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Structure

This Week
What is a linear model ?
How good is my model ?
Does a linear model fit this data ?

Next Week
Categorical Variables
Interactions
Confounding
Other Considerations

Variable Selection
Polynomial Regression
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Statistical Models

All models are wrong, but some are use-
ful.

(G.E.P. Box)

A model should be as simple as possible,
but no simpler. (attr. Albert Einstein)
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What is a Linear Model ?

Describes the relationship between variables
Assumes that relationship can be described by straight
lines
Tells you the expected value of an outcome or y variable,
given the values of one or more predictor or x variables
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Variable Names

Outcome Predictor
Dependent variable Independent variables
Y-variable x-variables
Response variable Regressors
Output variable Input variables

Explanatory variables
Carriers
Covariates
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The Equation of a Linear Model

The equation of a linear model, with outcome Y and predictors
x1, . . . xp

Y = β0 + β1x1 + β2x2 + . . .+ βpxp + ε

β0 + β1x1 + β2x2 + . . .+ βpxp is the Linear Predictor

Ŷ = β0 + β1x1 + β2x2 + . . .+ βpxp is the predictable part of
Y .
ε is the error term, the unpredictable part of Y .
We assume that ε is normally distributed with mean 0 and
variance σ2.
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Linear Model Assumptions

Mean of Y | x is a linear function of x
Variables Y1, Y2 . . . Yn are independent.
The variance of Y | x is constant.
Distribution of Y | x is normal.
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Parameter Interpretation

Y

x

Y =

1

β1

β0

β1

β0 + x

β1 is the amount by which Y increases if x1 increases by 1, and
none of the other x variables change.

β0 is the value of Y when all of the x variables are equal to 0.
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Estimating Parameters

βj in the previous equation are referred to as parameters or
coefficients
Don’t use the expression “beta coefficients”: it is
ambiguous
We need to obtain estimates of them from the data we
have collected.
Estimates normally given roman letters b0,b1, . . . ,bn.
Values given to bj are those which minimise

∑
(Y − Ŷ )2:

hence “Least squares estimates”
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Inference on Parameters

If assumptions hold, sampling distribution of bj is normal
with mean βj and variance σ2/ns2

x (for sufficiently large n),
where :

σ2 is the variance of the error terms ε,
s2

x is the variance of xj and
n is the number of observations

Can perform t-tests of hypotheses about βj (e.g. βj = 0).
Can also produce a confidence interval for βj .
Inference in β0 (intercept) is usually not interesting.
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Inference on the Predicted Value

Y = β0 + β1x1 + . . .+ βpxp + ε

Predicted Value Ŷ = b0 + b1x1 + . . .+ bpxp

Observed values will differ from predicted values because
of

Random error (ε)
Uncertainty about parameters βj .

We can calculate a 95% prediction interval, within which
we would expect 95% of observations to lie.
Reference Range for Y
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Prediction Interval
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Inference on the Mean

The mean value of Y at a given value of x does not
depend on ε.
The standard error of Ŷ is called the standard error of the
prediction (by stata).
We can calculate a 95% confidence interval for Ŷ .
This can be thought of as a confidence region for the
regression line.
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Analysis of Variance (ANOVA)

Variance of Y is
∑

(Y−Ȳ)
2

n−1 =
∑

(Y−Ŷ)
2
+
∑

(Ŷ−Ȳ)
2

n−1

SSreg =
∑(

Ŷ − Ȳ
)2

(regression sum of squares)

SSres =
∑(

Y − Ŷ
)2

(residual sum of squares)

Each part has associated degrees of freedom: p d.f for the
regression, n − p − 1 for the residual.
The mean square MS = SS/df .
MSreg should be similar to MSres if no association between
Y and x
F =

MSreg
MSres

gives a measure of the strength of the
association between Y and x .
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(Ŷ−Ȳ)
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ANOVA Table

Source df Sum of Mean Square F
Squares

Regression p SSreg MSreg =
SSreg

p
MSreg

MSres

Residual n-p-1 SSres MSres =
SSres

(n − p − 1)

Total n-1 SStot MStot =
SStot

(n − 1)
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Goodness of Fit

Predictive value of a model depends on how much of the
variance can be explained.
R2 is the proportion of the variance explained by the model

R2 =
SSreg
SStot

R2 always increases when a predictor variable is added
Adjusted R2 is better for comparing models.
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Stata Commands for Linear Models

The basic command for linear regression is
regress y-var x-vars
Can use by and if to select subgroups.
The command predict can produce

predicted values
standard errors
residuals
etc.
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Stata Output 1: ANOVA Table

F() F Statistic for the Hypothesis βj = 0 for all j
Prob > F p-value for above hypothesis test
R-squared Proportion of variance explained by regression

= SSModel
SSTotal

Adj R-squared (n−1)R2−p
n−p−1

Root MSE
√

MSResidual

= σ̂
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Stata Output 1: Example

Source | SS df MS Number of obs = 11
---------+------------------------------ F( 1, 9) = 17.99

Model | 27.5100011 1 27.5100011 Prob > F = 0.0022
Residual | 13.7626904 9 1.52918783 R-squared = 0.6665
---------+------------------------------ Adj R-squared = 0.6295

Total | 41.2726916 10 4.12726916 Root MSE = 1.2366
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Stata Output 2: Coefficients

Coef. Estimate of parameter β for the variable in the
left-hand column. (β0 is labelled “_cons” for
“constant”)

Std. Err. Standard error of b.
t The value of b−0

s.e.(b) , to test the hypothesis that
β = 0.

P > |t| P-value resulting from the above hypothesis test.
95% Conf. Interval A 95% confidence interval for β.
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Stata Output 2: Example

------------------------------------------------------------------------------
Y | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------
x | .5000909 .1179055 4.241 0.002 .2333701 .7668117

_cons | 3.000091 1.124747 2.667 0.026 .4557369 5.544445
------------------------------------------------------------------------------
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Is a linear model appropriate ?

Does it provide adequate predictions ?
Goodness of fit or RMSE

Not a statistical question: how close is “adequate”

Do my data satisfy the assumptions of the linear model ?
Are there any individual points having an inordinate
influence on the model ?
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Anscombe’s Data
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Linear Model Assumptions

Linear models are based on 4 assumptions
Variables Y1, Y2 . . . Yn are independent.
The variance of Yi | x is constant.
Mean of Yi is a linear function of xi .
Distribution of Yi | x is normal.

If any of these are incorrect, inference from regression
model is unreliable
Independence of observation depends on experimental
design
Should test other 3 assumptions
Should also look for individual points with undue influence
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Distribution of Residuals

Error term εi = Yi − β0 + β1x1i + β2x2i + . . .+ βpxpi

Residual term
ei = Yi − b0 + b1x1i + b2x2i + . . .+ bpxpi = Yi − Ŷi

Nearly but not quite the same, since our estimates of βj are
imperfect.
Ŷ varies more at extremes of x-range
Y does not
Hence residuals vary less at extremes of the x-range
If error terms have constant variance, residuals don’t.
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Standardised Residuals

Variation in variance of residuals as x changes is
predictable.
Can therefore correct for it.
Standardised Residuals have mean 0 and standard
deviation 1.
Can use standardised residuals to test assumptions of
linear model
predict Yhat, xb will generate predicted values
predict sres, rstand will generate standardised
residuals
scatter sres Yhat will produce a plot of the
standardised residuals against the fitted values.
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Testing Constant Variance:

Residuals should be independent of predicted values
There should be no pattern in this plot
Common patterns

Spread of residuals increases with fitted values
This is called heteroskedasticity
May be removed by transforming Y
Can be formally tested for with hettest

There is curvature
The association between x and Y variables is not linear
May need to transform Y or x
Alternatively, fit x2, x3 etc. terms
Can be formally tested for with ovtest
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Residual vs Fitted Value Plot Examples
Y

x.000087 .99163

−1.81561

2.28352

(a) Non-constant variance

Y

x.000087 .99163

1.35659

10.5454

(b) Non-linear association
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Testing Linearity: Partial Residual Plots

Partial residual pj = e + bjxj = Y − β0 −
∑

l 6=j blxl

Formed by subtracting that part of the predicted value that
does not depend on xj from the observed value of Y .
Plot of pj against xj shows the association between Y and
xj after adjusting for the other predictors.
Can be obtained from stata by typing cprplot xvar after
performing a regression.
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Example Partial Residual Plot

e(
 Y

2 
| X

,x
1 

) 
+

 b
*x

1

x1

 Residuals  Linear prediction

4 14
.099091

7



The linear Model
Testing assumptions

Constant Variance
Linearity
Influential points
Normality

Identifying Outliers

Points which have a marked effect on the regression
equation are called influential points.
Points with unusual x-values are said to have high
leverage.
Points with high leverage may or may not be influential,
depending on their Y values.
Plot of studentised residual (residual from regression
excluding that point) against leverage can show influential
points.
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Statistics to Identify Influential Points

DFBETA Measures influence of individual point on a single
coefficient βj .

DFFITS Measures influence of an individual point on its
predicted value.

Cook’s Distance Measured the influence of an individual point
on all predicted values.

All can be produced by predict.
There are suggested cut-offs to determine influential
observations.
May be better to simply look for outliers.
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Y -outliers

A point with normal x-values and abnormal Y -value may
be influential.
Robust regression can be used in this case.

Observations repeatedly reweighted, weight decreases as
magnitude of residual increases

Methods robust to x-outliers are very computationally
intensive.
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Robust Regression
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Testing Normality

Standardised residuals should follow a normal distribution.
Can test formally with swilk varname.
Can test graphically with qnorm varname.
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Normal Plot: Example
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Graphical Assessment & Formal Testing

Can test assumptions both formally and informally
Both approaches have advantages and disadvantages

Tests are always significant in sufficiently large samples.
Differences may be slight and unimportant.
Differences may be marked but non-significant in small
samples.

Best to use both


