Summarising Data

Mark Lunt

Centre for Epidemiology Versus Arthritis University of Manchester

07/11/2023

Summarising Data

Today we will consider

- Different types of data
- Appropriate ways to summarise these data
 - Graphical Summary
 - Numerical Summary

Types of Data

Qualitative	Nominal	Outcome is one of several categories	
	Ordinal	Outcome is one of several ordered categories	
Quantitative	Discrete	Can take one of a fixed set of numerical values	
	Continuous	Can take any numerical value	

Examples of Types of Data

- **Nominal** Blood group; Hair colour.
- **Ordinal** Strongly agree, agree, disagree, strongly disagree.
- **Discrete** Number of children.
- Continuous Birthweight.

Caveats with Data Types

 Distinction between nominal and ordinal variables can be subjective: e.g. vertebral fracture types: Wedge, Concavity, Biconcavity, Crush.

Could argue that a crush is worse than a biconcavity which is worse than a concavity ..., but this is not self-evident.

- Distinction between ordinal and discrete variables can be subjective: e.g. cancer staging I, II, III, IV: sounds discrete, but better treated as ordinal.
- Continuous variables generally measured to a fixed level of precision, which makes them discrete. Not a problem, provide there are enough levels.

Types of Variables

What type of variable are each of the following:

- Number of visits to a G.P. this year
- Marital Status
- Size of tumour in cm
- Pain, rated as minimal/moderate/severe/unbearable
- Blood pressure (mm Hg)

Summarizing Qualitative Data

- Count the number of subjects in each group.
- The count is commonly refered to as the *frequency*
- The proportion in each group is referred to as the *relative frequency*
- Stata command to produce a tabulation is tabulate varname

Numerical Summary of Qualitative Data

region	Freq.	Percent	Cum.
Canada	422	22.84	22.84
USA	541	29.27	52.11
Mexico	223	12.07	64.18
Europe	493	26.68	90.85
Asia	169	9.15	100.00
Total	1,848	100.00	

Graphical Summary of Qualitative Data

- Bar Chart: Data represented as a series of bars, height of bar proportional to frequency.
- Pie Chart: Data represented as a circle divided into segments, area of segment proportional to frequency.
- Pictograms: Similar to bar chart, but uses a number of pictures to represent each bar.

Bar chart is the easiest to understand.

Bar Chart

Types of data Graphical Summary Qualitative Data Numerical Summary Quantitative Data Alternative graphical sun

Summarizing Quantitative Data

Simplest method: treat as qualitative data.

- Divide observations into groups
 - May be unnecessary for discrete data.
- Look at the frequency distribution of these groups
- Can use table or diagram.

Graphical Summary Numerical Summary Alternative graphical summary

The Histogram

- Similar to a bar chart
- Continuous, not categorical variable
- Area of bars proportional to probability of observation being in that bar
- Axis can be
 - Frequency (heights add up to *n*)
 - Percentage (heights add up to 100%)
 - Density (Areas add up to 1)

Graphical Summary Numerical Summary Alternative graphical summary

How Many Groups ?

Impossible to say.

- Depends on the number of observations: if individual groups are too small, results are meaningless.
- With discrete variables, exact positions of boundaries may be important.
- Tables need few groups, graphs can have more if sufficient numbers.
- May be decided for you in software.

 Types of data
 Graphical Summary

 Qualitative Data
 Numerical Summary

 Quantitative Data
 Alternative graphical summar

Histograms

Graphical Summary Numerical Summary Alternative graphical summary

Histogram: Effect of Wrong number of bins

24 bins (default)

30 bins (correct)

20

Graphical Summary Numerical Summary Alternative graphical summary

Bar charts and histograms in Stata

- histogram varname produces a histogram
- Number of bars can by set by option bin ()
- Width of a bar can be set by option width ()
- histogram varname, discrete produces a bar chart
- What stata calls a bar chart is the mean of second variable subdivided by category, rather than a frequency.

Types of data Graphical Summary Qualitative Data Numerical Summary Quantitative Data Alternative graphical

Numerical Summary of Quantitative Data

Need to know:

- How much do the values vary ("scale")
- Simplest distribution to summarize is the normal distribution
- Other summary statistics (skewness, kurtosis etc) thought of relative to normal distribution.

Graphical Summary Numerical Summary Alternative graphical summary

Measures of Location

What is the value of a "typical" observation ? May be:

- (Arithmetic) Mean
- Median
- Other forms of mean
 - Rarely used
 - Only if data has been transformed

 Types of data
 Graphical Summary

 Qualitative Data
 Numerical Summary

 Quantitative Data
 Alternative graphical summary

Arithmetic Mean

"Add them up and divide by how many there are."

$$\bar{x} = \frac{x_1 + x_2 + \ldots + x_n}{n}$$
$$= (\sum_{i=1}^n x_i)/n$$

Types of data Graphical Summary Qualitative Data Numerical Summary Quantitative Data Alternative graphical

Median

"Arrange in increasing order, pick the middle." If an even number of observations, take mean of middle two.

- Ignores the precise magnitude of most observations
 - Contains less "information" than mean
 - May be useful if there are outliers
- Less easy to use mathematically.

Types of data Graphical Summary Qualitative Data Numerical Summary Quantitative Data Alternative graphical s

Mean vs. Median

Consider this series of durations of absence from work due to sickness (in days). 1,1,2,2,3,3,4,4,4,4,5,6,6,6,6,7,8,10,10,38,80 Mean = 10

```
Median = 5
```

Very few observations are as large as the mean: median is more "typical".

Types of data Graphical Summary Qualitative Data Numerical Summary Quantitative Data Alternative graphical

Percentiles

- The xth percentile is the value than which x% of observations are smaller and (100 - x)% are larger.
- The median is the 50th percentile.
- Other centiles can easily be calculated, eg 5th, 25th etc.

Graphical Summary Numerical Summary Alternative graphical summary

Measures of Variation

How close to the "typical" value are other values.

- Range
- Inter-quartile range
- Variance

Types of data Graphical S Qualitative Data Numerical S Quantitative Data Alternative g

Alternative graphical summary

Simple Measures of Variation

Range

- (Largest measurement) (smallest measurement)
- Depends on only two measurements
- Can only increase as you add more to the sample

Inter-quartile Range

- (75th centile) (25th centile).
- Less sensitive to extreme values
- Need fairly large numbers of observations

Types of data Graphical Summary Qualitative Data Numerical Summary Quantitative Data Alternative graphical

Standard Deviation

Standard Deviation =
$$\sqrt{\Sigma(x_i - \bar{x})^2/n}$$

- Nearly the average difference from the mean
- Uses information from every observation
- Not robust to outliers
- Variance is easy to use mathematically
- Standard deviation is the same units as the observations

Graphical Summary Numerical Summary Alternative graphical summary

The Normal Distribution

- Symmetrical "Bell-shaped" distribution
- Easiest to use mathematically
- Many variables are normally distributed
- Can be described by two numbers
 - Mean (measure of location)
 - Standard Deviation (measure of variation)

Types of data Graphical Qualitative Data Numerica Quantitative Data Alternativ

Graphical Summary Numerical Summary Alternative graphical summar

Histogram & Normal Distribution

Graphical Summary Numerical Summary Alternative graphical summary

Non-Normal Distributions

- Normal distribution is symmetric.
- Asymmetric distributions are called "skewed":
 - Positively skewed = some extremely high values (mean > median).
 - Negatively skewed = some extremely low values (mean < median).
- Distribution may have more than one "peak": bi-modal.
 - Usually formed by mixing two different groups.

Graphical Summary Numerical Summary Alternative graphical summary

15

05 Density .1

Non-Normal Distributions

Bimodal Distribution

Positively Skewed Dist'n

10 y2

Graphical Summary Numerical Summary Alternative graphical summary

Summary Statistics in Stata

- summarize *varlist* will give mean, SD, min and max
- summarize varlist, detail also gives percentiles
- tabstat or table can produce tables of summary statistics

Graphical Summary Numerical Summary Alternative graphical summary

Numerical Summary: Table 1

Quantitative variables

- Need a measure of location & variation
 - Normal variables: mean and SD
 - Skewed variables: median and IQR
- Need to give units
- Qualitative variables
 - Number and % in each category

Types of data Graphical Summary Qualitative Data Numerical Summary Quantitative Data Alternative graphical su

Numerical Summary Example

Age in years: Mean (SD)		63 (7.9)
Spine BMD in g/cm ² : Median (IQR)		1.05 (0.78, 1.30)
Gender: n (%)	Male	1537 (44)
	Female	1924 (56)

Graphical Summary Numerical Summary Alternative graphical summary

The Box and Whisker Plot

Very efficient summary of distribution:

- Shows median, upper and lower quartiles (25th and 75th percentiles).
- Also shows range of "normal" values and individual "unusual" values.
- Definitions of "normal" and "unusual" differ.
- Will demonstrate skewness, not bimodality.
- Stata command: graph box varname, [by(groupname)]

Graphical Summary Numerical Summary Alternative graphical summary

Box and Whisker Plots

Normal Distribution

Positively Skewed Dist'n

Types of data Graphical Summary Qualitative Data Numerical Summary Quantitative Data Alternative graphical summary

Transforming Data

- Skewed distributions may be made symmetric by a transformation.
- Taking logs is the most common.
- Other transformations (e.g. square root, reciprocal) can be used, but can be very difficult to interpret.
- May be better to transform back to original units to present results.
 - Geometric mean is back-transformation of mean of log-transformed data.

Types of data Graphical Summary Qualitative Data Numerical Summary Quantitative Data Alternative graphical summary

Further Reading

- Edward R. Tufte, *The Visual Display of Quantitative Information* was the classic text on statistical graphs.
- Huge data visualisation industry now

