
Contents

1 Essentials of the Stata Language 3
1.1 Introduction . 3
1.2 Getting Help . 3

1.2.1 Help . 3
1.2.2 Manuals . 4
1.2.3 Search . 4
1.2.4 Website . 4
1.2.5 Statalist . 4
1.2.6 Stata Journal . 4
1.2.7 Me . 4

1.3 Basic Concepts . 5
1.3.1 Main Stata Windows . 5
1.3.2 Do-Files . 7
1.3.3 Log Files . 8
1.3.4 Interaction with Operating System . 8
1.3.5 Macros . 9
1.3.6 Variable lists . 9
1.3.7 Number Lists . 10

1.4 Manipulating Variables . 10
1.4.1 Creating and modifying variables . 10
1.4.2 Labelling variables . 11
1.4.3 Selecting variables . 12
1.4.4 Formatting variables . 12

1.5 Manipulating Datasets . 13
1.5.1 Filenames . 13
1.5.2 Reading and Saving data . 13
1.5.3 Combining Datasets . 14

1.6 Other Dataset Manipulation Commands . 18
1.6.1 browse and edit . 18
1.6.2 preserve and restore . 18

2 Practical on Essentials of Stata 19
2.0.1 Preliminaries . 19
2.0.2 Reading and Saving Files . 19
2.0.3 Creating and Modifying Variables . 20
2.0.4 Manipulating Datasets . 22
2.0.5 Further Exercises . 24

1

Contents

2

1 Essentials of the Stata Language

1.1 Introduction

There are currently over 2000 commands in the stata language. Fortunately, nearly all of them
relate to particular kinds of data analysis, and any given individual only needs to know a tiny
fraction of them. However, there are a small number of commands and basic concepts that
relate to data manipulation and management, which it is essential for all users to be familiar
with. This document gives a basic introduction to these essential concepts and commands.

The most important aspect of stata to come to terms with is the fact that it is command-
based. There are graphical shortcuts to almost all of the available commands, but you can only
use stata really efficiently if you think of a stata session as a series of commands. There are
three main reasons why this is important:

1. You must be able to reproduce your analysis. If your analysis consists of a series of
commands, they can be stored as a script (called a do-file in stata) and rerun any time
with a single command. Reproducing an analysis by pointing and clicking is at least as
much work as performing the analysis in the first place: if you forget which options you
selected and which variables you adjusted for you cannot reproduce your original results.

2. It is easier to produce an analysis that is nearly, but not quite the same. You may want
to repeat your analysis after excluding certain subjects, or adjusting for an additional
confounder that you forgot about in your original analysis. Again, with a do-file this is
very straightforward: using point-and-click software it is not.

3. Finally, using a command line is much quicker once you are familiar with it. You can type
reg ht wt far quicker than you can search through menus to select linear regression of
ht on wt, as long as you know that reg ht wt is the command you need. However, since
most of your analysis will be done using do-files, rather than interactively, the total time
saved is not great.

Having said that, there are times when the point-and-click interface can be useful. Most
obviously, it can be quicker to use a dialog box to select a file to read in than to type out the
full name of the file, particularly if it is nested in a large number of folders.

1.2 Getting Help

1.2.1 Help

Stata has a very comprehensive help system. There is online help for every stata command,
which can be accessed by typing help cmdname . This will outline the syntax of the command,
the meaning all of the available options, and often there will be a number of examples of its use.
Unfortunately, this option is only useful if you know the exact name of the command you are
interested in, but are unsure of the precise use or syntax.

3

1 Essentials of the Stata Language

1.2.2 Manuals

There is a very comprehensive set of manuals available online. Each entry in the manual begins
with a section more-or-less identical to the help-file, but then goes into more detail. References
and explanations of the mathematics are normally given, as well as more detailed worked exam-
ples. Clicking on the blue command name at the top of the help page will take you directly to
the appropriate page in the PDF version of the manual.

1.2.3 Search

The main problem with the help system is that you need to know the exact name of a command
in order to use it. Obviously, this is a drawback: how do you find out what command to use if
you can’t find out about it until you know its name ? The solution is to use search string ,
which looks through all of the helpfiles on the computer and materials available via stata’s net
command to find string, and produce a list of resources that mention it, along with a brief
description of the resource.

There are a number of options to search to control where the search takes place. By default,
it searches keyword databases on your computer and the internet: you can restrict the search
to your local files only with the option [local]. For other possible options, see help search.
Results are ordered according to likely relevance: first local material, then material from the
stata web-site, then user-written material.

1.2.4 Website

There is a stata website at http://www.stata.com. There are literally hundreds of FAQ’s on-
line dealing with both common, simple problems and more complicated ways of using stata to
perform analyses that it may appear at first sight that stata cannot perform.

1.2.5 Statalist

There is also a mailing list devoted to stata. Instruction for joining (& leaving) are given on
the stata website. This is a fairly busy list (around 50 messages a day), consisting mainly of
people saying “How do I do . . . ” with stata”, and getting replies that are usually very good.
Stata support staff are also involved in the list and will jump in if they think that more detailed
technical explanations are required. Old messages are archived, so you may find that searching
the archives turns up the answer to your problem.

1.2.6 Stata Journal

The Stata Journal volumes 1-17 are available online at "N:\Unit\The Stata Journal". Many
of the articles are highly specialised, but there is a series entitled “Speaking Stata” which is
aimed at beginners and gives a good introduction to how to use stata efficiently. These issues
of the Journal are also available online, as are issues 18-20. Issues since 2021 are subscription
only.

1.2.7 Me

If all else fails, try me. I’ll probably get the answer from one of the above sources (if I get it at
all), but I will probably have a good idea of where to look, at least.

4

http://www.stata.com
http://www.stata.com/support/faqs
http://www.stata.com/support/statalist
mailto:mark.lunt@manchester.ac.uk

1.3 Basic Concepts

1.3 Basic Concepts

1.3.1 Main Stata Windows

On opening stata, you should see 4 windows: the command, results, variables and review win-
dows. The results window has a white background, with black texta. The small window at the
bottom is the command window, in which you enter commands. The review window contains a
list of all of the commands that you have entered in the current stata session, and the variables
window contains a list of all the variables in the current dataset.

Command Window

Command Syntax All stata commands follow a common syntax. The full syntax is explained
in the User’s Guide. A very simplified version, sufficient to start with, is:

command [varlist] [,options]

What does that all mean ? Well, the square brackets [] surround optional parts, so that
the only compulsory part is the actual command name. For example

describe

produces a list of the variables in the dataset, and

exit

ends the session.

However, most of the time, the command needs the name of one or more variables. For
example,

summarize age

will produce the mean, standard deviation and some other statistics of the age variable, and

regress height age gender

will perform regression to predict height as a function of age and gender.

Most commands also have options, which always given at the end of the command, following
a comma. For example,

summarize age, detail

provides a more detailed summary than

summarize age

If an option needs to be given a value, it is given in backets after the option name. For example,
95% confidence intervals are calculated by default, but for many commands this can be changed
using the option level. If you want to get 99% confidence intervals in your regression output,
you would use the command

regress varnames, level(99)

aby default: you can change these colours if you wish, but if you have found out how to do that, you certainly
know what the results window is.

5

1 Essentials of the Stata Language

There are other clauses that can be slotted into this syntax, some of which we will see next
week.

You do need to be careful with the syntax of a command, since simple errors like a misplaced
space or a missing comma will give an error message. However, it does not take long to get used
to it, and once you understand the logic of the syntax it is quite difficult to get it wrong.

You must remember that the language is case-sensitive: height and HEIGHT are two different
variables. You could have both of these variables in the same dataset without confusing stata,
but you will confuse yourself if you do. So I recommend that all your variable names contain
only lower case letters.

Many commands and options have abbreviations, but I do not recommend using them until
you are very familiar with the commands. It only takes a few seconds to type in the additional
letters, and when you look at your work again in six months time, it will make it far easier to
remember what you did. Also, you need to know the full name of a command in order to get
help on that command. For this reason, I do not use any abbreviations in this documentb.

Repeating previous commands The command that has just been entered can be brought
back to the command window using the PageUp key. Pressing this key repeatedly will bring
back all of the previous commands. If you go too far back with the PageUp key, you can use the
PageDown key to get more recent commands.

Variable name completion If you enter the beginning of a variable name and then press the
tab key, Stata will complete the variable name as much as possible. If there are several possible
completions, it will complete as far as possible and wait for further input. For example, if your
data contains variables height0 and height1, and you enter hei then press the tab key, the
variable name will be completed to height and wait for you to type either 0 or 1. If you are
used to filename completion in the bash shell, this works in the same way.

Variables Window

This contains a list of variables in the data set, together with their labels, although the labels
may not be visible if the window is not sufficiently wide. Clicking on a variable name copies
that name to the command window.

Review Window

This contains a list of commands that have been entered previously. Clicking the left mouse
button on a command will copy it to the command window, where it can be edited and re-run
if required. Double-clicking on a command in this window runs it directly. The entire list of
commands in the review window can be saved as a do file by clicking on the upper left corner
of the window: this gives a menu, one option being "Save Review Contents".

Results Window

The results of any commands you type will appear in the results window. There is a scroll bar
to return to previous output. However, the results window only retains a limited amount of
your analysis, so you need to start a logfile (explained below) to ensure that you do not lose any
output.

bwell, I try not to, but gen may slip instead of generate and tab instead of tabulate

6

1.3 Basic Concepts

The results window is interactive, to the extent that any blue text represents a hyperlink:
clicking on the blue text will generally open a viewer window with more information.

Normally, data is presented in the results window one screenful at a time. When paging
through data in this way, pressing the Return advances by one line, the Space key advances by
one page, and pressing q stops the output. The button containing a red circle with a white cross
can also be used to stop the output.

It is possible to turn this paging off with the command

set more off

This is very useful in a do-file: it will then produce all of the output you need without you
needing to press space all of the time. To turn paging back on again, type

set more on

1.3.2 Do-Files

A do-file is simply a list of stata commands. Giving the command

do do-file.do

causes stata to run all of the commands in the do-file. This is one of the greatest strengths of
stata, the ability to perform exactly the same actions repeatedly, and it is vital to get to grips
with this concept as soon as possible.

For example, if you wish to create a new variable, you should always use a do-file to do so,
rather than just entering a command and saving the resulting dataset. This has two advantages:

1. You can see exactly how the variable was calculated by looking at the do file. If two people
try to calculate the same variable and get different answers, it is possible to check exactly
what each did and why they differ.

2. If you need to add subjects to the dataset later, or calculate the same variable in a different
dataset, it can be done very simply and quickly.

It is also a good idea to keep a do-file containing your analyses. You can be certain that
any analysis that you do will need to be performed many times, with very slight changes, before
your write-up of the data-analysis is published. It is far easier to edit a do-file to make these
minor changes than try to remember exactly how you performed an analysis originally and then
do it again slightly differently.

You can also collect together a group of files needed for a particular analysis in a “Project”.
These files can be do-files or datasets, and can make it easier to find all of the files that you need
if they are spread across multiple directories. For example, most analyses involve some do-files
used by everyone working on a given project, and some do-files specific each individual analysis,
which would be stored in different places. Type “help Project Manager” for more information.

Profile.do

Every time Stata is run, it searches for a file called profile.do in certain places, including
C:\ado\personal\profile.do, which is where I would recommending creating your own (for
details, type help profilew into a Stata command window). This file contains commands
which you wish to have run every time that you start Stata. Possible uses of profile.do is to

7

1 Essentials of the Stata Language

define your own entries in the Stata menu system, or set up logging of commands as you enter
them.

1.3.3 Log Files

Stata does not log your results by default. There is a “Stata Results” window which contains
the results of each command, but this is of a limited size. It may not even contain the complete
output of a single command if it is sufficiently complicated. To preserve your results for posterity,
you need to open a log file. This can be done using

log using filename

All of your output will be stored in filename until you close the log with

log close

Stata can keep logs in two formats: SMCL or text. SMCL is a text markup language that is
only understood by stata, so such logs must be viewed in stata. Text logs can be viewed in any
text editor. The default format is SMCL: if you want the log to be in text format, the command
to use is

log using filename, text

You should always open a log file as one of the first things that happens in a do file. The
syntax to use is

capture log close

log using myfile.log, options

The reason for the "log close" command is that it is impossible to open a new log-file if
one is already open. However, if a log file were not open, then the command "log close" would
generate an error, and the do-file would halt. The command "capture" means “do not stop,
even if there is an error”, so that the "log using" command will be run regardless.

1.3.4 Interaction with Operating System

Stata can only find files if either:

1. it is in the current working directory

2. you give the full path name to the file

Full names can be long and tedious to type in (not to mention error-prone), so it is useful to
be able to change the current working directory. There are a number of commands to help with
this.

pwd displays the name of the current working directory

cd "dirname" changes the current working directory to dirname . The inverted commas are
optional, unless there is a space in dirname , but are a good habit to get into.

mkdir ”dirname" creates a new directory called dirname .

8

1.3 Basic Concepts

dir lists all of the files in the current working directory

shell command name runs the command command name in a command prompt window

Windows uses the symbol "\" to separate directories on a path, whilst Unix uses "/". Stata
on windows can understand either, so either can be used in giving file and directory names.
However, "\" will cause problems if it is followed by a macro (see below), and we now have a
Linux workstation that requires Unix filenames, so it is a good idea to get into that habit.

1.3.5 Macros

A macro is a way of using a short name to represent a longer piece of text. For example, if you
store your data in N:\projects\A_Major_project\My_subproject\Data, it can be a nuisance
having to type that directory name in whenever you wish to read in a dataset. To make life
easier, you can define a macro by typing
global mydir N:\projects\A_Major_project\My_subproject\Data

This creates a global macro called mydir containing the text N:\projects\A_Major_project\My_subproject\Data.
Then, whenever you type $mydir in stata, it will be replaced by the text
N:\projects\A Major project\My subproject\Data. So, if you type

use $mydir/mydata

stata will read in the dataset N:\projects\A_Major_project\My_subproject\Data\mydata.dta

A major advantage of macros is the ease with which do-files can be made portable. All
directories that are used in a file should be referenced using macros. Then, when the do-file
and data-files are moved to a different directory (as they will be when they are archived, if not
before), it is only necessary to change the macro definitions and all of the references in the do-file
will be changed.

Global vs Local Macros

The macros we have seen so far (beginning with “$”) are global macros, meaning that once they
are set, they keep their value until stata finishes. There are also local macros, that only retain
their value until the end of the do-file in which they are defined. Local macros are also used by
the commands foreach and forvalues, which we will see next week. Local macros are defined
using the command local, and used by putting them in single inverted commas: ‘ and ’ (the
opening inverted comma is found at the top left of a standard UK keyboard, the closing one
at the right of the middle row). So the “mydir” example above, rewritten to use local macros,
would be
local mydir N:\projects\A_Major_project\My_subproject\Data

use "‘mydir’\mydata"

1.3.6 Variable lists

Often you need to present a list of variables to stata. Rather than listing the name of every
variable individually, there are a number of shortcuts that can be used. For example, if you wish
to summarize every variable which begins with the letters “age”, you would use the command

summarize age*

9

1 Essentials of the Stata Language

You can also give a list of variables which are consecutive in the dataset as firstvar-lastvar.
For detailed information about specifying variable lists (or varlists), type

help varlist

1.3.7 Number Lists

There is also a shorthand for entering lists of numbers. For fuller details, type

help numlist

.

Symbol Meaning Example Expansion

list of numbers 1 2 3 1 2 3
x/y whole numbers from x to y inclusive 1/5 1 2 3 4 5
x y to n numbers from x to n, increasing by y − x 5 10 to 20 5 10 15 20
x y : n same as x y to n 5 10:20 5 10 15 20
x(y)n numbers from x to n, increasing by y 10(10)50 10 20 30 40 50
x[y]n same as x(y)n 10[10]50 10 20 30 40 50

Table 1.1: Number Lists

1.4 Manipulating Variables

1.4.1 Creating and modifying variables

Generate and Replace

The simplest command to create a new variable is generate. For example, if the date of birth
is stored in the variable date of birth and the date the questionnaire was filled in is stored
in date of quest, then the subject’s age at the time the questionnaire was completed can be
calculated as

generate age = (date of quest - date of birth) / 365.25

The above command would not have worked if a variable called age already existed in the
dataset. In this case, it would have been necessary to either drop the variable age before
generating the new variable:

drop age

generate age = (date of quest - date of birth) / 365.25

or to use the replace command:

replace age = (date of quest - date of birth) / 365.25

Either of the above will end up with exactly the same dataset.
By default, generate creates variables of type float (i.e. they contain numerical values, and

can contain a decimal point). If you wish to generate a variable of a different type, you need to
explicitly state that in your command. The available types are listed below:

For example, the command

10

1.4 Manipulating Variables

type size (bytes) min max precision missing values

byte 1 -127 126 whole numbers .
int 2 -32,767 32,766 whole numbers .
long 4 -2,147,483,647 2,147,483,646 whole numbers .
float 4 −1036 1036 7 digits .
double 8 −10308 10308 15 digits .
strn n ""

strL varies ""

Table 1.2: Available data types

gen str6 name = "MyName"

creates a variable called name, containing “MyName” in every observation. Variables of the
type strn can contain up to n characters, where n has a maximum value of 2,045. Variables of
type strL can contain up to 2,000,000,000 characters.

Missing Values

Missing values in string variables are always represented by "", but numerical variables can take
a number of different missing values. The default missing value is simply a dot, but you can also
use “.a” “.b” . . . “.z” if you wish to distinguish between different types of missing data: that
subject was not asked the question, the question was not answered, the answer was illegible etc.
However, all missing values are larger than the largest number that stata can represent with
that data type, so you can always exclude all missing values with

if variable < .

Egen

A more powerful way of generating new variables is with egen (short for Extended GENerate.
The syntax is very similar to that of generate:

egen newvar = fcn(varlist)

However, there are a large number of functions which can be used for fcn(varlist) which can
perform calculations that generate cannot. For example, there are functions to calculate sums,
means, medians, variances, z-scores, etc. Type help egen for a full list of available functions.

1.4.2 Labelling variables

Variable names in Stata are limited to 32 characters. This enables reasonably descriptive names
to be used, but it may be that a fuller description of a variable is required. For example, it is
often useful to know the exact wording used for a question. In this case, the command

label variable varname "label"

can be used. For example, if you wish to assign the label “How many days in the week do you
drink alcohol ?” to the variable alcohol, the command used would be

label variable alcohol "How many days in the week do you drink alcohol ?"

11

1 Essentials of the Stata Language

Equally important is the ability to label the values of a variable. Usually, categorical variables
are stored as numbers, since this requires less storage and is more efficient. However, it is
important to know which values these numbers refer to. This can be done using value labels.

Assigning labels to values is done in two stages. First the labels are assigned to numbers.
This is done with a label define command, such as:

label define yesno 1 "Yes" 0 "No"

which assigns the value “Yes” to the number 1 and the value “No” to the value 0.

The second step is to assign the label to a variable, with the label values command. This
command takes the form

label values varname labelname

For example, to use the label yesno defined above with the variable back pain, the command
to use would be

label values back pain yesno

Only one variable can be given in the label values command, yet there may be several
variables which have the same label applied to them. We will see an efficient way of doing this
next week.

1.4.3 Selecting variables

Often there are more variables in your dataset than you are interested in, and you may wish to
use only a subset of the available variables. There are two commands to facilitate this: drop and
keep. They work as you might expect: drop varlist removes all of the variables in varlist

from the dataset, and keep varlist removes all of the variables that are not in varlist from
the dataset.

1.4.4 Formatting variables

The command format can be used to change how stata presents data to you. It is most commonly
used for dates. Dates are stored as the number of days since January 1, 1960. So January 2,
1960 would be stored as 1, and February 10, 2005 as 16477. This has the advantage that you
can do arithmetic with dates, to calculate the time between two dates etc. However, it means
that if you list a series of dates, you will see a list of numbers, and converting from the number
to the date is not trivial.

But you can use the format command to do this for you. The command

format %dD/N/CY date

means that the variable date will be presented in the form Day/Month/Year, rather than as
numbers. Alternatively,

format %dCY-N-D date

will present the dates as Year-Month-Day instead. For a full list of all of the characters that
can be used in a date format, along with their meanings, type

help dfmt

12

1.5 Manipulating Datasets

The format command can also be used to determine the formatting of other numbers: how
many decimal places to use etc. Full details are given by

help format

1.5 Manipulating Datasets

1.5.1 Filenames

Filenames that contain spaces can cause problems in stata, unless the filename is put in inverted
commas. For this reason, I strongly suggest that whenever you use a filename, you put the name
of the file in inverted commas, even if it does not contain a space: you may move it to a different
directory later and wonder why your do-file no longer works. This is especially important when
using a macro as part of the filename, since the macro may expand to something containing a
space.

1.5.2 Reading and Saving data

The most important commands for manipulating datasets are use, which reads a stata dataset
into stata, and save, which saves a stata dataset. These commands have a very simple syntax,
although there are a few safeguards built in to them to stop you destroying your own data by
mistake.

Use

The simplest way to read a file into stata is to issue the command

use "filename"

This will read the file filename into stata. However, if you have data already in stata, reading
new data in will replace it and it may be lost forever. For this reason, stata will not read in the
new dataset if there is data in memory that has been changed since it was read from the disk.
If you want to keep the data you are currently working on, you need to enter

save "old filename"

use "filename"

If you don’t mind losing the existing data, you can type either

clear

use "filename"

or

use "filename", clear

either of which have the same effect.
Typing in the full name of a file can be tedious, especially when there are may levels of

directories to go through. When working interactively, this is one of the commands which are
much easier to use from the menus or button-bar. Once you have opened the dataset once,
however, the command can be stored in a do-file for subsequent use. If you need to reopen the
dataset (if you have made an error in manipulating the dataset, for example), the command can

13

1 Essentials of the Stata Language

be rerun from the review window. Be warned, however, that using the menu always implies the
option clear, so the safeguards built into use do not work.

Save

A stata dataset is saved using the command

save "filename"

However, this might not be what you really want: if a file of that name already exists, it will
be replaced with the new file. If you want to have copies of both files available, you must use
different names for them. If you want to replace the original file, you can with the command

save "filename", replace

Saveold

It may be that you need to save a dataset in an old format: you may be collaborating with
someone who only has access to an old version of stata, or you may want to use StatTransfer,
which does not recognise the last stata file format. This can be done using the command

saveold filename

You may specify ,replace if you wish, but it would be a bad idea to replace a file in a more
recent format with one in an older format: you may be losing information.

1.5.3 Combining Datasets

Sometimes you may want to combine data from 2 or more data sets. There are two possible
situations:

1. The datasets contain the same information about two different groups of people

2. The datasets contain different information about the same group of people.

In the first situation (e.g. you have received datasets from two different centres, each record-
ing the same information about different populations, and you want to combine the datasets),
the command to use is append. In the second case (e.g. data from x-rays are stored in one
file, DNA data in another, and you want to look at genetic risk factors for x-ray outcomes), the
command is merge.

append

The command append adds new observations to the end of an existing dataset. It is essential
that corresponding variables in the two datasets have exactly the same names, otherwise they
will be treated as different variables. If variables have the same meaning, but different names,
the command rename can be used to change the name in one of the files.

A simple example of appending data is shown below:

The variables ID, common 1 & common 2 exist in both files, whilst file1 1 & file1 2 exist
only in file1 and file2 1 & file2 2 exist only in file2. Thus there will be missing data for
these variables in the combined file.

14

1.5 Manipulating Datasets

ID common 1 common 2 file1 1 file1 2

1 a1 b1 c1 d1
2 a2 b2 c2 d2
3 a3 b3 c3 d3

Table 1.3: Appending Data: File 1

ID common 1 common 2 file2 1 file2 2

4 a4 b4 e4 f4
5 a5 b5 e5 f5
6 a6 b6 e6 f6

Table 1.4: Appending Data: File 2

It will almost always be useful to create a variable which will tell you from which file a given
subject was taken. A simple way of doing this is shown below:

use "filename1"

gen fromfile = 1

append using "filename2"

replace fromfile = 2 if fromfile == .

Here, the file filename1 is read into memory. Then a new variable, fromfile is created,
which takes the value 1 for all observations in filename1. Next, addition observations are added
to the dataset from filename2. Finally, fromfile is given the value 2 for any observations for
which fromfile is currently missing. Since fromfile == 1 for all observations in filename1,
this means that fromfile is set to 2 for all observations in filename2.

merge

Merging data is used more commonly than appending data. In order to merge two datasets,
you need to specify which record(s) in one dataset correspond to which record(s) in the other.
Therefore, before merging two files, you must ensure that there is a variable or group of variables
that are identical in each dataset.

For example, suppose that you wish to merge the files file1 and file2, and that the variable
idno exists in both datasets and is a unique identifier for each subject. Then before merging,
the datasets would look like this:

In order to merge these two files, you need to make sure that they are both sorted by idno:

use file2

sort idno

save, replace

use file1

sort idno

Then you can give the command to merge the files:

merge 1:1 idno using file2

15

1 Essentials of the Stata Language

ID common 1 common 2 file1 1 file1 2 file2 1 file2 2

1 a1 b1 c1 d1 . .
2 a2 b2 c2 d2 . .
3 a3 b3 c3 d3 . .
4 a4 b4 . . e4 f4
5 a5 b5 . . e5 f5
6 a6 b6 . . e6 f6

Table 1.5: Appending Data: Combined Files

idno var1 var2

1 a1 b1
2 a2 b2
3 a3 b3

Table 1.6: Merging Data: File 1

Note the syntax of the command:

merge [1:1]|[1:m]|[m:1]|[1:m] variable name using filename

After merging, the dataset would look like this:

Things to note:

• All subjects who appear in either of the files will appear in the merged file.

• Subjects who do not appear in one of the files will have missing values for those variables.

• Stata has created a new variable called merge, which contains the values

1 if the value of idno exists in file1, but not in file2

2 if the value of idno exists in file2, but not in file1

3 if the value of idno exists in both files

The most common error in merging data is that one or other datasets is not sorted. In this
case, you will get the error message

master data not sorted

or

using data not sorted

If it is the master data not sorted, you can simply enter the command

sort matching variable

and try again. If it is the using data that is not sorted, save the current master file in its sorted
state, then use and sort the second dataset.

The above example would be slightly more complex if there was no unique identifier for each
subject. Imagine that there are a number of different centres participating in the study, and

16

1.5 Manipulating Datasets

idno var3 var4

1 c1 d1
3 c3 d3
4 c4 d4

Table 1.7: Merging Data: File 2

idno var1 var2 var3 var4 merge

1 a1 b1 c1 d1 3
2 a2 b2 . . 1
3 a3 b3 c3 d3 3
4 . . c4 d4 2

Table 1.8: Merging Data: Combined Files

each numbered their subjects 1–n. You cannot merge be idno, since the same idno can exist
in each centre, and correspond to different subjects. For this reason, you can use a number of
variables to match on: in this case, the command to use is

merge 1:1 centre idno using file2

Of course, you would need to run the command

sort centre idno

on both files first.

Ensuring Uniqueness Very often, when merging, you will want to match a single record
in one file to a single record in the other. If this is what you want, the command merge 1:1

will verify that this is true, and produce and error if not. However, there are times that you
want to match several observations in one file to a single observation in the other: maybe one
file contains data on individuals, and the other contains data on the households to which they
belong. Multiple household members would need to be matched to the same household. There
are commands merge 1:m for the case where a single record from the data in memory should
be merged to several records in the “using” file, and merge m:1 if several records from the data
in memory should be matched to a single record in the “using” file.

However, the merge command does not require this. If a subject appears twice in one of the
files, there will be two records for that subject in the final dataset. This can be avoided by using
the option unique to the merge command:

merge idno using file2, unique

This will produce an error message if either file contains more than one entry with the same
idno.

17

1 Essentials of the Stata Language

1.6 Other Dataset Manipulation Commands

1.6.1 browse and edit

The command browse opens a data editor window, in which the dataset is presented in spread-
sheet form. The data can be examined, but not changed, following a browse command. If you
wish to examine only a subset of the data, you can list the variables you want to see after the
browse command.

The command edit is similar to browse but does allow changes. Do not use it. Any
changes you make to your data must be documented, so the best way to manage it is with a
do-file.

1.6.2 preserve and restore

You may wish to change your data temporarily. For example, there is a command collapse

which creates a new dataset, consisting of the means (or other statistics) of the variables in the
current dataset, calculated for a number of subgroups. You may want to do some analysis of
these means, then return to your original dataset. The command preserve saves a copy of your
dataset to disk, so that you can get it back easily after analysing the collapsed dataset, and
restore restores the previously saved dataset.

18

2 Practical on Essentials of Stata

2.0.1 Preliminaries

To start Stata, click on Start Button ⇒ All Programs ⇒ Stata 14 ⇒
StataIC 14 (64 bit)

This should work for most of you, but depending on your faculty and
whether you are staff or a student, the exact route may vary. Let me
know if you have any difficulty.

Solutions for all practicals can be found at
http://personalpages.manchester.ac.uk/staff/mark.lunt/stats course.html

Choose a directory to hold the work you are going to do on this course. I suggest that P:

is the best place, maybe P:\statacourse. Set the global macro to the name of your chosen
directory:

global mydir my chosen directory

(Remember text in italics is not typed in as it is, but replaced with the name of the directory
you are using). This way, you can all chose different directories, but if I give my instructions in
terms of the macro $mydir, they will work for all of you.

Of course, the directory you are going to use must exist, before you can save any files in it.
You can use

mkdir "$mydir"

provided that the new directory is only one level below an already existing directory. To make
sure that it exists, type

cd "$mydir"

to change to it, and make sure you don’t get an error message in response.

It is a good idea to start a log now.

2.0.2 Reading and Saving Files

Type the command

sysuse auto

This will search for a dataset called auto that is installed with stata. You now want to save
this dataset to your own directory. You can type

save "$mydir/auto"

19

2 Practical on Essentials of Stata

to save this dataset in your own working directory, or if you have already changed to $mydir,
you can just type

save auto

Make sure that you are in you own working directory (use pwd to find out, and cd to change
if necessary). Now type

dir

to ensure that you really do have a copy of the dataset saved in this directory. If you have,
type

clear

to remove the dataset from memory, then

use auto

to read the version in your own directory back in.

Now save the dataset using a different name, say myauto. This is because we are going to
modify the dataset, and you should always make sure that your original data cannot be lost by
mistake: save the original and work on a copy.

save myauto

2.0.3 Creating and Modifying Variables

Using generate

We are now going to create a new variable, wtkg, to contain the weight of each vehicle in kg.
Since 1kg is approximately 2.2046lbs, the command to do this is

generate wtkg = weight/2.2046

It is good practice to label every variable as soon as you have created it, before you have time
to forget what it is, so let’s do that:

label variable wtkg "Weight (kg)"

Creating indicator variables

Very often, you want to generate a variable that can only take two values, representing “true”
and “false”. As an example, we will create a variable short, which takes the value 1 for all cars
less than 190 in long and 0 for longer cars. The conceptually simplest way to do this is

generate short = 0

replace short = 1 if length < 190

However, there is a more efficient way: in stata, any logical expression (such as (length <

190)) has a value 0 if the expression is not true and 1 if the expression is true. So we could
identify short cars with the single command

20

generate short2 = (length < 190)

If you type tab short short2, you should see that both commands have had exactly the
same effect.

Using egen

Suppose that you wish to divide the vehicles into tertiles. There are a number of ways to do it:
the simplest is to use egen. The function cut can be used to categorize a continuous variable,
and you can either choose the thresholds yourself, or divide the observations into a given number
of (more-or-less) equal sized groups. The code for doing this is

egen wtt = cut(weight), group(3)

As always, we now need to label this variable

label variable wtt "Tertiles of weight"

If you type tab wtt, you will see that wtt takes three values, 0, 1 or 2. The lowest tertile
contains 24 cars, the others 25.

So that you don’t get confused as to which tertile is which, it is best to label them. First,
you need to define a label for them:

label def tertiles 0 "Lowest tertile" 1 "Middle Tertile" 2 "Highest Tertile"

Then you can assign that label to the variable

label values wtt tertiles

If you now repeat the command

tab wtt

you should see more meaningful labels for the categories of wtt.

Creating a string variable

If you type

tab make

you will see that of the 74 cars in the dataset, several are made by the same manufacturer:
3 Toyotas, 4 VW’s etc. However, there is no variable to identify the manufacturer, so we had
better create one. We will do this by taking the first word of the variable make, i.e. all of
the characters up to the first space. This requires two functions: strpos(string1, string2),
which gives the position within string1 at which string2 first occurs, and substr(string,

num1, num2), which returns the substring of string that starts at position num1 and ends at
position num2 . So, to extract the manufacturer of each vehicle, we use the command

gen str20 company = substr(make, 1, strpos(make, " "))

if you now type

tab company

you should see the following table

21

2 Practical on Essentials of Stata

company | Freq. Percent Cum.

------------+-----------------------------------

AMC | 3 4.11 4.11

Audi | 2 2.74 6.85

BMW | 1 1.37 8.22

Buick | 7 9.59 17.81

Cad. | 3 4.11 21.92

Chev. | 6 8.22 30.14

Datsun | 4 5.48 35.62

Dodge | 4 5.48 41.10

Fiat | 1 1.37 42.47

Ford | 2 2.74 45.21

Honda | 2 2.74 47.95

Linc. | 3 4.11 52.05

Mazda | 1 1.37 53.42

Merc. | 6 8.22 61.64

Olds | 7 9.59 71.23

Peugeot | 1 1.37 72.60

Plym. | 5 6.85 79.45

Pont. | 6 8.22 87.67

Renault | 1 1.37 89.04

Toyota | 3 4.11 93.15

VW | 4 5.48 98.63

Volvo | 1 1.37 100.00

------------+-----------------------------------

Total | 73 100.00

Notice that we have lost a car: there are only 73 values of company. This is because the
the Subaru has no model name, and hence there is no space in make for this car. There are a
number of solutions for this: the simplest is

replace company = make if company == ""

You now need to save this dataset, as we may use it again later:

save, replace

2.0.4 Manipulating Datasets

In order practice combining datasets, we need to create two datasets to combine. We will use a
simulated dataset of blood pressure measurements called bplong. This file contains two records
of blood pressure for each subject: one made before some intervention, the second taken after
the intervention. The variable when takes the value 1 for the “before” measurement and 2 for
the “after” measurement. This dataset will be split into separate “before” and “after” datasets.

This is done with the following commands:

sysuse bplong

save "$mydir/bplong"
preserve

keep if when == 1

save "$mydir/bpbefore"
restore

22

keep if when == 2

save "$mydir/bpafter"

Now, all of the records for the first visit are in bpbefore and all those for the second visit
in bpafter.

Append

First of all, we will see how to append the two datasets, to reproduce the structure of bplong.
The code to do this is:

use bpbefore, clear

gen fromfile = 1

append using bpafter

replace fromfile = 2 if fromfile == .

Now you can check that fromfile agrees with when by typing

tab fromfile when

If you wish to save this file, make sure that you give a suitable label to fromfile first. You
may also wish to label the values that fromfile takes.

Merge

Now we are going to merge the files, so that we end up with a single record for each subject, and
two separate variables for the “before” and “after” measurements. Since we want two variables
in the merged dataset, we will need to change the name of the variable bp in at least one of the
files. In fact, it is easier to change the variable name in both files.

use bpbefore, clear

rename bp bp before

save, replace

use bpafter

rename bp bp after

save, replace

Note that you need the replace option to save, since the file already exists, but we want to
change it. Now, you need to ensure that both files are sorted by patient, so that they can be
merged:

use bpbefore

sort patient

save, replace

use bpafter

sort patient

save, replace

Yes, it would have been more efficient to do the sorting and renaming at the same time, rather
than have to read the files in twice. You can do that in future. Of course, if you remember

23

2 Practical on Essentials of Stata

to use PageUp and PageDown to get older commands, or took your commands from the review
window, there was very little typing to do anyway.

Now, we can do the actual merge:

merge 1:1 patient using bpbefore

If you have followed the previous instructions, bpafter is still loaded in stata, so you just
need to merge in bpbefore. You can make sure that the merge was successful by typing in tab

merge: you should see that merge takes the value 3 for all 120 patients, showing that they had
data in both files.

2.0.5 Further Exercises

1. Calculate the lengths of each car in metres, using the fact that 1 inch is 0.0254 metres.

2. Create a variable heavy, which takes the value 0 for cars weighing less than 3000 lbs and
1 for cars weighing more than 3000 lbs.

3. Create tertiles of wtkg from the auto dataset, and check that it produces exactly the same
results as creating tertiles of weight.

4. A simpler way of creating the company variable would be to use egen with the ends

function. Use help egen to find out how this function works, then create a new variable
called comp2, containing the first word of make.

5. Using the dataset that you created in Section 2.0.4, calculate the change in blood pressure
between the “before” and “after” visit.

6. Using the same dataset, create a variable that takes 6 different values, depending on which
age group and sex the patient belongs to. (Hint: the group option to egen will help: check
it out) Label the values so that you can tell which group is which.

24

