Solutions for Session 6

05/12/2023

. do solution.do

. global basedir http://personalpages.manchester.ac.uk/staff/mark.lunt

. global datadir \$basedir/stats/6_LinearModels2/data

. sysuse auto, clear (1978 Automobile Data)

. regress weight foreign

Source	SS	df	MS		Number of obs	=	74
Model Residual	15496779.3 28597399.1	1 1 72 3	5496779.3 97186.099		F(1, 72) Prob > F R-squared Adj R-squared	= = =	39.02 0.0000 0.3514 0.3424
Total	44094178.4	73 6	04029.841		Root MSE	=	630.23
weight	Coef.	Std. Er	r. t	P> t	[95% Conf.	In	terval]
foreign _cons	-1001.206 3317.115	160.287 87.3967	6 -6.25 6 37.95	0.000 0.000	-1320.734 3142.893	-6 3	81.6788 491.338

1.1 foreign vehicles are, on average, 1000 lbs lighter than US vehicles The difference is significant, p = 0.000

. regress weight i.foreign

Source	SS	df		MS		Number of obs	=	74
Model Residual	15496779.3 28597399.1	1 72	15496 39718	779.3 6.099		F(1, 72) Prob > F R-squared	= = =	39.02 0.0000 0.3514
Total	44094178.4	73	60402	9.841		Adj R-squared Root MSE	=	0.3424 630.23
weight	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
foreign Foreign _cons	-1001.206 3317.115	160.2 87.39	876 676	-6.25 37.95	0.000	-1320.734 3142.893	-6 3	81.6788 491.338

1.2 This makes no difference at all

. ttest weight, by(foreign)

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Domestic Foreign	52 22	3317.115 2315.909	96.4296 92.31665	695.3637 433.0035	3123.525 2123.926	3510.706 2507.892
combined	74	3019.459	90.34692	777.1936	2839.398	3199.521
diff		1001.206	160.2876		681.6788	1320.734
diff = Ho: diff =	= mean(Dome: = 0	stic) - mean	(Foreign)	degrees	t : of freedom :	= 6.2463 = 72
Ha: d: Pr(T < t)	iff < 0) = 1.0000	Pr(Ha: diff != T > t) = (0 0.0000	Ha: d: Pr(T > t)	iff > 0) = 0.0000

1.3 the mean difference and standard error are exactly the same (except for the minus sign) $% \left({{{\rm{T}}_{{\rm{T}}}}_{{\rm{T}}}} \right)$

. graph box weight, over(foreign)

. graph export graph1.eps replace (file graph1.eps written in EPS format)

 $1.4\ {\it There}$ is a wider spread of weights for Domestic cars compared to Foreign cars, i.e. greater variance

. by foreign: summ weight

-> foreign = D	omestic				
Variable	Obs	Mean	Std. Dev.	Min	Max
weight	52	3317.115	695.3637	1800	4840
-> foreign = F	oreign				
Variable	Obs	Mean	Std. Dev.	Min	Max
weight	22	2315.909	433.0035	1760	3420

Figure 1: . graph box weight, over(foreign)

1.5 the SD is much higher for Domestic (~700) compared to Foreign (~430)

1.6 The difference in variance is significant. Therefore, a linear model is inappropriate

- . use \$datadir/soap, clear
- . graph box appearance, over(operator)

Figure 2: . graph box appearance, over(operator)

. graph export graph2.eps replace (file graph2.eps written in EPS format)

1.7 Operator 3 has the highest scores: 25% of scores are above 9 $\,$

. sort operator

. by operator: summ appearance

-> operator =	1								
Variable	Obs	Mean	Std.	Dev.	Min	Max	:		
appearance	30	8.306667	.4630	732	7.5	9.1			
-> operator =	2								
Variable	Obs	Mean	Std.	Dev.	Min	Max	:		
appearance	30	7.896667	.4766	863	7.1	ç)		
-> operator =	3								
Variable	Obs	Mean	Std.	Dev.	Min	Max	:		
appearance	30	8.626667	.4653	018	7.8	9.7	•		
. regress appearance i.operator									
Source	SS	df	MS		Number o	f obs =	90		
Model Residual	8.03400033	2 4.0 87 .21	9390791		F(2, Prob > F B-square	= (87 = 1 =	 18.31 0.0000 0.2962 		
Total	27.1209991	89 .30	4730327		Adj R-sq Root MSE	uared = =	• 0.2800 • .46839		
appearance	Coef.	Std. Err.	t	P> t	[95% 0	Conf. I	[nterval]		
operator									
2	41	.1209382	-3.39	0.001	6503	778 -	.1696222		
3	.3200001	.1209382	2.65	0.010	.0796	223	.5603779		
_cons	8.306667	.0855162	97.14	0.000	8.136	694	8.476639		

1.9 Yes: Prob > F = 0.0000 is testing the null hypothesis that all operators are the same. 1.10 p=0.00001.11 Operator 1 is the baseline: there is no line for operator 1

. lincom _cons + 2.operator

(1) 2.operator + cons = 0

appearance	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
(1)	7.896667	.0855162	92.34	0.000	7.726694	8.066639

1.12 This is the same as we have already seen

. lincom 2.operator - 3.operator

(1)	2.operator	-	3.operator	=	0
(1)	2. opciator		0.0pcrator		0

appearance	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
(1)	73	.1209382	-6.04	0.000	9703778	4896222

- 1.13 Yes: t = -6.04, p = 0.000
- . use \$datadir/cadmium, clear
- . scatter capacity age

Figure 3: . scatter capacity age

. graph export graph3.eps replace (file graph3.eps written in EPS format)

. reg	gress	capacity	age
-------	-------	----------	-----

Source	SS	df		MS		Number of obs	=	84
Model Residual	17.4445864 30.1963679	1 82	17.4 .368	445864 248388		F(1, 82) Prob > F R-squared	= = =	47.37 0.0000 0.3662 0.3584
Total	47.6409543	83	.573	987401		Root MSE	=	.60683
capacity	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
age _cons	0404781 6.033316	.0058 .247	811 487	-6.88 24.38	0.000	0521776 5.540986	(6)287787 .525647

2.2 The regression coefficient for age is negative, showing that capacity decreases as age increases.

. gen cap1 = capacity if exposure == 1
(40 missing values generated)

. gen cap2 = capacity if exposure == 2
(56 missing values generated)

. gen cap3 = capacity if exposure == 3 (72 missing values generated)

. scatter cap1 cap2 cap3 age

. graph export graph4.eps replace (file graph4.eps written in EPS format)

[.] regress capacity i.exposure

Source	SS	df	MS		Number of obs	= 84
Model Residual	2.74733751 44.8936168	2 81	1.37366875 .554242182		F(2, 81) Prob > F R-squared	= 2.48 = 0.0902 = 0.0577
Total	47.6409543	83	.573987401		Adj R-squared Root MSE	= 0.0344 = .74447
capacity	Coef.	Std. E	Err. t	P> t	[95% Conf.	Interval]
exposure < 10 years > 10 years	.0097403 5128788	.17997 .24245	744 0.05 526 -2.12	0.957 0.037	3483523 9952834	.3678329 0304741
_cons	4.462045	.11223	337 39.76	0.000	4.238735	4.685355

2.3 Its borderline, p = 0.09

Figure 4: . scatter cap1 cap2 cap3 age

Source	SS	df	MS		Number of obs	s = 84
Model Residual	17.6062849 30.0346693	35. 80.3	86876164 75433367		F(3, 80) Prob > F R-squared Adi R-squared	= 15.63 = 0.0000 = 0.3696 = 0.3459
Total	47.6409543	83 .5	73987401		Root MSE	= .61273
capacity	Coef.	Std. Err	. t	P> t	[95% Conf.	Interval]
age	0397752	.0063224	-6.29	0.000	0523572	0271931
exposure < 10 years > 10 years	0701975 1169349	.1486686 .2092361	-0.47 -0.56	0.638 0.578	3660575 5333281	.2256626 .2994582
_cons	6.044917	.2680248	22.55	0.000	5.51153	6.578303

. regress capacity age i.exposure

```
. testparm i.exposure
(1) 2.exposure = 0
(2) 3.exposure = 0
       F( 2, 80) =
                             0.22
             Prob > F =
                            0.8067
```

```
2.4 There are now no significant differences between groups
```

```
. predict ppred, xb
```

```
. gen ppred1 = ppred if exposure == 1
(40 missing values generated)
```

```
. gen ppred2 = ppred if exposure == 2
(56 missing values generated)
```

```
. gen ppred3 = ppred if exposure == 3
(72 missing values generated)
```

```
. scatter cap1 cap2 cap3 age || line ppred1 age || line ppred2 age || /* */
line ppred3 age
```

```
. graph export graph5.eps replace
(file graph5.eps written in EPS format)
```

```
. regress capacity i.exposure##c.age
```

Source	SS	df M	S	Nu	mber of obs =	= 84 11 20
Model Residual	20.1057424 27.5352118	5 4.0211 78 .35301	4849 5536	Pr R-	:ob > F = squared =	= 0.0000 = 0.4220
Total	47.6409543	83 .57398	7401	Rc	ot MSE =	• .59415
capacity	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
exposure						
< 10 years	.5497403	.5758844	0.95	0.343	5967574	1.696238
> 10 years	2.503148	1.041842	2.40	0.019	.4289997	4.577296
age	0306127	.0075475	-4.06	0.000	0456385	0155868
exposure#c.age						
< 10 years	0159193	.0145469	-1.09	0.277	0448799	.0130413
> 10 years	0544983	.0210698	-2.59	0.012	0964451	0125516
_cons	5.680291	.313426	18.12	0.000	5.056307	6.304274

. testparm i.exposure#c.age

```
(1) 2.exposure#c.age = 0
```

```
(2) 3.exposure#c.age = 0
```

```
F( 2, 78) =
Prob > F =
                       3.54
                     3.54
0.0338
```


Figure 5: . scatter cap1 cap2 cap3 age —— line ppred1 age —— line ppred2 age —— /*

 $2.5 \ {\rm Yes}, \ {\rm the \ slopes}$ in the different exposure groups are different

```
. predict ipred, xb
. gen ipred1 = ipred if exposure == 1
(40 missing values generated)
```

```
. gen ipred2 = ipred if exposure == 2
(56 missing values generated)
```

```
. gen ipred3 = ipred if exposure == 3
(72 missing values generated)
. scatter cap1 cap2 cap3 age || line ipred1 age || line ipred2 age || /* */
line ipred3 age
```


Figure 6: . scatter cap1 cap2 cap3 age —— line ipred1 age —— line ipred2 age —— /*

```
. graph export graph6.eps replace (file graph6.eps written in EPS format)
```

```
2.6 The least steep is in the baseline (least exposed group) The steepest is in the most exposed group
```

```
. lincom age + 3.exposure#c.age
```

```
( 1) age + 3.exposure#c.age = 0
```

capacity	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
(1)	085111	.0196716	-4.33	0.000	1242742	0459478

. use \$datadir/hald, clear

. sw regress y p = 0.0006 < p = 0.0000 <	y x1 x2 x3 x4, begin 0.0500 addin 0.0500 addin	pe(0.05 with em g x4 g x1) pty model		
Source	SS	df	MS		Number of obs = 13
					F(2, 10) = 176.63
Model	2641.00094	2 1	320.50047		Prob > F = 0.0000
Residual	74.7621108	10 7	.47621108		R-squared = 0.9725
Total	2715.76305	12 2	26.313587		Adj R-squared = 0.9670 Root MSE = 2.7343
У	Coef.	Std. Er	r. t	P> t	[95% Conf. Interval]
x4	6139536	.048644	5 -12.62	0.000	72234045055668
x1	1.439958	.138416	3 10.40	0.000	1.131547 1.74837
_cons	103.0974	2.12398	48.54	0.000	98.36485 107.8299

3.1 x1 & x4 are retained

. sw regress y x1 x2 x3 x4, pr(0.05) begin with full model p = 0.8959 >= 0.0500 removing x3 p = 0.2054 >= 0.0500 removing x4

p =	0.2054	>=	0.0500	removing	X4

Source	SS	df	MS		Number of obs	= 13
					F(2, 10)	= 229.50
Model	2657.85857	2 1	328.92929		Prob > F	= 0.0000
Residual	57.9044793	10 5	.79044793		R-squared	= 0.9787
					Adj R-squared	= 0.9744
Total	2715.76305	12 2	26.313587		Root MSE	= 2.4063
	I					
У	Coef.	Std. Er	r. t	P> t	[95% Conf.	Interval]
	1,468306	.121300	9 12.10	0.000	1,19803	1.738581
*2	.6622505	.045854	7 14.44	0.000	.5600798	.7644212
_cons	52.57735	2.28617	4 23.00	0.000	47.48344	57.67126

3.2 This time x1 & x2 are retained

. sw regress y p = 0.8959 >= p = 0.2054 >=	y x1 x2 x3 x4, begin 0.0500 remov 0.0500 remov	pe(0. with ing x3 ing x4	05) p full 1	r(0.05000 model	005)			
Source	SS	df		MS		Number of obs	=	13
						F(2, 10)	=	229.50
Model	2657.85857	2	1328	.92929		Prob > F	=	0.0000
Residual	57.9044793	10	5.79	044793		R-squared	=	0.9787
Total	2715.76305	12	226.	313587		Adj R-squared Root MSE	= =	0.9744 2.4063
У	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
x1	1.468306	.1213	009	12.10	0.000	1.19803	1	.738581
x2	.6622505	.0458	547	14.44	0.000	.5600798	. '	7644212
_cons	52.57735	2.286	174	23.00	0.000	47.48344	5	7.67126

3.3 This is the same as the backwards model

. corr x* (obs=13)

_cons

505-137				
	x1	x2	x3	x4
x1 x2 x3 x4	1.0000 0.2286 -0.8241 -0.2454	1.0000 -0.1392 -0.9730	1.0000	1 0000

3.4 Correlation between x2 & x4 is -0.97

62.40535

3.5 x2 & x4 are very strongly correlated: they contain the same information, so they are largely interchangeable

13

223.9893

. regress y x1 x2 x3 x4 Source SS MSNumber of obs = df F(4, 8) = 111.482667.89941 Prob > F = 0.0000 4 666.974853 Model Residual 47.863637 8 5.98295463 R-squared = 0.9824 Adj R-squared = 0.9736 2715.76305 Total 12 226.313587 Root MSE = 2.446 Std. Err. P>|t| [95% Conf. Interval] у Coef. t x1 1.551103 .7447698 2.08 0.071 -.1663395 3.268545 x2 .5101677 .723788 0.70 0.501 -1.15889 2.179226 xЗ .1019096 .754709 0.14 0.896 -1.638453 1.842272 -.1440609 .709052 0.844 -1.7791381.491016 x4 -0.20

70.07096

0.89

0.399

-99.17856

3.6 The F statistic says that the model is very highly significant: the null hypothesis that all coefficients are 0 could not have given rise to this data $\frac{1}{2}$

3.7 98% of the variance is explained

3.8 None of the coefficients are significant, due to the strong correlations between them

- . use \$datadir/growth, clear
- . scatter weight week

Figure 7: . scatter weight week

. graph export graph7.eps replace (file graph7.eps written in EPS format)

4.1 The line does not look quite straight: there appears to be some curvature

. regress weight week

Source	SS	df	MS		Number of obs	= 20
Model Residual	25438.7504 579.449624	1 18	25438.7504 32.1916458		F(1, 18) Prob > F R-squared Adi B-squared	= 790.23 = 0.0000 = 0.9777 = 0.9765
Total	26018.2	19	1369.37895		Root MSE	= 5.6738
weight	Coef.	Std. H	Err. t	P> t	[95% Conf.	Interval]
week _cons	6.184962 125.3579	.22001 2.6356	193 28.11 544 47.56	0.000 0.000	5.722719 119.8206	6.647206 130.8952

. cprplot week

$4.2\ {\it There}\ is\ definitely\ curvature\ around\ the\ line$

. gen week2 = week * week

. regress weight week week2

Source	SS	df	MS		Number of obs =	20
Model Residual	25927.7513 90.4487127	2 1290 17 5.32	63.8756 2051251		F(2, 17) = 2 Prob > F = R-squared =	2436.58 0.0000 0.9965
Total	26018.2	19 1369	9.37895		Adj K-squared = Root MSE =	2.3066
weight	Coef.	Std. Err.	t	P> t	[95% Conf. Int	erval]
week week2 _cons	2.680178 .1668945 138.2088	.3763642 .0174086 1.716086	7.12 9.59 80.54	0.000 0.000 0.000	1.886119 3. .1301656 .2 134.5881 14	474237 2036235 1.8294

4.3 week2 is very highly significant (p = 0.000)

- . predict pred2, xb
- . twoway scatter weight week $\left| \right|$ line pred2 week
- . graph export graph8.eps replace (file graph8.eps written in EPS format)

4.4 Curved predictor fits the data very well

Figure 8: . twoway scatter weight week —— line pred2 week

. gen week3 = week2*week

. regress weig	ght week week2	week3					
Source	SS	df	M	5		Number of obs	= 20
Model Residual Total	25928.9007 89.2992705 26018.2	3 16 19	8642.90 5.58120 1369.3	5691 0441 7895		F(3, 16) Prob > F R-squared Adj R-squared Root MSE	= 1548.58 = 0.0000 = 0.9966 = 0.9959 = 2.3625
weight	Coef.	Std. I	Err.	t	P> t	[95% Conf.	Interval]
week week2 week3 _cons	2.242641 .2177334 0016139 139.0663	1.0383 .11343 .00359 2.5809	333 353 564 - 587 -	2.16 1.92 -0.45 53.89	0.046 0.073 0.656 0.000	.0414737 0227388 0091531 133.5957	4.443808 .4582055 .0059252 144.5369

4.5 week3 is not significant

(obs=20)			
	week	week2	week3
week week2	1.0000 0.9713	1.0000	
week3	0.9221	0.9865	1.0000

. corr week*

4.6 Correlation between week and week2 is 0.97 end of do-file $% \left({\left[{{{\rm{ch}}} \right]_{{\rm{ch}}}} \right)$