Solution for Session 4 Hypothesis Testing

21/11/2023

1 Inference about a proportion

Out of 80 women in a random sample of women in Manchester, 13 were asthmatic; this could be used to calculate a 95% confidence interval for the proportion of women in Manchester with asthma. This confidence interval could be compared to the suggested prevalence of 20% in Northern England. An alternative approach would be to test the hypothesis that the true proportion, π, is 0.20 .
1.1 What is the expected proportion of women with asthma under the null hypothesis? 0.2
1.2 What is the observed proportion of women with asthma? $\quad 13 / 80=0.1625$
1.3 What is the standard error of the expected proportion (remember from last week that the standard error of a proportion p is given by

$$
\begin{gathered}
\sqrt{\frac{p(1-p)}{n}} \\
\sqrt{\frac{0.2 \times 0.8}{80}}=0.0447
\end{gathered}
$$

1.4 The appropriate test statistic, T, is given by the formula:

$$
\frac{\text { observed proportion - expected proportion }}{\text { standard error of proportion }}
$$

Calculate T.

$$
T=\frac{0.1625-0.2}{0.0447}=-0.839
$$

1.5 T should be compared to a t-distribution with how many degrees of freedom ? 79
1.6 From tables for the appropriate t-distribution, the corresponding p-value is 0.4 . Is is reasonable to suppose that these women are a random sample from a population in which the prevalence of asthma is 20% ?

2 More inference about a proportion

In the sample heights and weights we have looked at, there were 412 individuals of whom 234 were women. We wish to test that there are equal numbers of men and women in our population.
2.1 What is the null hypothesis proportion of women?
2.2 What is the observed proportion of women?

$$
\frac{234}{412}=0.568
$$

2.3 What is the null hypothesis standard error for the proportion of women?

$$
\sqrt{\frac{0.5 \times 0.5}{412}}=0.0246
$$

2.4 What is an appropriate statistic for testing the null hypothesis?

$$
T=\frac{0.568-0.5}{0.0246}=2.76
$$

3 Inference about a mean

Load htwt.dta into stata with the commands (each command needs to be entered on a separate line).
global datadir http://personalpages.manchester.ac.uk/staff/mark.lunt/stats use \$datadir/2_summarizing_data/data/htwt.dta

We wish to test whether the mean height is the same in men and women.
3.1 What is the null hypothesis difference in height between men and women?

0
3.2 Use the command ttest nurseht, by (sex) to test whether the mean height differs between men and women.
3.3 What is the mean height in men ?
173.0 cm
3.4 What is the mean height in women?
159.8 cm
3.5 What is the mean difference in height between men and women, with its 95% confidence interval ?

$$
-13.2 \mathrm{~cm}, 95 z \% \text { CI }-14.5 \mathrm{~cm},-11.9 \mathrm{~cm},
$$

3.6 Which of the three hypothesis tests is the appropriate one in this instance ?

Ha: diff $!=0$: two sided test that there is a difference
3.7 What is the p-value from the t-test ?
less than 0.0001

3.8 What would you conclude ?
 Men are very significantly taller than women

4 Two-sample t-test

Compare BMI (based on the measured values, i.e. bmi) between men and women in htwt.dta, using the command ttest bmi, by (sex).
4.1 Is there a difference in BMI between men and women? Yes, but it is small and not statistically significant
4.2 What is the mean difference in BMI between men and women and its 95% confidence interval.
$-0.5 \mathrm{~kg} / \mathrm{m}^{2}, 95 \% C I-1.4 \mathrm{~kg} / \mathrm{m}^{2}, 0.4 \mathrm{~kg} / \mathrm{m}^{2}$
4.3 Is there a difference in the standard deviation of BMI between men and women ? (This can be tested with the command sdtest bmi, by (sex) Yes: the standard deviation is significantly greater in women than it is in men
4.4 If there is, repeat the t-test you performed above, using the unequal option. Are your conclusions any different?
No: the standard error changes only very slightly, the difference remains nonsignificant

5 One sample t-test

Load the bpwide dataset into stata with the command sysuse bpwide. This consists of fiction blood pressure data, taken before and after an intervention. We wish to determine whether the intervention had affected the blood pressure.
5.1 Use the summarize command to calculate the mean blood pressure before and after the intervention. Has the blood pressure increased or decreased?
Decreased: mean is 156 before, 151 after.
5.2 Generate a variable containing the change in blood pressure using the command gen bp_diff = bp_after - bp_before
5.3 Use the command ttest bp_diff $=0$ to test whether the change in blood pressure is statistically significant. Is it?
Yes: $p=0.0011$
5.4 Give a 95% confidence interval for the change in blood pressure.
-8.1, -2.1

6 Power Calculations

The following questions can all be answered using the sampsi command.
6.1 How many subjects would need to be recruited to have 90% power to detect a difference between unexposed and exposed subjects if the prevalence of the condition is 25% in the unexposed and 40% in the exposed, assuming equal numbers of exposed and unexposed subjects?
432: 216 in each group
6.2 If the exposure was rare, so it was decided to recruit twice as many unexposed subjects as exposed subjects, how many subjects would need to be recruited?
482: 161 exposed and 321 unexposed
6.3 Suppose it were only possible to recruit 100 subjects in each group. What power would the study then have?
56%
6.4 Suppose that we expect a variable to have a mean of 15 and an SD of 5 in group 1 , and a mean of 17 and an SD of 6 in group 2. How large would two equal sized groups need to be to have 90% power to detect a difference between the groups ? 161 subjects in each group
6.5 If we wanted 95% power, how large would the groups have to be ?

199 in each group
6.6 Suppose we could only recruit 100 subjects in group 1. How many subjects would we have to recruit from group 2 to have 90% power ?

276

Hint: the last question can only be answered by trying different numbers for the size of group 2 and seeing what power is achieved. Sensible choice of numbers will give a result fairly quickly. The PageUp key is your friend.

Stata Log File

- ttest bmi, by (sex)

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95\% Conf	Interval]
female	225	25.85984	. 3268714	4.903072	25.21571	26.50398
male	175	26.35534	. 3152409	4.170245	25.73315	26.97753
combined	400	26.07662	. 2298956	4.597912	25.62467	26.52858
diff		-. 4954959	. 4633426		-1.406401	. 4154089
$\begin{gathered} \text { Ha: diff }<0 \\ \operatorname{Pr}(\mathrm{~T}<\mathrm{t})=0.1428 \end{gathered}$		$\begin{gathered} \text { Ha: diff }!=0 \\ \operatorname{Pr}(\|T\|>\|t\|)=0.2855 \end{gathered}$			$\begin{gathered} \text { Ha: diff }>0 \\ \operatorname{Pr}(\mathrm{~T}>\mathrm{t})=0.8572 \end{gathered}$	
. sdtest bmi, by(sex)						
Variance ratio test						
Group	Obs	Mean	Std. Err.	Std. Dev.	[95\% Conf. Interval]	
$\begin{array}{r} \text { female } \\ \text { male } \end{array}$	225	25.85984	. 3268714	4.903072	25.21571	26.50398
	175	26.35534	. 3152409	4.170245	25.73315	26.97753
combined	400	26.07662	. 2298956	4.597912	25.62467	26.52858

ratio $=$ sd (female) $/$ sd(male) $\quad f=1.3823$
Ho: ratio = 1 degrees of freedom = 224, 174

$$
\text { Ha: ratio < } 1 \quad \text { Ha: ratio }!=1 \quad \text { Ha: ratio > } 1
$$

$$
\operatorname{Pr}(F<f)=0.9874
$$

$$
2 * \operatorname{Pr}(F>f)=0.0253
$$

$$
\operatorname{Pr}(F>f)=0.0126
$$

. ttest bmi, by(sex) unequal
Two-sample t test with unequal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95\% Conf	Interval]
female	225	25.85984	. 3268714	4.903072	25.21571	26.50398
male	175	26.35534	. 3152409	4.170245	25.73315	26.97753
combined	400	26.07662	. 2298956	4.597912	25.62467	26.52858
diff		-. 4954959	. 4541164		-1.388285	. 397293
diff $=$ mean (female $)$ - mean(male) $t=-1.0911$ Ho: diff $=0$ Satterthwaite's degrees of freedom $=394.793$ Ha: diff < 0 Ha: diff $!=0$ Ha: diff >0 $\operatorname{Pr}(T<t)=0.1379$ $\operatorname{Pr}(\|T\|>\|t\|)=0.2759$ $\operatorname{Pr}(T>t)=0.8621$						

. sysuse bpwide
(fictional blood-pressure data)

summarize bp* Variable							Obs	Mean	Std. Dev.	Min	Max
bp_before	120	156.45	11.38985	138	185						
bp_after	120	151.3583	14.17762	125	185						

- gen bp_diff = bp_after- bp_before
. ttest bp_diff == 0
One-sample t test

Variable	Obs	Mean	Std. Err	Std. Dev	[95\% Con	Interval]
bp_diff	120	-5.091667	1.525736	16.7136	-8.112776	-2.070557

. sampsi 0.250 .4 , power (0.9)
Estimated sample size for two-sample comparison of proportions
Test Ho: p1 = p2, where p1 is the proportion in population 1 and p 2 is the proportion in population 2
Assumptions

alpha	$=0.0500 \quad$ (two-sided)
power	$=0.9000$
p 1	$=0.2500$
p 2	$=0.4000$
$\mathrm{n} 2 / \mathrm{n} 1$	$=1.00$

Estimated required sample sizes:

$\mathrm{n} 1=$	216
$\mathrm{n} 2=$	216

. sampsi 0.250 .4 , power (0.9) r(0.5)
Estimated sample size for two-sample comparison of proportions
Test Ho: p1 = p2, where p1 is the proportion in population 1 and p2 is the proportion in population 2
Assumptions:

alpha	$=0.0500 \quad$ (two-sided)
power	$=0.9000$
p1	$=0.2500$
p2	$=0.4000$
$\mathrm{n} 2 / \mathrm{n} 1$	$=0.50$

Estimated required sample sizes:

$\mathrm{n} 1=$	321
$\mathrm{n} 2=$	161

. sampsi $0.250 .4, \mathrm{n}(100)$
Estimated power for two-sample comparison of proportions
Test Ho: p1 = p2, where p1 is the proportion in population 1 and p 2 is the proportion in population 2
Assumptions:
alpha $=0.0500$ (two-sided)
$\mathrm{p} 1=0.2500$
$\mathrm{p} 2=0.4000$
sample size n1 = 100
$\mathrm{n} 2=100$
$\mathrm{n} 2 / \mathrm{n} 1=1.00$
Estimated power:
power $=0.5618$

Estimated sample size for two-sample comparison of means
Test Ho: $\mathrm{m} 1=\mathrm{m} 2$, where m 1 is the mean in population 1 and $m 2$ is the mean in population 2
Assumptions:
alpha $=0.0500$ (two-sided)
power $=0.9000$
$\mathrm{m} 1=15$
$\mathrm{m} 2=17$
sd1 $=\quad 5$
sd2 = 6
$\mathrm{n} 2 / \mathrm{n} 1=1.00$
Estimated required sample sizes:
$\mathrm{n} 1 \mathrm{=} \quad 161$
$\mathrm{n} 2=161$
. sampsi 1517 , sd1(5) sd2(6) power(.95)
Estimated sample size for two-sample comparison of means
Test Ho: m1 = m2, where m 1 is the mean in population 1 and m 2 is the mean in population 2
Assumptions:
alpha $=0.0500$ (two-sided)
power $=0.9500$
$\mathrm{m} 1=15$
$\mathrm{m} 2=17$
sd1 $=\quad 5$
sd2 = 6
$\mathrm{n} 2 / \mathrm{n} 1=1.00$
Estimated required sample sizes:
n1 = 199
$\mathrm{n} 2=199$
. sampsi 1517, sd1(5) sd2(6) n1(100) n2(200)
Estimated power for two-sample comparison of means
Test Ho: $\mathrm{m} 1=\mathrm{m} 2$, where m 1 is the mean in population 1 and m 2 is the mean in population 2
Assumptions:
alpha $=0.0500$ (two-sided)
$\mathrm{m} 1 \mathrm{=} \quad 15$
$\mathrm{m} 2=17$
sd1 = 5
sd2 = 6
sample size $\mathrm{n} 1 \mathrm{=} \quad 100$
$\mathrm{n} 2=1200$
$\mathrm{n} 2 / \mathrm{n} 1=2.00$
Estimated power:
power $=0.8621$
. sampsi 1517, sd1(5) sd2(6) $\mathrm{n} 1(100) \mathrm{n} 2(280)$
Estimated power for two-sample comparison of means
Test Ho: $\mathrm{m} 1=\mathrm{m} 2$, where m 1 is the mean in population 1 and m 2 is the mean in population 2
Assumptions:
alpha $=0.0500$ (two-sided)
$\mathrm{m} 1=15$
$\mathrm{m} 2=17$
sd1 = 5
sd2 = 6
sample size n1 = 100
$\mathrm{n} 2=1280$
$\mathrm{n} 2 / \mathrm{n} 1=2.80$
Estimated power:
power $=0.9016$

. sampsi 15 17, sd1(5) sd2(6) n1(100) n2(275)
Estimated power for two-sample comparison of means
Test Ho: m1 = m2, where $m 1$ is the mean in population 1 and $m 2$ is the mean in population 2
Assumptions:
alpha $=0.0500$ (two-sided)
$\mathrm{m} 1=\quad 15$
$\mathrm{m} 2=17$
$\operatorname{sd1}=\quad 5$
sd2 = 6
sample size n1 = 100
$\mathrm{n} 2=275$
n2/n1 = 2.75
Estimated power:
power $=0.8998$
. sampsi 15 17, sd1(5) sd2(6) n1(100) n2(277)
Estimated power for two-sample comparison of means
Test Ho: m1 = m2, where $m 1$ is the mean in population 1 and $m 2$ is the mean in population 2
Assumptions:
alpha $=0.0500 \quad$ (two-sided)
$\mathrm{m} 1=15$
$\mathrm{m} 2=17$
sd1 $=\quad 5$
$\mathrm{sd} 2=6$
sample size $\mathrm{n} 1=100$
n2 = 277
n2/n1 = 2.77
Estimated power:
power $=0.9005$
. sampsi 15 17, sd1(5) sd2(6) n 1 (100) $\mathrm{n} 2(276)$
Estimated power for two-sample comparison of means
Test Ho: m1 = m2, where $m 1$ is the mean in population 1 and m 2 is the mean in population 2
Assumptions:

$$
\text { alpha }=0.0500 \quad \text { (two-sided) }
$$

$\mathrm{m} 1=15$
$\mathrm{m} 2=17$
sd1 $=\quad 5$
sd2 $=\quad 6$
sample size n1 $=\quad 100$
$\mathrm{n} 2=\quad 276$
$\mathrm{n} 2 / \mathrm{n} 1=2.76$
Estimated power:
power $=0.9002$

