. The difference between group A and group B is estimated by
the coefficient of x1, which is 1.92 (95% CI; 1.26, 2.59), compared to the true value of 2, and
the difference between group A and group C is estimated by the coefficient of x2, which is 1.04
(95% CI; 0.37, 1.70), compared to the true value of 1.

In the above analysis, groups B and C are both compared to group A. This is how such
analyses are generally performed: one group is chosen as a baseline or reference group (all of
the indicator variables are set to 0 in this group), and the other groups are compared to it.
However, it may be that we are also interested in the difference between group B and group
C, which is not given directly in the above output. We know that the expected value in group
B is β0 + β1, whilst the expected value in group C is β0 + β2. Hence the expected difference
between the groups is (β0 +β1)− (β0 +β2) = β1−β2. This difference can be calculated from the
regression output as 1.92 - 1.04 = 0.88, but testing whether this is significantly different from
0, or putting a confidence interval around it, is less straightforward. Fortunately, stata can do
it for us using the command lincom, short for “Linear Combination”, since β1 − β2 is a linear
combination of the parameters β1 and β2. How this is done is illustrated below

. lincom x1 - x2

( 1) x1 - x2 = 0

------------------------------------------------------------------------------

Y | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

(1) | .8887284 .3321833 2.68 0.010 .2235428 1.553914

------------------------------------------------------------------------------

Thus we can conclude that the difference between groups B and C is significant (p = 0.01),
with a 95% confidence interval of (0.22, 1.55), compared to a true value of 1.

Other linear combinations may be of interest. For example, the mean value of Y in group B
is given by β0 + β1. Calculating this using lincom gives the following output
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1. Linear Models 2

. lincom _cons + x1

( 1) x1 + _cons = 0

------------------------------------------------------------------------------

Y | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

(1) | 5.000378 .2348891 21.29 0.000 4.530021 5.470736

------------------------------------------------------------------------------

In other words, the mean value of Y in group B is 5.00, with a 95% confidence interval (4.53,
5.47). This is close to the true value of 5.

Generating indicator variables yourself can be tedious and error-prone, particularly if there
are a large number of categories. However, Stata can do it for you. Suppose that in the above
example, we did not have x1 and x2, but only a variable group, which took the values “1”, “2”
and “3”. We can tell stata to treat group as a categorical variable by adding i. as a prefix to
its name.

The regression model can be fitted with the command

regress Y i.group

which produces the following output:
. regress Y i.group

Source | SS df MS Number of obs = 60

-------------+------------------------------ F( 2, 57) = 16.82

Model | 37.1174969 2 18.5587485 Prob > F = 0.0000

Residual | 62.8970695 57 1.10345736 R-squared = 0.3711

-------------+------------------------------ Adj R-squared = 0.3491

Total | 100.014566 59 1.69516214 Root MSE = 1.0505

------------------------------------------------------------------------------

Y | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

group |

2 | 1.924713 .3321833 5.79 0.000 1.259528 2.589899

3 | 1.035985 .3321833 3.12 0.003 .3707994 1.701171

|

_cons | 3.075665 .2348891 13.09 0.000 2.605308 3.546022

------------------------------------------------------------------------------

This can be seen to be identical to the previous analysis, except for the labelling of the
groups.

In order to use the coefficients for group 2 and group 3 in lincom, we can no longer use the
variable names, since the variable name is group for both of them. Instead, we use 2.group for
group 2 and 3.group for group 3.

ANOVA

This section can safely be skipped over if you are unfamiliar with the technique of Analysis of
Variance, or ANOVA

Just as linear regression with a single indicator variable is equivalent to a t-test, linear
regression with several indicator variables is equivalent to an ANOVA test. This is illustrated
by the stata output below, analysing the same data as in section 1.1.2.
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1.1. Categorical Predictors in Linear Models

. oneway Y group

Analysis of Variance

Source SS df MS F Prob > F

------------------------------------------------------------------------

Between groups 37.1174969 2 18.5587485 16.82 0.0000

Within groups 62.8970695 57 1.10345736

------------------------------------------------------------------------

Total 100.014566 59 1.69516214

Bartlett’s test for equal variances: chi2(2) = 0.3023 Prob>chi2 = 0.860

The anova table above is identical to that produced by the linear regression analysis. Again,
the assumptions required for performing ANOVA are the same as those required for performing
linear regression with several indicator variables: the regress command is simply a convenient
way of producing exactly the same analysis. Bartlett’s test, given at the bottom of the above
printout, is a test that the variance of Y is the same in all three groups. Since x only takes
three values, this is testing that the variance is the same for all values of x, which is one of the
assumptions of the linear model.

1.1.3. Mixing Categorical & Continuous Variables

In the preceding sections we have only dealt with situations in which there was only a single
categorical variable in the linear model. However, it is also possible to mix categorical and
continuous predictors in the same model. For example, suppose that in the clinical trial discussed
in section 1.1.1, we expect the outcome variable Y to vary with age, as well as with treatment.
In such a case, we would want to fit both age and treatment in our linear model, for two reasons

1. It may be that the two treatment groups differ in age. If this is the case, a difference in
Y between the two groups may be because of the age difference, rather than a treatment
effect. This is known as confounding, and will be discussed in detail in section 1.2. Here,
I will just say that if we fit both age and treatment, the treatment coefficient measures
what the difference between the two groups would have been if the groups had not differed
in age.

2. If age is an important predictor of Y , then by including age in our model, we are reduc-
ing the amount of unexplained variation, and with therefore achieve narrower confidence
intervals around our estimated effect of treatment.

Again, it is easiest to illustrate this using simulated data. Suppose that we have recruited
subjects aged 20 – 40, and that in the placebo group, Y is normally distributed with mean 20 -
age/2 and variance 1, and that in the active treatment group, the mean of Y is 21 - age/2. A
scatter-plot of this simulated data is given in Figure 1.1.

In this case, if we simply fit treatment as our predictor variable, we find the difference
between the two groups is not significant.

9



1. Linear Models 2
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Placebo Active Treatment

Figure 1.1.: Variation in outcome with age in simulated trial data
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1.1. Categorical Predictors in Linear Models

. regress Y treat

Source | SS df MS Number of obs = 40

-------------+------------------------------ F( 1, 38) = 2.86

Model | 26.5431819 1 26.5431819 Prob > F = 0.0989

Residual | 352.500943 38 9.27634061 R-squared = 0.0700

-------------+------------------------------ Adj R-squared = 0.0456

Total | 379.044125 39 9.71908013 Root MSE = 3.0457

------------------------------------------------------------------------------

Y | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

treat | 1.629208 .9631376 1.69 0.099 -.3205623 3.578978

_cons | 4.379165 .6810411 6.43 0.000 3.00047 5.757861

------------------------------------------------------------------------------

Here, although the observed effect of treatment (1.63) is close to its hypothetical value (1.00),
the confidence interval is very wide, because of the variation with age which is being treated as
random variation in this model. The predicted values of Y in the treated and untreated groups
from this model are shown in Figure 1.2. Although the predicted values are higher in the treated
arm, these predictions are not close to the observed values for those less than 25 or more than
35.

0
5

10

20 25 30 35 40
age

Placebo Active Treatment

Figure 1.2.: Variation in outcome with age in simulated trial data, and predicted values

If we fit age as well as treatment, the observed effect changes very little (to 1.24), but it is
now very highly significant, because its standard error is reduced greatly. We have seen that
the standard error of a coefficient is equal to σ√

nsx
:
√
n and sx are unchanged, but by including
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1. Linear Models 2

age in the model, we have decreased σ greatly, and consequently decreased the standard error.
. regress Y treat age

Source | SS df MS Number of obs = 40

-------------+------------------------------ F( 2, 37) = 262.58

Model | 354.096059 2 177.04803 Prob > F = 0.0000

Residual | 24.9480658 37 .674272049 R-squared = 0.9342

-------------+------------------------------ Adj R-squared = 0.9306

Total | 379.044125 39 9.71908013 Root MSE = .82114

------------------------------------------------------------------------------

Y | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

treat | 1.238752 .2602711 4.76 0.000 .7113924 1.766111

age | -.5186644 .0235322 -22.04 0.000 -.5663453 -.4709836

_cons | 20.59089 .7581107 27.16 0.000 19.05481 22.12696

------------------------------------------------------------------------------

One way to think of this is that in the first analysis, we are selecting a subject at random
from each of the two treatment groups, and measuring the difference in Y between them. This
varies enormously, depending on the ages of the two subjects. However, if we select two subjects
of the same age and measure the difference in Y between them, there will be much less variation:
this is what we do when we include age in the regression equation.

From the second analysis, the expected value of Y in the placebo group is given by 20.59−
0.52× age, whilst the expected value in the active treatment group is given by 20.59− (0.52×
age) + 1.24. These predictions are shown in Figure 1.3, along with the data from Figure 1.1
above.

1.1.4. Interactions

In the above analysis, we have assumed that the effect of treatment is the same at all ages.
Geometrically, this means that we have fitted parallel lines to the plot of Y against age, as seen
in Figure 1.3. However, this assumption may not be true: it may be that the treatment is more
effective in the older patients than in the younger ones, so the fitted lines should be further apart
in the older subjects. A situation like this, in which the effect of one variable on the outcome
depends on the value of another variable, is called an “interaction”: we say that there is an
interaction between age and treatment.

For example, consider the data illustrated in Figure 1.4. In this example, the effect of
treatment is to reverse the effect of age, so that the outcome in the treated group is normally
distributed with mean 10 and variance 1, whilst the outcome in the untreated group again has a
mean of 20 - age/2 and a variance of 1. Thus the predicted values in the treated and untreated
groups get further apart with increasing age. Fitting parallel lines to these two groups does not
provide a good fit to the data, as Figure 1.4 shows.

Fitting an interaction term can be thought of as fitting the two separate equations

Y =

{
β00 + β10 × age + ε if treat = 0
β01 + β11 × age + ε if treat = 1

(1.1)

The two groups each have different intercepts (β00 and β01) and slopes with age (β10 and β11).
However, it is possible to combine the two above equations into the single equation

Y = β00 + β10 × age + (β01 − β00)× treat + (β11 − β10)× age× treat + ε. (1.2)
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Figure 1.3.: Variation in outcome with age in simulated trial data, and predicted values
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Figure 1.4.: Variation in outcome with age in simulated trial data, in which age interacts with
treatment, with predicted values from regression model excluding interaction.
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1.1. Categorical Predictors in Linear Models

Thus fitting the linear model with an interaction term amounts to including as predictors
the variables age, treat, and a new variable formed by multiplying age and treat together.
The intercept in this model is the intercept in placebo group (β00), the coefficient of age is the
slope with age in the placebo group (β10), the coefficient of treat is the difference between
the intercept in the active group and the intercept in the placebo group (β01 − β00), and the
coefficient of the interaction term is the difference in the slopes between the active and treatment
groups (β11 − β10).

Just as Stata can automatically generate indicator variables, it can also automatically gen-
erate interaction terms. To request an interaction between to variables, you include the symbol
# between them. So if we had two categorical variables and wanted to consider the interaction
between them, we would add i.var1#i.var2 to the regression model. There is also a shorthand
we can use: i.var1##i.var2 is equivalent to i.var1 i.var2 i.var1#i.var2. If we wish to
include a continuous variable in an interaction, we precede the variable name with c. rather
than i.

So, to fit a linear model containing age, treatment and their interaction to the data in Figure
1.4, we would enter

regress Y i.treat##c.age

and obtain the following output.

. regress Y i.treat##c.age

Source | SS df MS Number of obs = 40

-------------+------------------------------ F( 3, 36) = 173.38

Model | 563.762012 3 187.920671 Prob > F = 0.0000

Residual | 39.0189256 36 1.08385904 R-squared = 0.9353

-------------+------------------------------ Adj R-squared = 0.9299

Total | 602.780938 39 15.4559215 Root MSE = 1.0411

-----------------------------------------------------------------------------------

Y | Coef. Std. Err. t P>|t| [95% Conf. Interval]

------------------+----------------------------------------------------------------

treat |

Active Treatment | -8.226356 1.872952 -4.39 0.000 -12.02488 -4.427833

age | -.4866572 .0412295 -11.80 0.000 -.5702744 -.40304

|

treat#c.age |

Active Treatment | .4682374 .0597378 7.84 0.000 .3470836 .5893912

|

_cons | 19.73531 1.309553 15.07 0.000 17.07942 22.39121

-----------------------------------------------------------------------------------

The interaction term (written treat#c.age) is highly significant (p = 0.000), so we have
good evidence that the rate of change of Y with age is different between the two groups. The
coefficient for age is still the slope of the graph of Y against age in the placebo group (i.e. when
treat = 0). However, the slope of Y against age in the treated group is now given by the sum
of the coefficients age + treat#c.age This slope can be calculated using lincom as before, to
give

15



1. Linear Models 2

. lincom age + 1.treat#c.age

( 1) age + 1.treat#c.age = 0

------------------------------------------------------------------------------

Y | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

(1) | -.0184198 .0432288 -0.43 0.673 -.1060919 .0692523

------------------------------------------------------------------------------

This is very nearly 0, suggesting that Y does not change with age in the treated group,
although it does reduce with age in the placebo group. Figure 1.5 shows the same data as
Figure 1.4, but the predicted values in this case include the interaction term. This shows clearly
that the slopes in the treatment and placebo groups are quite different: no change with age in
the treated group, reduction with age in the placebo group.

0
5

10

20 25 30 35 40
age

Placebo Active Treatment

Figure 1.5.: Variation in outcome with age in simulated trial data, in which age interacts with
treatment, with predicted values

As in the previous examples, the intercept ( cons) is the expected value of Y when all the
other variables are equal to 0: i.e. the expected value at age 0 in the placebo group. The
coefficient for treat measures the difference between the treated and untreated groups at age 0.
It cannot be interpreted as the difference between the placebo and treated groups in this case,
since the treatment effect varies with age, as seen in Figure 1.5. In fact, it is of little intrinsic
meaning in this case, since

1. It only applies to subjects of age 0, and we are unlikely to be interested in them
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1.2. Confounding

2. The youngest subjects in our sample were of age 20, so we are extrapolating a long way
beyond our data.

The effect of treatment at age a can be calculated as treat + a × treat#c.age. Again,
lincom can be used to perform the calculations, so the treatment effect at age 20 would be
given by:
. lincom 1.treat + 20*1.treat#c.age

( 1) 1.treat + 20*1.treat#c.age = 0

------------------------------------------------------------------------------

Y | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

(1) | 1.138392 .7279832 1.56 0.127 -.3380261 2.61481

------------------------------------------------------------------------------

The treatment effect at age 40 would be given by:
( 1) 1.treat + 40*1.treat#c.age = 0

------------------------------------------------------------------------------

Y | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

(1) | 10.50314 .6378479 16.47 0.000 9.209524 11.79676

------------------------------------------------------------------------------

In other words, as shown in Figure 1.5, there is little difference between the treated & placebo
groups at age 20, but considerable difference at age 40.

1.1.5. Testing Several Parameters With testparm

Often when dealing with categorical variables, we wish to test whether several parameters are
signficantly different from 0 at the same time. The command that enables us to do so is
testparm, which is a contraction of “test parameters”. The syntax for testparm is simply
testparm varlist , where varlist is a list of variables which all appeared in the last regression
model. testparm tests the hypothesis that β = 0 for all variables in varlist.

1.2. Confounding

1.2.1. What is Confounding ?

A linear model can be used to show that two variables are associated, i.e. if one increases, the
other also tends to increase (or tends to decrease, if the association is negative). It may be that
changes in one cause the changes in the other, but it may be that there is a third factor which
is associated with both.

As an example of confounding, consider the data in auto.dta which we looked at in a
previous practical. Imagine that we are interested in whether US-built cars differ from non-US-
built cars in their fuel consumption. We have already seen that the fuel consumption, in miles
per gallon, is stored in the variable mpg. There is also a variable foreign, which is 0 for US
vehicles and 1 for non-US vehicles. So we can test for a difference using a linear model to predict
mpg from foreign. The output is shown below.
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. regress mpg foreign

Source | SS df MS Number of obs = 74

---------+------------------------------ F( 1, 72) = 13.18

Model | 378.153515 1 378.153515 Prob > F = 0.0005

Residual | 2065.30594 72 28.6848048 R-squared = 0.1548

---------+------------------------------ Adj R-squared = 0.1430

Total | 2443.45946 73 33.4720474 Root MSE = 5.3558

------------------------------------------------------------------------------

mpg | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------

foreign | 4.945804 1.362162 3.631 0.001 2.230384 7.661225

_cons | 19.82692 .7427186 26.695 0.000 18.34634 21.30751

------------------------------------------------------------------------------

This shows a significant difference in fuel consumption between US and non-US vehicles, with
foreign vehicles averaging nearly 5 miles per gallon more than US vehicles. However, remember
that weight is a very important determinant of fuel consumption, and consider Figure 1.6. This
shows a plot of fuel consumption against weight for both US and non-US vehicles. Clearly, the
number of miles travelled per gallon decreases as the weight of the vehicle increases. However,
notice that most of the lightest vehicles are non-US, whilst all of the heaviest vehicles are US-
built. Could the advantage in fuel consumption of non-US vehicles be due to their lighter
weight ?
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Figure 1.6.: Plot of m.p.g. against weight for US and non-US vehicles

We can test this by fitting both weight and foreign as predictors in our linear model. Then,
the coefficient of foreign measures the difference in fuel consumption between a US and a non-
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US vehicle of the same weight, rather than just a randomly selected US and non-US vehicle as
we did before. The results of fitting this regression are given below.
. regress mpg foreign weight

Source | SS df MS Number of obs = 74

---------+------------------------------ F( 2, 71) = 69.75

Model | 1619.2877 2 809.643849 Prob > F = 0.0000

Residual | 824.171761 71 11.608053 R-squared = 0.6627

---------+------------------------------ Adj R-squared = 0.6532

Total | 2443.45946 73 33.4720474 Root MSE = 3.4071

------------------------------------------------------------------------------

mpg | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------

foreign | -1.650029 1.075994 -1.533 0.130 -3.7955 .4954421

weight | -.0065879 .0006371 -10.340 0.000 -.0078583 -.0053175

_cons | 41.6797 2.165547 19.247 0.000 37.36172 45.99768

------------------------------------------------------------------------------

This model fits much better than the previous model (R2 = 66%, as opposed to 15% previ-
ously). However, the effect of foreign is no longer statistically significant (p = 0.13), suggesting
that the difference between US and non-US vehicles we saw before could be explained by differ-
ences in weight. We can conclude that the apparent difference in fuel consumption between US
and non-US cars is due to differences in weight between US and non-US cars.

1.2.2. How do we recognise a confounder ?

In order to confound the association between a predictor variable and an outcome, a variable
has to satisfy the following conditions:

1. The confounder must be associated with the outcome.

2. The association between outcome and confounder must be independent of the predictor
variables.

3. The confounder cannot be on the causal path linking the predictor to the outcome.

Determining whether a variable satisfies the above conditions, particularly the last, can be
tricky. It is not possible without some understanding of the mechanism by which the predictor
is associated with the outcome.

For example, consider the difference in fuel consumption between US-made and non-US-made
cars considered earlier. We have seen that the non-US made cars have better fuel consumption
because they are lighter, but why are they lighter ? If they are lighter because non-US car
designers have clever tricks to reduce the weight of a car without affecting its capacity, comfort
etc, then weight is a path variable, not a confounder, and non-US car designers produce cars with
better fuel consumption. However, suppose the US and non-US designers were given different
briefs: the US designers were asked to produce larger cars since that is what sells in the US. In
this case, then weight is not a path variable but a confounder. In this case, the second analysis
above is appropriate and suggests that the US designers are every bit as good at producing cars
with low fuel consumption as non-US designers, given their different briefs.
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1.2.3. How do we allow for confounding ?

Dealing with a confounder once it has been identified is very straightforward. Simply adding a
confounding variable as a predictor in the linear model will allow for confounding. Remember
that a coefficient in the linear model measures the effect of a variable when all other variables
do not change, so the coefficient for the predictor we are interested in will be a measure of its
effect on the outcome when the confounding variable does not change.

It should be noted that adjusting for confounding in this way assumes that

1. The confounder has been measured perfectly

2. The association between confounder and outcome is perfectly linear.

If either of these assumptions are not true, the linear model will remove some, but not all, of
the effect of confounding. The residual confounding may still be enough to affect the parameter
estimates.

Ultimately, confounding is a property of the real-world system we are attempting to model,
not of the model itself. There is no way of determining from the data whether a variable is a
confounder and should be adjusted for, or whether it is on the causal pathway and should not
be adjusted for. The correct course of action depends on the mechanism by which the predictors
and putative confounders affect the outcome, which requires a thorough knowledge of the subject
area. Statistical methods for allowing for confounding are simple and straightforward to apply,
the difficult problem is to know whether they are appropriate.

Confounding is a major problem for observational studies. When a significant association is
shown in an observational study, it could be due to a causal effect (i.e. one variable is directly
related to the other) or to confounding (i.e. one variable is correlated with another variable
which directly affects the outcome).

1.3. Other Considerations

1.3.1. Variable Selection

Suppose that we have a number of predictor variables, from which to predict the outcome.
Should we include all of the variables in our linear model, or only a subset of them ? And if we
are to use a subset, how do we select that subset ?

If we are only interested in the predictions from the linear model, we can use all of the
variables (provided we have enough data to make that reasonable). However, if we are interested
in the mechanisms by which the predictors affect the outcome, it is of use to remove those
“predictors” which are only predictive because they are correlated with other variables which
genuinely affect Y . In addition, if we wish to use the model on further samples, it may be that
there is a financial or logistical advantage to having a smaller number of variables to measure.

There are a number of automated ways which have been suggested for selecting variables
in this context. I will explain them, as they are widely used. However, I do not recommend
their use: they assume that you know nothing at all about the area you are researching, and
in an ideal world that would not be true. Selecting variables on grounds other than statistical
significance is preferable, be that choosing the cheapest variables to collect first, least invasive,
most likely to be predictive on theoretical grounds etc.
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Forward Selection

Suppose we are selecting from k predictors. First, we chose a significance level to use to determine
whether a variable is a significant predictor or not. We will call this pe, the significance level at
which a predictor enters the regression model. Then we use each of the k predictors in turn to
predict Y , and the one which explains the greatest proportion of the variance is our candidate
for inclusion at this stage. We then look at the significance level of the t-test for β = 0 for this
variable: if it is less than pe, the variable is selected.

Once a variable has been selected in this way, each of the remaining variables are added to
the model in turn. If any of these variables are significant at the pe level after adjusting for all
the variables selected so far, the most significant variable is added to the selection. This process
repeats until either all of the variables have been selected, or none of them are significant at the
pe level after adjusting for the selected variables.

Backward Elimination

An alternative to forward selection is backward elimination. In this procedure, we chose a
significance level at which a variable will be removed from the model, pr. Then we produce a
single linear model containing all k predictor variables, and compare the significance level of the
least significant model to pr. If it is greater than pr, that variable is removed from the model
and a linear model formed with the remaining k − 1 variables. The process is repeated until all
remaining variables have significance levels less than pr.

Backward selection can be better than forward selection if there are variables that are jointly
good predictors, but not individually (as seen in the dataset wood73). However, if there are a
number of strongly correlated variables, the results can be unreliable.

Stepwise Selection

Stepwise selection is a combination of the two preceding methods. The procedure starts as
forward selection, but each time a variable is added to the model, all of the variables are tested
to see if any can now be removed. Obviously, when using stepwise selection, pr must be greater
than or equal to pe, otherwise a variable added in the “forward” part of the procedure could be
removed in the “backward” part.

All Subsets

All three of the above methods have the drawback that not every possible combination of
predictors is considered. In some cases it may be possible to consider every possible combination,
and choose the one with the highest adjusted R2. However, this can be very time consuming:
if we have 10 predictors, there are 1023 possible subsets to be fitted, compared with at most 10
using forwards or backwards selection. Since all subsets regression is not implemented in stata,
it will not be discussed further.

Some Caveats Concerning Variable Selection

Significance Levels in Variable Selection The main problem with variable selection is
that the significance levels of the various parameters are no longer correct. The hypotheses we
are testing to include or exclude variables are not independent of each other, and they are not
randomly selected (we always test either the most significant variable or the least significant).
How greatly the p-values differ from their nominal levels depends on the ratio of the sample size
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to the number of predictor variables: if there are many times as many observation as predictor
variables, this problem will not be of great importance.

Differences in Models Selected It is not uncommon for the model chosen using forward
selection to differ from that chosen using backward elimination. A measure of common sense is
needed to determine which model to use. For example, if two variables are highly correlated,
there will be little difference between a model containing one and a model containing the other.

Inappropriate variable choice Statistical significance should not be the only criterion for
selecting predictor variables in a model. It may be that you know a particular variable is a
predictor of your outcome, even though your sample is too small for the effect to be statistically
significant. You should therefore have no qualms about forcing certain variables to be in the
regression model even if the automatic variable selection methods would exclude themb.

Variable selection in Stata

In stata, the sw command can be used to give either forward, backward or stepwise selection.
The syntax for this command is

sw regress yvar xvars

The significance levels pe and pr are set using the options pe() and pr(): at least one of
these must be set. If only pe() is set, forward selection is performed, whilst if only pr() is set,
backwards elimination is performed. If both are set, stepwise selection is used.

For example, consider the auto dataset distributed with stata. Imagine we wish to determine
which variables contribute to the weight of the vehicle. To use forwards selection, we would type

sw regress weight price headroom trunk length turn displ gear ratio, pe(0.05)

to get the output

bHowever, you will have to explain which variables were forced into the model and your reasons for doing so in
the methods section of any resulting publication
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p = 0.0000 < 0.0500 adding length

p = 0.0000 < 0.0500 adding displ

p = 0.0015 < 0.0500 adding price

p = 0.0288 < 0.0500 adding turn

Source | SS df MS Number of obs = 74

---------+------------------------------ F( 4, 69) = 293.75

Model | 41648450.8 4 10412112.7 Prob > F = 0.0000

Residual | 2445727.56 69 35445.3269 R-squared = 0.9445

---------+------------------------------ Adj R-squared = 0.9413

Total | 44094178.4 73 604029.841 Root MSE = 188.27

------------------------------------------------------------------------------

weight | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------

length | 19.38601 2.328203 8.327 0.000 14.74137 24.03064

displ | 2.257083 .467792 4.825 0.000 1.323863 3.190302

price | .0332386 .0087921 3.781 0.000 .0156989 .0507783

turn | 23.17863 10.38128 2.233 0.029 2.468546 43.88872

_cons | -2193.042 298.0756 -7.357 0.000 -2787.687 -1598.398

------------------------------------------------------------------------------

Using forward selection, first length, then displ, then price and finally turn are selected
as significant predictors. The other variables, headroom, trunk and gear ratio are not selected
as significant.

To use backward elimination, we would type

sw regress weight price headroom trunk length turn displ gear ratio, ///

pr(0.05)

and would get the output
p = 0.6348 >= 0.0500 removing headroom

p = 0.5218 >= 0.0500 removing trunk

p = 0.1371 >= 0.0500 removing gear_ratio

Source | SS df MS Number of obs = 74

---------+------------------------------ F( 4, 69) = 293.75

Model | 41648450.8 4 10412112.7 Prob > F = 0.0000

Residual | 2445727.56 69 35445.3269 R-squared = 0.9445

---------+------------------------------ Adj R-squared = 0.9413

Total | 44094178.4 73 604029.841 Root MSE = 188.27

------------------------------------------------------------------------------

weight | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------

price | .0332386 .0087921 3.781 0.000 .0156989 .0507783

turn | 23.17863 10.38128 2.233 0.029 2.468546 43.88872

displ | 2.257083 .467792 4.825 0.000 1.323863 3.190302

length | 19.38601 2.328203 8.327 0.000 14.74137 24.03064

_cons | -2193.042 298.0756 -7.357 0.000 -2787.687 -1598.398

------------------------------------------------------------------------------

The final model here is exactly the same as we obtained from forward selection. First all
variables are fitted, then headroom, trunk and gear ratio are eliminated (in that order).

One important feature of sw is the ability to treat several variables as a single term. For
example, if there is a categorical variable with 4 levels, it will be fitted using three indicator
variables, as we have seen. Normally, these three variables should either all be included or
all excluded. This can be achieved by putting parentheses around the variables to be treated
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together. For example, suppose we wish to predict the urban population of various American
states from the total population and the region. If we are using forward selection, we would
typec

xi: sw regress popurban pop (i.region), pe(0.05)

and obtain the output
i.region _Iregion_1-4 (naturally coded; _Iregion_1 omitted)

begin with empty model

p = 0.0000 < 0.0500 adding pop

p = 0.0003 < 0.0500 adding _Iregion_2 _Iregion_3 _Iregion_4

Source | SS df MS Number of obs = 50

-------------+------------------------------ F( 4, 45) = 794.57

Model | 8.0830e+14 4 2.0208e+14 Prob > F = 0.0000

Residual | 1.1444e+13 45 2.5432e+11 R-squared = 0.9860

-------------+------------------------------ Adj R-squared = 0.9848

Total | 8.1975e+14 49 1.6730e+13 Root MSE = 5.0e+05

------------------------------------------------------------------------------

popurban | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

pop | .8655805 .0154854 55.90 0.000 .8343914 .8967696

_Iregion_2 | -383325 222541.4 -1.72 0.092 -831546.4 64896.47

_Iregion_3 | -529247.1 210480.1 -2.51 0.016 -953175.8 -105318.3

_Iregion_4 | 313714.2 221173 1.42 0.163 -131751 759179.4

_cons | -402777.4 188162.4 -2.14 0.038 -781756 -23798.79

------------------------------------------------------------------------------

Here, pop enters the model first, then Iregion 2, Iregion 3 and Iregion 4. This is
despite the fact that Iregion 2 and Iregion 4 are not individually statistically significant (p
= 0.09 & 0.16 respectively). The three variables taken as a whole are highly significant, as can
be shown using testparm:
. testparm _I*

( 1) _Iregion_2 = 0.0

( 2) _Iregion_3 = 0.0

( 3) _Iregion_4 = 0.0

F( 3, 45) = 7.67

Prob > F = 0.0003

If the parentheses were not used around i.region, only Iregion 3 would have been added
to the model.

Finally, it may be that there are certain variables that are known to be important within
the process, and we may want to ensure they are included in the model irrespective of their
statistical significance. This can be achieved using the lockterm1 option, which ensures that
the predictor variable is retained in the model irrespective of its significance. Again, parentheses
can be put around several variable names to make sw treat them as a single unit.

1.3.2. Multicollinearity

Strictly, multicollinearity occurs when one predictor variable can be calculated from one or
more other predictors variables. For example, if the linear model is Y = x1 − 3x2 + x3, but
x3 = x1 + 2x2, then we can replace the regression equation with Y = 2x1−x2 to get exactly the

cNote that the older stata syntax for generating indicator variables needs to be used with sw, since this command
does not understand factor variables. More information about the old syntax is given in Appendix A
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same predicted values. Thus the β parameters are no longer uniquely defined. If multicollinear
predictors are used with the regress command, stata will usually drop one or more predictors
until the β parameters are uniquely determined. However, it may be unable to determine which
variables are involved, in which case it will be unable to calculate standard errors for some of
the variables.

In practice, such exact multicollinearity is rare. However, if two or more variables are
highly correlated,d this can still cause problems with estimating the β parameters. A common
consequence is that the standard errors of the β parameters becomes very large. It can also
happen that the β parameters themselves take very unusual values, and may even have the
opposite sign to that expected.

The only easy way around this problem is to use less correlated variables as predictors.
For example, rather than using both diastolic blood pressure and systolic blood pressure as
predictors (which are highly correlated), use systolic and (diastolic - systolic), which will be
much less strongly correlated.

If it is not possible to remove the multicollinearity in this way, more complex solutions
are available, such as ridge regression and principal components regression. However, these
techniques are beyond the scope of this course.

1.3.3. Polynomial Regression

If the relationship between Y and x is non-linear, polynomial terms (i.e. x2, x3 etc.) can be
added to the model. This enables curved lines defined by quadratic or cubic equations to be
fitted to the data, which may improve the fit. Polynomial terms should be fitted until one of
them is not significant (rather like a forward selection procedure) at a chosen significance level.
The power of the highest polynomial is referred to as the degree of the polynomial model.

It should be remembered that the individual coefficients are meaningless in polynomial re-
gression. In other words, if Y = β0 +β1x+β2x

2, β1 and β2 do not have a simple interpretation.
The change in Y for a change of 1 in x is no longer constant, but depends on the initial value
of x. The only way to understand the association between Y and x is to draw the function
Y = β0 + β1x+ β2x

2.

It should be noted that, depending on the range of values of x, there may be strong correla-
tions between the various powers of x. This can lead to the problem of multicollinearity outlined
in section 1.3.2. This can be avoided by using orthogonal polynomials, i.e. rather than fit x2,
fit (x − c)2, where c is chosen so that the correlation between x and (x − c)2 is 0. Orthogonal
polynomials can be calculated by stata: see the command orthpoly.

An alternative, suggested by Altman, is to use fractional polynomials. For details of how to
use fractional polynomials in stata, see the help for the command fracpoly. Another alternative
approach is to use splines: details can be found in the help for the command mkspline.

1.3.4. Transformations

If the variance of Y is not constant, the only solution is to transform Y . A transformation may
also be called for if the distribution of Y is not normal. Transformations may also be used on the
x-variables, but this is less common: usually it is simpler to use polynomials if the association
between Y and x is non-linear but there is no other reason to transform Y .

dstrictly speaking, if there are two linear combinations of variables that are highly correlated, for example if
x1 + 3x2 is highly correlated with x3 + 4x4
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If Y has a positively skewed distribution (i.e. there are some unusually large values), it may
be worth transforming Y by taking logs and fitting the model

log(Y ) = β0 + β1x1 + . . .+ βpxp

This transformation is commonly used with measurements of biochemical parameters, which
tend to be skewed. This transformation is also appropriate if the variance of Y increases as Y
increases.

The major drawback with transforming the data is that the parameters are harder to inter-
pret. If we fit the linear model f(Y ) = β0 + β1x1, where f(Y ) is some transformation of Y ,
then if x increases by 1, it is f(Y ), not Y which will increase by β1. The amount by which Y
increases will depend on its initial value, which makes it difficult to simply summarise the effect
of x on Y .

For this reason, transformations other than the log transformation are largely avoided. The
reason that the log transformation is used is that if log(Y ) increases by β, that is equivalent to
multiplying Y by eβ. Hence the parameters from a linear model for log(Y ) are easy to interpret
on the original log scale. For example, if the regression equation is log(Y ) = 0.5x, then for each
unit increase in x, Y is multiplied by e0.5 = 1.65. In other words, when x increased by 1, Y
increases by 65%.

1.3.5. Regression Through the Origin

It may be that there is an a priori reason to assume that Y = 0 when all of the predictor
variables are 0. In this case, it is possible to fit a linear model in which β0 is forced to be 0,
i.e. the regression line is forced through the origin. However, this should only be used if data
is available for x-values close to 0. If we have no data from near the origin, we should not be
concerned with trying to predict Y near the origin: we can only be sure our linear model holds
in the region in which we have collected data.

If we are certain regression through the origin is justified, we can force stata to force β0 to
be equal to zero with the option nocons to the regress command. However, it should be noted
that R2 is calculated differently when performing regression through the origin, and cannot be
compared to the R2 value obtained normally.
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2.1. Practical

2.1.1. Datasets

The datasets that you will use in this practical can be accessed via http from within stata.
However, the directory in which they are residing has a very long name, so you can save yourself
some typing if you create a global macro for this directory. You can do this by entering

global basedir http://personalpages.manchester.ac.uk/staff/mark.lunt

global datadir $basedir/stats/6 LinearModels2/data

(In theory, the global variable datadir could have been set with a single command, but fitting
the necessary command on the page would have been tricky. Far easier to use two separate
commands as shown above). If you wish to run the practical on a computer without internet
access, you would need to:

1. Obtain copies of the necessary datasets

2. Place them in a directory on your computer

3. Define the global macro $datadir to point to this directory.

2.1.2. Categorical Variables

Dichotomous Variables and T-Tests

Load the auto dataset distributed with stata using the command sysuse auto, clear. We
are going to confirm that US-made vehicles tend to be heavier than non-US made vehicles.

1.1 Fit a linear model with the command regress weight foreign. Are foreign vehicles
heavier or lighter than US vehicles ? Is the difference signficant ?

1.2 Fit the above model again, but this time use regress weight i.foreign

Does this make any difference ?

1.3 Check that regress gives the same results as ttest by entering the command
ttest weight, by(foreign) Look at the difference between the means and its standard
error: are they the same as those obtained by regress

1.4 Make box-and-whisker plots for the weight of both US and non-US vehicles with the
commands

sort foreign

graph box weight, by(foreign)

Does the variance of weight look the same for US and non-US vehicles ?

1.5 You may wish to confirm your ideas in the last question by typing
by foreign: summ weight. Are the standard deviations similar between US and non-
US vehicles ?

1.6 Finally, use hettest to confirm whether or not the variances are the same. Was a linear
model an appropriate way of analysing this data ?
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Multiple Categories and ANOVA

The dataset $datadir/soap gives information on the scores given to 90 bars of soap for their
appearance. The scores are on a scale of 1-10, the higher the score the better. Three operators
each produced 30 bars of soap. We wish to determine if the operators are all equally proficient.

1.7 Sort the data by operator (type sort operator), and produce box-and-whisker plots of
appearance for each operator by typing graph box appearance, by(operator). Which
operator appears to have the highest scores ?

1.8 What are the mean scores for each of the 3 operators ? The command to use is
by operator: summ appearance

1.9 Fit a linear model to the data with regress appearance i.operator. Are there sig-
nificant differences between the three operators ?

1.10 What is the p-value for the differences between the operators ?

1.11 Which operator was used as the baseline for the linear model ? (Check that the constant
term in the model is the same as this operator’s mean score you calculated earlier)

1.12 Use lincom to calculate the mean score for operator 2. Is this the same as the score you
calculated earlier ?

1.13 Use lincom to calculate the difference in mean score between operators 2 and 3. Is this
difference statistically significant ?

2.1.3. Interactions and Confounding

The dataset $datadir/cadmium give data on the ages, vital capacities and durations of exposure
to cadmium (in three categories) in 88 workers. We wish to see if exposure to cadmium has a
detrimental effect on vital capacity. However, we know that vital capacity decreases with age,
and that the subjects with the longest exposures will tend to be older than those with shorter
exposures. Thus, age could confound the relationship between exposure to cadmium and vital
capacity.

1.14 Plot a graph of vital capacity against age, to satisfy yourself that vital capacity decreases
with increasing age ? (use scatter capacity age)

1.15 In case you are not satisfied, fit a linear model to predict vital capacity from age, with
regress capacity age

It would be nice to be able to tell to which exposure group each point on the plot of vital
capacity against age belonged. This can be done by using the commands

gen cap1 = capacity if exposure == 1

gen cap2 = capacity if exposure == 2

gen cap3 = capacity if exposure == 3

scatter cap1 cap2 cap3 age
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This graph clearly shows that the group with the highest exposure tend to be older (they are
towards the right of the graph).

1.16 Is there a difference between the three exposure groups in vital capacity ? (use regress

capacity i.exposure)

1.17 We have seen that a lower vital capacity in the most exposed may be due to their
age, rather than their exposure. Adjust the previous example for age, using regress

capacity age i.exposure Now use testparm i.exposure to test whether there are
significant differences between groups.

To get a visual idea of the meaning of the previous regression model, type

predict ppred, xb

gen ppred1 = ppred if exposure == 1

gen ppred2 = ppred if exposure == 2

gen ppred3 = ppred if exposure == 3

sc cap1 cap2 cap3 age || line ppred1 age || line ppred2 age || line ppred3 age

Note that the final command (scatter ...) must all be entered on one line. This will show
the same plot of capacity against age we saw before, but with three parallel regression lines, one
for each group.

1.18 Finally, we wish to test the hypothesis that subjects with high exposure lose their vital
capacity quicker as they age, i.e. that there is an interaction between age and vital
capacity. We can do this with the command regress capacity i.exposure##c.age

followed by testparm i.exposure#c.age Is there a significant difference between the
slopes with age in the three groups ?

To see the regression lines in this case, type

predict ipred, xb

gen ipred1 = ipred if exposure == 1

gen ipred2 = ipred if exposure == 2

gen ipred3 = ipred if exposure == 3

sc cap1 cap2 cap3 age || line ipred1 age || line ipred2 age || line ipred3 age

Again, the final command (scatter ...) must all be entered on one line.

1.19 From the regression output, which group has the steepest slope with age and which group
the least steep ?

1.20 Use lincom age + 3.exposure#c.age to calculate the decrease in vital capacity per
year increase in age in the highest exposure group.

2.1.4. Variable Selection

Use the dataset $datadir/hald. This contains data on the amount of heat evolved as cement
hardens, as a function of the proportions of 4 chemicals in the composition of the cement.

1.21 Use forward selection to chose a model for predicting the amount of heat evolved. (Use
sw regress y x1 x2 x3 x4, pe(0.05)) Which variables are included.
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2.1. Practical

1.22 Now use backward elimination, using the command sw regress y x1 x2 x3 x4,

pr(0.05) Does this select the same model ?

1.23 Choose a model using stepwise selection, with the command sw regress y x1 x2 x3

x4, pe(0.05) pr(0.0500005) Is this model the same as any or all of the previous
models ?

1.24 Produce a correlation matrix for the x-variables using the command corr x1 x2 x3 x4

What is the correlation between x2 and x4 ?

1.25 Does this help to explain why the different methods of variable selection produced dif-
ferent models ?

1.26 Fit all 4 predictors in a single model with regress y x1 x2 x3 x4 Look at the F -
statistic: is the fit of the model statistically significant ?

1.27 Look at the R2 statistic: is this model good at predicting how much heat will be evolved ?

1.28 Look at the table of coefficients: how many of them are significant at the p= 0.05 level ?

2.1.5. Polynomial Regression

Use the data in $datadir/growth. This dataset gives the weight, in ounces, of a baby weighed
weekly for the first 20 weeks of its life.

1.29 Plot the data with scatter weight week Does the plot appear to be linear, or is there
evidence of curvature ?

1.30 Fit a straight line to the data with regress weight week Produce a partial residual
plot with cprplot week Does this confirm what you thought previously ?

1.31 Generate an week2 term with the command gen week2 = week*week Add this term to
the regression model, with regress weight week week2 Does this improve the fit of
the model ? (i.e. is week2 a significant predictor ?)

1.32 Generate predicted values from this model with predict pred2, xb. Produce a graph of
the observed and predicted values with twoway scatter weight week || line pred2

week

1.33 Continue to generate polynomial terms and add them to the regression model until the
highest order term is no longer significant. What order of polynomial is required to fit
this data ?

1.34 Produce a correlation matrix for the polynomial terms with corr week*. What is the
correlation between week and week2 ?
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A. Old Stata Syntax for Categorical Variables
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A. Old Stata Syntax for Categorical Variables

Before Stata had factor variables, there was a different process for generating indicator
variables. I do not recommend using the old method, but it is probably worth being a little
familiar with it, since you may well see it in existing do-files.

The main difference was that the old way required a prefix to any command using indicator
variables with xi: (short for “eXpand Interactions”. The xi command would generate a series
of indicator variables, beginning with I, and include them in the command in place of the
categorical variable.

The second main difference was that the symbol for creating an interaction was * rather
than #. So the interaction between two categorical variables var1 and var2 would be written as
i.var1*i.var2, rather than i.var1#i.var2. There was no equivalent of the c prefix, so if var2
was continuous, the interaction would be written i.var1*var2, rather than i.var1#c.var2.

Another major difference is that string variables could be used with xi, but only numeric
variables can be used as factors. This is not a major drawback, since Stata 14 can show string
labels for the levels of the factors in the output, rather than the numbers themselves (I prepared
my notes with Stata 12, so only the numbers appear in my output).

A final difference is in how the reference category is selected, which we will meet in a few
weeks. The new method is relatively intuitive and simple, the old method I still need to look
up the details of the syntax 20 years after I first used it. Not that intuitive.

The differences between the two syntaxes are outlined in Table A.1.

New syntax Old Syntax

Prefix none required xi:

Variable type Numeric String or numeric
Interaction # *
Creates new variables No Yes

Table A.1.: Differences between old and new syntaxes for defining indicators

For full details, see help fvvarlist for the new syntax and help xi for the old syntax.
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