Linear Modelling in Stata Session 6: Further Topics in Linear Modelling

Mark Lunt

Centre for Epidemiology Versus Arthritis University of Manchester

05/12/2023

- Categorical Variables
 - Comparing outcome between groups
 - Comparing slopes between groups (Interactions)
- Confounding
- Variable Selection
- Other considerations
 - Polynomial Regression
 - Transformation
 - Regression through the origin

Dichotomous Variables Multiple Categories Categorical & Continuous Interactions

Categorical Variables

- None of the linear model assumptions mention the distribution of *x*.
- Can use x-variables with any distribution
- This enables us to compare different groups

Dichotomous Variables Multiple Categories Categorical & Continuous Interactions

Dichotomous Variable

- Let x = 0 in group A and x = 1 in group B.
- Linear model equation is $\hat{Y} = \beta_0 + \beta_1 x$
- In group A, x = 0 so $\hat{Y} = \beta_0$
- In group B, x = 1 so $\hat{Y} = \beta_0 + \beta_1$
- Hence the coefficient of *x* gives the difference in mean between the two groups.

Dichotomous Variables Multiple Categories Categorical & Continuous Interactions

Dichotomous Variable Example

- x takes values 0 or 1
- Y is normally distributed with variance 1, and mean 3 if x = 0 and 4 if x = 1.
- We wish to test if there difference in the mean value of Y between the groups with x = 0 and x = 1

Categorical Variables

Confounding I Variable Selection Other Considerations

Dichotomous Variables Multiple Categories Categorical & Continuous Interactions

Dichotomous Variable: Stata output

. regress Y x

Source	1	SS	df	Ν	IS		Number	of	obs	-	40
	+						F(1,		38)	=	10.97
Model	9.86	319435	1	9.8631	9435		Prob >	F		=	0.0020
Residual	34.1	679607	38	.8991	5686		R-squar	red		=	0.2240
	+						Adj R-s	squa	ared	=	0.2036
Total	44.	031155	39	1.1290	0398		Root MS	SΕ		=	.94824
Y		Coef. S	Std.	Err.	t	P>∣t∣	[959	t Co	onf.	Int	[erval]
x _cons	.99 3	31362 .0325	.2998 .2120	594 326	3.31 14.30	0.002	.386 2.60	5102)326	25 52	3.	1.60017 .461737

Dichotomous Variables Multiple Categories Categorical & Continuous Interactions

Dichotomous Variables and the T-Test

- Differences in mean between two groups usually tested for with t-test.
- Linear model results are *exactly* the same.
- Linear model assumptions are *exactly* the same.
 - Normal distribution in each group
 - Same variance in each group
- A t-test is a special case of a linear model.
- Linear model is far more versatile (can adjust for other variables).

Dichotomous Variables Multiple Categories Categorical & Continuous Interactions

T-Test: Stata output

. ttest Y, by(x)

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
0 1	20 20	3.0325 4.025636	.2467866 .1703292	1.103663 .7617355	2.515969 3.669133	3.54903 4.382139
combined	40	3.529068	.1680033	1.062546	3.189249	3.868886
diff		9931362	.2998594		-1.60017	3861025
diff Ho: diff	= mean(0) = 0	- mean(1)		degrees	t of freedom	= -3.3120 = 38
Ha: d Pr(T < t	iff < 0) = 0.0010	Pr(Ha: diff != T > t) =	0.0020	Ha: d Pr(T > t	iff > 0) = 0.9990

Dichotomous Variables Multiple Categories Categorical & Continuous Interactions

Categorical Variable with Several Categories

- What can we do if there are more than two categories ?
- Cannot use *x* = 0, 1, 2,
- Instead we use "dummy" or "indicator" variables.
- If there are k categories, we need k 1 indicators.

Dichotomous Variables Multiple Categories Categorical & Continuous Interactions

Three Groups: Example

Group	<i>x</i> ₁	<i>x</i> ₂	Ŷ	σ^2	
А	0	0	3	1	Baseline Group
В	1	0	5	1	
С	0	1	4	1	

- $\beta_0 = \hat{Y}$ in group A
- β_1 = difference between \hat{Y} in group A and \hat{Y} in group B
- β_2 = difference between \hat{Y} in group A and \hat{Y} in group C

Dichotomous Variables Multiple Categories Categorical & Continuous Interactions

Three Groups: Stata Output

. regress Y x1 x2

Source	SS SS	df	MS		Number of obs	= 60
	+				F(2, 57)	= 16.82
Model	37.1174969	2 18.5	587485		Prob > F	= 0.0000
Residual	62.8970695	57 1.10	345736		R-squared	= 0.3711
	+				Adj R-squared	= 0.3491
Total	100.014566	59 1.69	516214		Root MSE	= 1.0505
Y	Coei.	Std. Err.	t	P> t	[95% Conf.	Interval]
v1	 1 1 02/713	3321933	5 70	0 000	1 250520	2 580800
XI	1.524/15	. JJZI0JJ	5.15	0.000	1.239320	2.303035
x2	1.035985	.3321833	3.12	0.003	.3707994	1.701171
_cons	3.075665	.2348891	13.09	0.000	2.605308	3.546022

Dichotomous Variables Multiple Categories Categorical & Continuous Interactions

Comparing Groups

- In the previous example, groups B and C both compared to group A.
- Can we compare groups B and C as well ?
- In group B, $\hat{Y} = \beta_0 + \beta_1$
- In group C, $\hat{Y} = \beta_0 + \beta_2$
- Hence difference between groups is $\beta_1 \beta_2$
- Can use lincom to obtain this difference, and test its significance.

Dichotomous Variables Multiple Categories Categorical & Continuous Interactions

The lincom Command

- lincom is short for linear combination.
- It can be used to calculate linear combinations of the parameters of a linear model.
- Linear combination = $a_j\beta_j + a_k\beta_k + \dots$
- Can be used to find differences between groups
 (Difference between Group B and Group C = β₁ β₂)
- Can be used to find mean values in groups (Mean value in group B = β₀ + β₁).

Dichotomous Variables Multiple Categories Categorical & Continuous Interactions

Stata Output from lincom

. lincom	x1 - x2						
(1) x1	- x2 =	0					
	Y	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
	(1)	.8887284	.3321833	2.68	0.010	.2235428	1.553914
. lincom (1) x1	_cons + + _con	x1 s = 0					
	Y I	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
	(1)	5.000378	.2348891	21.29	0.000	4.530021	5.470736

Dichotomous Variables Multiple Categories Categorical & Continuous Interactions

Factor Variables in Stata

- Generating dummy variables can be tedious and error-prone
- Stata can do it for you
- Identify categorical variables by adding "i." to the start of their name.
- For example, suppose that the variable group contains the values "1", "2" and "3" for the three groups in the previous example.

Dichotomous Variables Multiple Categories Categorical & Continuous Interactions

Stata Output with a Factor Variable

. regress Y i.group

Source	1	SS	df		MS		Number of ob	s =	60
	-+						F(2, 57) =	16.82
Model	1	37.1174969	2	18.5	5587485		Prob > F	=	0.0000
Residual	1	62.8970695	57	1.10	345736		R-squared	=	0.3711
	+						Adj R-square	d =	0.3491
Total	1	100.014566	59	1.69	9516214		Root MSE	=	1.0505
v		Coof	2+ d	Frr	+	D>1+1	[95% Conf		torvall
1	-	coer.	ocu.	bii.	L	1 / []	[33% CONT	• 11	licervarj
group	1								
2	1	1.924713	.3321	833	5.79	0.000	1.259528	2	.589899
3	1	1.035985	.3321	833	3.12	0.003	.3707994	1	.701171
	1								
_cons	1	3.075665	.2348	891	13.09	0.000	2.605308	3	.546022

Dichotomous Variables Multiple Categories Categorical & Continuous Interactions

Using factor variables with lincom

. lincom	2.group	- 3.group					
(1) 2	.group -	3.group =	0				
	Y	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
	(1)	.8887284	.3321833	2.68	0.010	.2235428	1.553914
. lincom (1) 2	_cons + .group +	2.group _cons = 0					
	Y	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
	(1)	5.000378	.2348891	21.29	0.000	4.530021	5.470736

Dichotomous Variables Multiple Categories Categorical & Continuous Interactions

Linear Models and ANOVA

- Differences in mean between more than two groups usually tested for with ANOVA.
- Linear model results are *exactly* the same.
- Linear model assumptions are *exactly* the same.
- ANOVA is a special case of a linear model.
- Linear model is far more versatile (can adjust for other variables).

Dichotomous Variables Multiple Categories Categorical & Continuous Interactions

Mixing Categorical & Continuous Variables

- So far, we have only seen either continuous or categorical predictors in a linear model.
- No problem to mix both.
- E.g. Consider a clinical trial in which the outcome is strongly associated with age.
- To test the effect of treatment, need to include both age and treatment in linear model.
- Once upon a time, this was called Analysis of Covariance (ANCOVA)

Categorical Variables Confounding Variable Selection

Other Considerations

Dichotomous Variables Multiple Categories Categorical & Continuous Interactions

Example Clinical Trial: simulated data

Categorical Variables

Confounding Variable Selection Other Considerations Dichotomous Variables Multiple Categories Categorical & Continuous Interactions

Stata Output Ignoring the Effect of Age

. regress Y treat

Sourc	e	SS	df		MS		Number of obs	=	40
Mode Residua	+- 21 11 +-	26.5431819 352.500943	1 38	26.5	431819 634061		F(1, 38) Prob > F R-squared Adi R-squared	=	2.86 0.0989 0.0700 0.0456
Tota	1	379.044125	39	9.71	908013		Root MSE	=	3.0457
	Y	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	[erval]
trea cor	it 15	1.629208 4.379165	.9631	.376 0411	1.69 6.43	0.099 0.000	3205623 3.00047	3 5	.578978

Categorical Variables Confounding Variable Selection

Other Considerations

Dichotomous Variables Multiple Categories Categorical & Continuous Interactions

Observed and predicted values from linear model ignoring age

Categorical Variables

Dichotomous Variables Variable Selection Categorical & Continuous

Other Considerations Stata Output Including the Effect of Age

	regress	Y	treat	age
--	---------	---	-------	-----

Source	SS	df	MS		Number of obs	= 40
+-					F(2, 37)	= 262.58
Model	354.096059	2 1	77.04803		Prob > F	= 0.0000
Residual	24.9480658	37 .6	74272049		R-squared	= 0.9342
+-					Adj R-squared	= 0.9306
Total	379.044125	39 9.	71908013		Root MSE	= .82114
Y	Coef.	Std. Err	. t	P> t	[95% Conf.	Interval]
+-						
treat	1.238752	.2602711	4.76	0.000	.7113924	1.766111
age	5186644	.0235322	-22.04	0.000	5663453	4709836
_cons	20.59089	.7581107	27.16	0.000	19.05481	22.12696

- Age explains variation in Y
- This reduces RMSE (estimate of σ)
- Standard error of coefficient = $\frac{\sigma}{\sqrt{n}s_x}$

Categorical Variables Confounding Variable Selection

Other Considerations

Dichotomous Variables Multiple Categories Categorical & Continuous Interactions

Observed and predicted values from linear model including age

Dichotomous Variables Multiple Categories Categorical & Continuous Interactions

Interactions

- In previous example, assumed that the effect of age was the same in treated and untreated groups.
- I.e. regression lines were parallel.
- This may not be the case.
- If the effect of one variable varies accord to the value of another variable, this is called "interaction" between the variables.
- Don't assume that an effect differs between two groups because it is significant in one, not in the other

Dichotomous Variables Multiple Categories Categorical & Continuous Interactions

Interaction Example

- Consider the clinical trial in the previous example
- Suppose treatment reverses the effect of aging, so that Ŷ is constant in the treated group.
- Thus the difference between the treated and untreated groups will increase with increasing age.
- Need to fit different intercepts and different slopes in the two groups.

Dichotomous Variables Multiple Categories Categorical & Continuous Interactions

Clinical trial data with predictions assuming equal slopes

 Categorical Variables
 D

 Confounding
 M

 Variable Selection
 C

 Other Considerations
 Ir

Dichotomous Variables Multiple Categories Categorical & Continuous Interactions

Regression Equations

• Need to fit the two equations

$$Y = \begin{cases} \beta_{00} + \beta_{10} \times \text{age} + \varepsilon & \text{if treat} = 0\\ \beta_{01} + \beta_{11} \times \text{age} + \varepsilon & \text{if treat} = 1 \end{cases}$$

• These are equivalent to the equation

 $Y = \beta_{00} + \beta_{10} \times age + (\beta_{01} - \beta_{00}) \times treat + (\beta_{11} - \beta_{10}) \times age \times treat + \varepsilon.$

• I.e. the output from stata can be interpreted as

_cons The intercept in the untreated group (treat == 0)

- age The slope with age in the untreated group
- treat The difference in intercept between the treated and untreated groups
- treat#c.age The difference in slope between the treated and untreated groups

Dichotomous Variables Multiple Categories Categorical & Continuous Interactions

Interactions: Stata Output

. regress Y i.treat age i.treat#c.age

Source	I SS	df	MS		Number of obs	=	40
	+				F(3, 36)	=	173.38
Model	563.7620	12 3 1	.87.920671		Prob > F	=	0.0000
Residual	39.01892	56 36 1	.08385904		R-squared	=	0.9353
	+				Adj R-squared	=	0.9299
Total	602.7809	38 39 1	5.4559215		Root MSE	=	1.0411
Y	Coef	. Std. En	r. t	P> t	[95% Conf.	In	terval]
1 treat		6 1 8729	52 -4 39	0 000	-12 02488	4	427833
200	- 486657	2 041220	-11 80	0.000	- 5702744	Ĵ.	- 40304
age	1	.04122.	/5 11.00	0.000	.3702744		. 10501
treat#c.age	1						
1	.468237	4 .05973	78 7.84	0.000	.3470836		5893912
	1						
_cons	19.7353	1 1.30955	53 15.07	0.000	17.07942	2	2.39121

Dichotomous Variables Multiple Categories Categorical & Continuous Interactions

Interactions: Using lincom

• lincom can be used to calculate the slope in the treated group:

. lincom age + 1.treat#c.age

(1) age + 1.treat#c.age = 0

Y	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
(1)	0184198	.0432288	-0.43	0.673	1060919	.0692523

- Can also be used to calculate intercept in treated group. However, this is not interesting since
 - We are unlikely to be be interested in subjects of age 0
 - The youngest subjects in our sample were 20, so we are extrapolating a long way from the data.

Categorical Variables Confounding Variable Selection Dichotomous Variables Multiple Categories Categorical & Continuous Interactions

Other Considerations Interactions Interactions: Predictions from Linear Model

Dichotomous Variables Multiple Categories Categorical & Continuous Interactions

Treatment effect at different ages

. lincom 1.treat + 20*1.treat#c.age										
(1) 1.treat + $20 \times 1.treat \# c.age = 0$										
	Y	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]			
	(1)	1.138392	.7279832	1.56	0.127	3380261	2.61481			
<pre>. lincom 1.treat + 40*1.treat#c.age (1) 1.treat + 40*1.treat#c.age = 0</pre>										
	Y	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]			
	(1)	10.50314	.6378479	16.47	0.000	9.209524	11.79676			

Dichotomous Variables Multiple Categories Categorical & Continuous Interactions

The testparm Command

- Used to test a number of parameters simultaneously
- Syntax: testparm varlist
- Test $\beta = 0$ for all variables in *varlist*
- Produces a χ² test on k degrees of freedom, where there are k variables in variist.

Dichotomous Variables Multiple Categories Categorical & Continuous Interactions

Old and new syntax for categorical variables

- Stata used to use a different syntax for categorical variables
- Still works, but new method is preferred
- You may still see old syntax in existing do-files

	New syntax	Old Syntax			
Prefix	none required	xi:			
Variable type	Numeric	String or numeric			
Interaction	#	*			
Creates new variables	No	Yes			
More info	help fvvarlist	help xi CENTRE			

Confounding

- A linear model shows association.
- It does not show causation.
- Apparent association may be due to a third variable which we haven't included in model
- Confounding is about causality, and knowledge of the mechanisms are required to decide if a variable is a confounder.

Confounding Example: Fuel Consumption

. regress mpg foreign

Source	SS	df	MS		Number	of obs	=	74
	+			-	F(1,	72)	=	13.18
Model	378.153515	1	378.15351	5	Prob >	F	=	0.0005
Residual	2065.30594	72	28.684804	8	R-squa	red	=	0.1548
	+			-	Adj R-	squared	=	0.1430
Total	2443.45946	73	33.472047	4	Root M	ISE	=	5.3558
mpg	Coef.	Std. E	lrr.	t P> t	[95	% Conf.	In	terval]
foreign _cons	4.945804	1.3621 .74271	.62 3 .86 26	.631 0.00 .695 0.00	1 2.2 0 18.	30384 34634	7	.661225 1.30751

Confounding Example: Weight and Fuel Consumption

Confounding Example: Controlling for Weight

. regress mpg foreign weight

Source	SS	df	MS		Number of obs	= 74
Model	+	2 809.	643849		F(2, 71) Prob > F	= 69.75
Residual	824.171761	71 11.	608053		R-squared	= 0.6627
+					Adj R-squared	= 0.6532
	2443.43940					- 5.4071
mpg	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
foreign	-1.650029	1.075994	-1.533	0.130	-3.7955	.4954421
weight	0065879	.0006371	-10.340	0.000	0078583	0053175
_cons	41.6/9/	2.16554/	19.24/	0.000	37.36172	45.99/68

What is Confounding ?

• Confounding: changing a predictor does not produce expected change in outcome

•
$$\hat{Y} = \beta_0 + \beta_1 x$$

- Two groups differing in x by Δx will differ in Y by $\beta_1 \Delta x$
- If we change x by Δx , what happens to \hat{Y} ?
- If it changes by $\beta_1 \Delta x$, no confounding
- If it changes by anything else, there is confounding

Categorical Variables

Confounding

Variable Selection

Other Considerations

Path Variables vs. Confounders

Weight is a path variable

Weight is a confounder

- Is a cause of the outcome irrespective of other predictors
- Is associated with the predictor
- Is not a consequence of the predictor
- Weight is associated with mpg
- This association does not depend on where the car was designed
- But is weight a path variable ?

- Is a cause of the outcome irrespective of other predictors
- Is associated with the predictor
- Is not a consequence of the predictor
- Weight is associated with mpg
- This association does not depend on where the car was designed
- But is weight a path variable ?
 - Foreign designers produce smaller cars in order to getter better fuel consumption: path variable

- Is a cause of the outcome irrespective of other predictors
- Is associated with the predictor
- Is not a consequence of the predictor
- Weight is associated with mpg
- This association does not depend on where the car was designed
- But is weight a path variable ?
 - Foreign designers produce smaller cars in order to getter better fuel consumption: path variable
 - Foreign designers briefed to produce smaller cars: confounder

- Is a cause of the outcome irrespective of other predictors
- Is associated with the predictor
- Is not a consequence of the predictor
- Weight is associated with mpg
- This association does not depend on where the car was designed
- But is weight a path variable ?
 - Foreign designers produce smaller cars in order to getter better fuel consumption: path variable
 - Foreign designers briefed to produce smaller cars: confounder
- I don't know enough about car design process to know if weight is a confounder

Allowing for Confounding

- In theory, adding a confounder to a regression model is sufficient to adjust for confounding.
- Then parameters for other variables measure the effects of those variables when confounder does not change.
- This assumes
 - Confounder measured perfectly
 - Linear association between confounder and outcome
- If either of the above are not true, there will be *residual confounding*

Variable Selection

- May wish to reduce the number of predictors used in a linear model.
 - Efficiency
 - Clearer understanding
- Several suggested methods
 - Forward selection
 - Backward Elimination
 - Stepwise
 - All subsets
- Clinical intuition better than any of these
- I explain variable selection because it is widely used, not because it is a good idea

Forward Selection

- Choose a significance level p_e at which variables will enter the model.
- Fit each predictor in turn.
- Choose the most significant predictor.
- If its significance level is less than p_e , it is selected.
- Now add each remaining variable to this model in turn, and test the most significant.
- Continue until no further variables are added.

Backward Elimination

- Starts with all predictors in model.
- Removes the least significant.
- Repeat until all remaining predictors significant at chosen level p_r.
- Has the advantage that all parameters are adjusted for the effect of all other variables from the start.
- Can give unusual results if there are a large number of correlated variables.

Stepwise Selection

- Combination of preceding methods.
- Variables are added one at a time.
- Each time a variable is added, all the other variables are tested to see if they should be removed.
- Must have p_r > p_e, or a variable could be entered and removed on the same step.

All Subsets

- Can try every possible subset of variables.
- Can be hard work: 10 predictors = 1023 subsets.
- Need a criterion to choose best model.
- Adjusted R^2 is possible, there are others.
- Not implemented in stata.

Problems with Variable Selection

- Significance Levels
 - Hypotheses tested are not independent.
 - Variables chosen for testing not randomly selected.
 - Hence significance levels not equal to nominal levels.
 - Less of a problem in large samples.
- Differences in Models Selected
 - Models chosen by different methods may differ.
 - If variables are highly correlated, choice of variable becomes arbitrary
 - Choice of significance level will affect models.
 - Need common sense.
- Making decisions based on *p*-values alone is never a good idea

Variable Selection in Stata

- Command sw regress is used for forwards, backwards and stepwise selection.
- \bullet Option ${\rm pe}$ is used to set significance level for inclusion
- Option pr is used to set significance level for exclusion
- Set pe for forwards, pr for backwards and both for stepwise regression.
- The sw command does not work with factor variables, so the old xi: syntax must be used.

Variable Selection in Stata: Example 1

. sw regress weight price hdroom trunk length turn displ gratio, pe(0.05)

p = 0.0000 p = 0.0000	< 0.0500	adding adding	length displ					
p = 0.0015 p = 0.0288	< 0.0500	adding	turn					
Source	SS	df	MS			Number of obs	-	74
+-						F(4, 69)	-	293.75
Model	41648450.8	3 4	10412112	.7		Prob > F	-	0.0000
Residual	2445727.56	5 69	35445.32	69		R-squared	-	0.9445
+-						Adj R-squared	-	0.9413
Total	44094178.4	73	604029.8	41		Root MSE	-	188.27
weight	Coef.	Std. E	lrr.	t	P> t	[95% Conf.	Int	erval]
length	19.38601	2.3282	203	8.327	0.000	14.74137	24	1.03064
displ	2.257083	.4677	92	4.825	0.000	1.323863	3.	190302
price	.0332386	.00879	21	3.781	0.000	.0156989	. (0507783
turn	23.17863	10.381	28	2.233	0.029	2.468546	43	3.88872
_cons	-2193.042	298.07	56 -	7.357	0.000	-2787.687	-15	598.398

Variable Selection in Stata: Example 2

. sw regress weight price hdroom trunk length turn displ gratio, pr(0.05)

p = 0.634 p = 0.521 p = 0.137	8 > 8 > 1 >	- 0.0500 - 0.0500 - 0.0500	removin removin removin	ig hdroom ig trunk ig gratic	n >				
Source	1	SS	df	MS	3		Number of obs	2	293 75
Model	i.	41648450.8	3 4	1041211	2.7		Prob > F	_	0.0000
Residual	i -	2445727.5	5 69	35445.3	3269		R-squared	-	0.9445
	+						Adj R-squared	-	0.9413
Total	L	44094178.4	1 73	604029.	841		Root MSE	-	188.27
weight	1	Coef.	Std.	Err.	t	P> t	[95% Conf.	Int	terval]
	+								
price	1	.0332386	.0087	921	3.781	0.000	.0156989		0507783
turn	1	23.17863	10.38	128	2.233	0.029	2.468546	4	3.88872
displ	1	2.257083	.46	792	4.825	0.000	1.323863	3	.190302
length	1	19.38601	2.328	203	8.327	0.000	14.74137	2	4.03064
_cons	L	-2193.042	298.0	1756	-7.357	0.000	-2787.687	-1	598.398

Polynomial Regression

- If association between *x* and *Y* is non-linear, can fit polynomial terms in *x*.
- Keep adding terms until the two highest order terms are not significant.
- Parameters are meaningless: only entire function has meaning.
- Fractional polynomials, orthogonal polynomials and splines can also be used

Transformations

- If *Y* is not normal or has non-constant variance, it may be possible to fit a linear model to a transformation of *Y*.
- Interpretation becomes more difficult after transformation.
- Log transformation has a simple interpretation.
 - $\log(Y) = \beta_0 + \beta_1 x$
 - when x increases by 1, $\log(Y)$ increases by β_1 ,
 - Y is multiplied by e^{β1}
- Transforming *x* is not normally necessary unless the problem suggests it.

Regression through the origin

- You may know that if x = 0, y = 0.
- Stata can force the regression line through the origin with the option nocons.
- However
 - *R*² is calculated differently and cannot be compared to conventional *R*².
 - If we have no data near the origin, should not force line through the origin.
 - May obtain a better fit with a non-zero intercept if there is measurement error.

