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1 Modelling Time to event data

1.1 Introduction

Survival (or “time-to-event”) analysis is concerned with the length of time that passes before a
particular event occurs. It was initially developed for events that can only occur once, such as
death, and that is the only type of event we will consider here. However, it can be extended to
cover events that can happen repeatedly.

The main issue with time to event studies is censoring. That is, some people may not have
had the event yet, so we don’t know how long will have elapsed when it happens. We need to
have a way to include such subjects in our analysis.

In the following chapter, we will explain what censoring is, then present methods for:

1. Presenting the survival experience of a group

2. Comparing the survival experiences of two groups

3. Measuring the impact of multiple predictors on survival

1.2 Censoring and Survival

If we do not know the exact time that an event occurred, we say that the event time is cen-
sored. In survival analysis, we are most commonly interested in the case where the event hasn’t
happened yet: that individual is still alive. We know that the event will happen, but not the
time at which it will happen. This is commonly known as right-censoring: we think of time as
running along an axis from left to right, and we know that the event will happen somewhere to
the right of where we are now, but not how far to the right.

Right censoring commonly occurs because we wish to analyse our data before every subject
in the sample has died. It can also occur if a subject is lost to followup, but were alive when we
last had contact with them. The methods presented here can allow for right censoring, provided
that the censoring is unrelated to the time to event. I will give an example shortly in which this
assumption is unlikely to be true, and a more sophisticated analysis may be called for.

Figure 1.1 shows an example of a study which was planned to run for 18 months. The
subjects were recruited during the first 6 months of the study, and followed up for between
12 and 18 months, depending on when they were recruited. The data was analysed as it was
18 months after the study began. In Figure 1.1, filled circles represent the event of interest
(subjects 1, 5, 7 and 10) and open circles represent censoring (subjects 2 and 4 were lost to
followup, subjects 3, 6, 8 and 9 had not had the event at the end of the study).

However, when analysing the data, we need time for each subject to start when they are
recruited into the study, not when the study begins. Hence the data for analysis will look like
Figure 1.2. Everyone starts at time 0, and although subjects 3, 6, 7 and 8 were all censored a
the same time chronologically, they are censored at different points in their followup since their
followup started at different times chronologically.

1.2.1 Other types of censoring

Survival analysis is intended to deal with right censoring. However, there are other types of
censoring that require different approaches to deal with them. They are left censoring and
interval censoring.

Left censoring happens when you know that the event has taken place, but you do not know
when. For example, vertebral fractures are often asymptomatic, and can only be diagnosed

4
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Figure 1.1: Censoring example: chronological time

when a spinal radiograph is taken. If a vertebral fracture is apparent on the radiograph, you
know that the fracture happened, but not when it happened.

Interval censoring is a combination of right and left censoring. You know that the event
happened within a given time interval, but not exactly when. Continuing with the vertebral
fracture example, a patient may have 2 radiographs taken several years apart. There may be
a fracture visible on the second radiograph that was not visible on the first. You therefore
know the fracture happened some time during the interval between the two radiographs, but
not exactly when.

1.3 Describing Survival

1.3.1 Survivor function

Describing survival does not lend itself easily to being reduced to a single number. It is most
commonly presented as a graph of the Survival Function (S(t)): the probability of surviving to
time t, plotted against time.

To see how to calculate the Survival Function, it is easiest to think of time as passing in
discrete chunks, which I’ll refer to as “ticks”. Suppose that rk subjects reach the kth tick, and
fk of them have the event during that tick. Then the probability of surviving the kth tick, for
those that reach it, is rk−fk

rk
. The probability of surviving to the beginning of the kth tick is

S(k − 1), so S(k) = S(k − 1) × rk−fk
rk

.

Note that if no-one has the event, or is censored, at time k, then S(k) = S(k − 1) × 1, and
hence the Survival Function remains unchanged. So we only need to recalculate the function at
times when an event or censoring happens.
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Figure 1.2: Censoring Example: followup time

Survivor Function Example

In an experiment to investigate motion sickness for the U.S. Navy ??, 21 subjects were put into
a cabin on a hydraulic piston, and bounced up and down for 2 hours, or until they vomited,
whichever came first. 5 subjects were ill, after 30, 50, 51, 82 and 92 minutes. In addition, 2
subjects insisted on ending the experiment early, after 50 and 66 minutes. It is possible, even
likely, that these 2 subjects were likely to vomit sooner than the others had they continued with
the experiment, and hence censoring is not independent of survival time in this case. However,
for the sake of a simple example, we will proceed as if it were independent: methods for dealing
with “informative” censoring are complicated and beyond our scope.

So the first time we need to consider is 30 minutes, when the first subject vomited. At this
point, 20 of the 21 subjects were surviving, so S(30) = 20

21 = 0.952. One of the remaining subjects
vomited after 50 minutes, so S(50) = 20

21×
19
20 = 0.905. However, the first censoring occured at this

time, so the probability of surviving the 51st minute is 17
18 , not 18

19 , and S(51) = 0.905× 17
18 = 0.855.

The survival function is tabulated in Table 1.3.1. Such a table is commonly referred to as a
life table. The same information can also be presented as a graph, with time running left to right
on the x-axis and survival probability on the Y -axis. The graph is drawn as a step function,
with a step downwards at each failure time, the size of the step depending on the number of
subjects who fail at that time. An example of a survival curve is shown in Figure 1.3. This
approach to calculating the survival function is often referred to as the Kaplan-Meier method,
since they first proposed it [?].

1.3.2 Stata Commands

Stata has a large suite of commands for doing survival analysis, all of which begin with the
letters st. First, the data needs to be set as survival data using the stset command. This takes
a single variable containing the failure time. There is also a failure() option, which should be
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1.4 Comparing Survival Between Groups

ID Time Censored rk fk S(t)

1 30 No 21 1 20/21 = 0.952
2 50 No 20 1 19/20× S(30) = 0.905
3 50 Yes 19 0 19/19× S(50) = 0.905
4 51 No 18 1 17/18× S(50) = 0.855
5 66 Yes 17 0 17/17× S(51) = 0.855
6 82 No 16 1 15/16× S(66) = 0.801
7 92 No 15 1 14/15× S(82) = 0.748
8 120 Yes 14 0 14/14× S(92) = 0.748
...
21 120 Yes 14 0 14/14× S(92) = 0.748

a variable containing the value 1 for failures and 0 for censorings.

Having set the data with stset, a life table can be generated with sts list and a survival
curve produced with sts graph. An example of the output from sts list is given below:
Figure 1.3 was produced with sts graph.

sts list if group == 1

failure _d: fail

analysis time _t: time

Beg. Net Survivor Std.

Time Total Fail Lost Function Error [95% Conf. Int.]

-------------------------------------------------------------------------------

30 21 1 0 0.9524 0.0465 0.7072 0.9932

50 20 1 1 0.9048 0.0641 0.6700 0.9753

51 18 1 0 0.8545 0.0778 0.6133 0.9507

66 17 0 1 0.8545 0.0778 0.6133 0.9507

82 16 1 0 0.8011 0.0894 0.5519 0.9206

92 15 1 0 0.7477 0.0981 0.4946 0.8868

120 14 0 14 0.7477 0.0981 0.4946 0.8868

-------------------------------------------------------------------------------

1.4 Comparing Survival Between Groups

If we are interested in the survival experience of two (or more) groups, we can draw survival
curves for each group separately. However, testing for a difference between the groups is trickier
than testing for a difference in prevalence or rate, since each of those can be summarised with
a single number for each group. A survival curve is not a single number, so there are a number
of ways the two groups can differ: there may be a consistent difference, the groups may be the
same at first then separate, they may differ at first then continue parallel, the survival curves
may even cross, with one group having better survival initially then being overtaken by the other
group.

There are a number of different tests that can be used to compare groups, a the power of
each test depends on the type of difference that exists. For instance, the logrank test is typically
most powerful against consistent differences between the groups, whilst the modified Wilcoxon
test is most powerful against early differences. For this reason, it is essential to decide which
test to use before looking at the data, otherwise you risk a false positive test result.
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Figure 1.3: Kaplan Meier Survival Curve for Motion Sickness

1.5 Modelling Survival

Normally, modelling provides more information than hypothesis testing, and survival analysis is
no exception. If you want to compare two groups while adjusting for potential confounders, or
you are interested in the effects of different predictors on survival, modelling is the way to go.

1.5.1 The hazard function

Rather than modelling the survival function, we model the hazard function. The hazard function
h(t) is the probability of having the event of interest at time t, assuming that you have reached
time t. For example, in the motion sickness study, h(30) = 1

21 and h(50) = 1
20 . The hazard

function is modelled as a function of both time t and the predictors we are interested in x:

h(t, x) = h0(t) × Ψ(x)

The baseline hazard, h0(t), may be estimated parametrically or non-parametrically. Since
Ψ(x) is always parametric, if h0(t) is also parametric, the model is parametric, if not the model
is semi-parametric. In medical research, survival analysis almost always uses a semi-parametric
model, and that is all that we will consider here.

1.5.2 Cox Regression

The most common form of semi-parametric regression is Cox regression. Here, h0(t) is piecewise
constant, and Ψ(x) takes the form eβ1x1+β2x2+...+βkxk . Note that the linear predictor does not
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1.5 Modelling Survival

contain an intercept, since the role of the intercept is played by h0(t). In a Cox regression model,
if xi increases by 1, the hazard is multiplied by eβi , which is referred to as the hazard ratio.

The stata command for performing Cox regression is stcox. You need to have stset your
data before you can use it. By default, the command will produce hazard ratios, but there is a
nohr option which will give coefficients instead.

Cox Regression Example

In the motion sickness study in Section 1.3.1, less than a third of the subjects vomited. The
experimenters wanted to see if increasing the amplitude and frequency of movement induced
vomiting more quickly. They recruited a furthe 28 subjects and subjected them to this new
motion. They then compared the time to vomiting between the two groups. The survival curves
are shown in Figure 1.4, the output from the stcox command is below.
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Figure 1.4: Comparing Two Groups in Motion Sickness Study
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1 Modelling Time to event data

. stcox i.group

Cox regression -- Breslow method for ties

No. of subjects = 49 Number of obs = 49

No. of failures = 19

Time at risk = 4457

LR chi2(1) = 3.32

Log likelihood = -67.296458 Prob > chi2 = 0.0685

------------------------------------------------------------------------------

_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

2.group | 2.45073 1.277744 1.72 0.086 .8820678 6.809087

------------------------------------------------------------------------------

Figure suggests that subjects did vomit sooner under the new conditions: the survival curve
for group 2 is always lower than the survival curve for group one. However, the p-value for
the comparison is greater than 0.05, so the difference between the groups is not statistically
significant. The hazard ratio for group 2 of 2.45 suggests that this group does vomit sooner, but
the confidence interval of (0.88, 6.81) contains the null value of 1, so we can’t be confident that
the true population value of the hazard ratio is greater than 1.

1.5.3 Proportional Hazards Assumption

Cox regression assumes that the hazard ratio is constant over time, in other words that the
hazard functions for 2 sets of predictor values are in a constant proportion over time. This is
a strong assumption and should be tested. It can be formally tested with a hypothesis test, or
informally tested graphically.

The easiest way to test it graphically is with the command stcoxkm. This produces the
observed survival curve, along with the expected survival curve based on the Cox regression
model. If the two curves are similar, the proportional hazards assumption is probably corrrect.
Figure 1.5 shows this plot for the motion sickness data.
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Figure 1.5: Expected and Observed Kaplan Meier Plots for Motion Sickness Data

As you can see, the observed and expected values are very similar for both groups, suggesting
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1.5 Modelling Survival

that the proportional hazards assumption holds. This can be confirmed by running estat

phtest after stcox. The output below shows that the p-value is greater than 0.05, so we cannot
reject the null hypothesis of proportional hazards.

. estat phtest

Test of proportional hazards assumption

----------------------------------------------

| chi2 df Prob>chi2

------------+---------------------------------

global test | 0.03 1 0.8585

----------------------------------------------

Allowing for non-proportional hazards

What can we do if the proportional hazards assumption does not hold ? This would mean that
the hazard ratio for one or more variables changes over time, so we can split the data by time
and fit two or more different hazard ratios for the same variable at different times.

This is easiest to see with an example: this is taken from the Stata help for stcoxkm. It
involves comparing two treatments. The observed and expected Kaplan-Meier curves are shown
in Figure 1.6. The observed and expected curves for both treatments are quite distinct from each
other: for the standard treatment, the observed curve starts above the predicted curve, crosses
it at about 10 months and then remains below it. The reverse is true for Drug B, the observed
curve starts below the predicted curve, crosses it at about 12 months and then remains above
it. This suggests that the hazard ratio for Drug B is changing over time. This is confirmed by
running estat phtest after stcox: the test is highly significant (p = 0.0013).
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Figure 1.6: Example of Observed and Predicted KM-curves when Hazards are not Proportional
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1 Modelling Time to event data

. stcox i.treatment2

------------------------------------------------------------------------------

_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

treatment2 | .7462828 .3001652 -0.73 0.467 .3392646 1.641604

------------------------------------------------------------------------------

. estat phtest

Test of proportional hazards assumption

Time: Time

----------------------------------------------------------------

| chi2 df Prob>chi2

------------+---------------------------------------------------

global test | 10.28 1 0.0013

----------------------------------------------------------------

Since the curves seem to cross at 10 months, we can divide the data at that point. There is
a command stsplit which will do that for us. The option at() takes a list of times at which to
split the data, and the command needs to be given a variable which will contain the time of the
start of that period after the command has been run. After splitting the data, we create two
new variables: one corresponding to treatment2 in the first 10 months, the other corresponding
to treatment2 after 10 months. The code to create and fit these variables is given below, along
with the output from stcox and estat phtest.
stsplit period, at(10)

gen t1 = treatment2*(period == 0)

gen t2 = treatment2*(period == 10)

. stcox t1 t2

------------------------------------------------------------------------------

_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

t1 | 1.836938 .8737408 1.28 0.201 .7231357 4.666262

t2 | .1020612 .0853529 -2.73 0.006 .0198156 .5256703

------------------------------------------------------------------------------

. estat phtest

Test of proportional hazards assumption

Time: Time

----------------------------------------------------------------

| chi2 df Prob>chi2

------------+---------------------------------------------------

global test | 1.34 2 0.5114

----------------------------------------------------------------

The hazard ratio is greater than 1 (but not significantly so) for the first 10 months, and
significantly less than one after this). This suggests that the treatment is no better than standard
treatment at first, but for those who survive at least 10 months, it is then markedly better.
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2 Modelling Time to event data: Practical

2.1 Practical 10: Survival Analysis

Datasets

The datasets that you will use in this practical can be accessed via http from within stata.
However, the directory in which they are residing has a very long name, so you can save yourself
some typing if you create a global macro for this directory. You can do this by entering

global basedir http://personalpages.manchester.ac.uk/staff/mark.lunt

global datadir $basedir/stats/10 survival/data

(In theory, the global variable datadir could have been set with a single command, but fitting
the necessary command on the page would have been tricky. Far easier to use two separate
commands as shown above). If you wish to run the practical on a computer without internet
access, you would need to:

1. Obtain copies of the necessary datasets

2. Place them in a directory on your computer

3. Define the global macro $datadir to point to this directory.

2.1.1 Life tables and Survival Curves

This section uses the dataset "leukaemia".

1.1 First, set up the data for survival analysis. The time variable is weeks, the number
of weeks to relapse. The outcome variable is relapse, which is 1 if the subject had a
relapse at that time and 0 if they did not. Hence the command to set the data up for
survival analysis is stset weeks, fail(relapse)

1.2 Obtain a life table for the subjects on Drug A with the command sts list if

treatment1 == 1. What is the median survival in this group (at what time does the
survivor function reach 0.5) ?

1.3 How many subjects were lost to followup in this treatment arm ?

1.4 Obtain a life table for the subjects on standard treatment with the command sts list

if treatment1 == 0. What is the median survival in this group ?

1.5 How many subjects were lost to followup in this treatment arm ?

1.6 Do the answers to your previous questions suggest that Drug A is better, worse, or the
same as standard treatment ?

1.7 Produce a Kaplan-Meier curve for each of the treatments with the command sts graph,

by(treatment1). Does this confirm your answer to the previous question ?

14



2.1 Practical 10: Survival Analysis

1.8 Add a horizontal line to the graph by adding the option yline(0.5) to the previous
command. This line represents half of the group surviving and half having a relapse: the
point where it crosses the two survival curves should give you the median survival times
you calculated in earlier questions.

1.9 Add the option lost to the previous command. This will show how many subjects
were censored at each time point. How many subjects were lost to followup in the two
treatment arms ? Does this agree with the results you got from sts list ?

1.10 Add the option gwood to the previous command to obtain confidence bands for the
survival curve ? (The odd name for this option is because the formulae used to calculate
the confidence bands were developed by a Major Greenwood). Why do the confidence
bands get wider over time ?

1.11 Perform a logrank test to compare the survival on Drug A to that on standard treat-
ment, with the command sts test treatment1. Is the difference between Drug A and
standard treatment statistically significant ?

1.12 Would have had the same answer to the previous question if you had used a Wilcoxon
test in place of a logrank test ? (You can do this by adding the option wilcoxon to the
previous command.)

2.1.2 Cox Regression

1.13 Have a look at the survival curves by white blood cell count using sts graph,

by(wbc3cat). Does the white blood cell count affect survival ?

1.14 Do a cross-tabulation of treatment1 against wbc3cat with tab wbc3cat treatment1,

co Are the proportions of subjects in each of the white blood cell counts categories the
same in the two treatment arms ?

1.15 Given that proportion of subjects in the “High” cell count group is greater in the standard
treatment arm than in the Drug A arm, would you expect this to have increased or
decreased survival in this arm of the trial ?

1.16 White blood cell count is a potential confounder, so we need to adjust for it. First, we
will perform an unadjusted Cox regression to obtain the hazard ratio before adjusting.
This is done with the command stcox treatment1. What is the hazard ratio for Drug
A, and its 95% confidence interval ?

1.17 Now obtain the adjusted hazard ratio with the command stcox treatment1

i.wbc3cat. What is the adjusted hazard ratio and its 95% confidence interval ?

1.18 How did the confounding by white blood cell count affect the apparent effect of Drug
A ? Is this what you expected from the earlier questions ?

15



2 Modelling Time to event data: Practical

1.19 Now we need to test the proportional hazards assumption. First for treatment: produce a
plot of the observed and predicted Kaplan Meier plots with stcoxkm, by(treatment1).
Are the observed and predicted curves close to each other ?

1.20 Now we can test the same assumption for the effect of white blood cell count, with
stcoxkm, by(wbc3cat). Are the observed and predicted curves close to each other ?

1.21 To obtain a formal test, we need to store the scaled and unscaled Schoenfeld residuals
by running the command stcox treatment1 i.wbc3cat, sca(sca*) sch(sch*) Now
enter the command stphtest to get an overall test of proportionality. Is the regression
model valid ?

1.22 Use the command stphtest, detail to obtain tests of proportionality for each individ-
ual variable. Is there any evidence of non-proportional hazards ?

2.1.3 Non-Proportional Hazards

1.23 There is a second drug used in this trial, stored in treatment2. Compare the
survival curves for Drug B and standard treatment with the command sts graph,

by(treatment2) How does the survival on Drug B compare to that on standard treat-
ment during the first 10 weeks ?

1.24 How does the survival on Drug B compare to that on standard treatment after the first
10 weeks ?

1.25 Superimpose the predicted survival curves from the Cox regression model with stcoxkm,

by(treatment2). How do the predicted and observed curves differ ?

1.26 Perform a Cox regression of treatment2 and wbc3cat with stcox treatment2

i.wbc3cat Does Drug B have a significant effect on survival ?

1.27 To test the proportional hazards assumption, we need to store the Schoenfeld residuals
again. First drop the residual from the previous model with drop sca* sch* Then rerun
the stcox command with the options sca(sca*) sch(sch*). Perform the overall test
with stphtest: is the model appropriate ?

1.28 Test the proportional hazards assumption for each variable separately with stphtest,

detail. Which variable does not satisfy the assumption ?

1.29 The Kaplan-Meier curves suggest that Drug B has a negative effect on survival initially,
then becomes positive. So we will test for different effects before and after 10 weeks.
First produce a life-table with sts list

1.30 To be able to split the data, you need to have an id for each subject. We can do this
with generate id = n. Now each observation has its record number as an identifier.
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2.1 Practical 10: Survival Analysis

1.31 Now, for each subject followed for more than 10 weeks, we will split the data into 2
observations, one for the time up to 10 weeks and one for the time after. First, we must
include the id information in the stset command with stset weeks, fail(relapse)

id(id) Then we can split the data with stsplit split time, at(10)

1.32 Check that the life-table remains unchanged by entering the command sts list Is it
the same as before ?

1.33 Examine the data with list id weeks relapse split time t0 t. You should see
that for subjects who were followed up for less than ten weeks, there is still a single
record. However, for those followed up for more than 10 weeks, there are two records,
one with split time == 0, the other with split time == 10. The start of the interval
is given by t0, the end by t

1.34 Now we can generate separate treatment variables for the treatment effect before and
after 10 weeks. The commands to use are gen t1 = treatment2*(split time == 0)

and gen t2 = treatment2*(split time == 10).

1.35 Now fit the Cox regression model with both t1 and t2 as predictors with the com-
mand stcox t1 t2 i.wbc3cat What is the hazard ratio for t1, with its 95% confidence
interval ?

1.36 What is the hazard ratio for t2 ?

1.37 Do these hazard ratios confirm what you were expecting ?

1.38 Drop the residuals from the previous model with drop sca* sch* then create new resid-
uals with stcox t1 t2 i.wbc3cat, sca(sca*) sch(sch*) Now test the proportional
hazards assumption with stphtest. Is the model now appropriate ?

1.39 Test the proportional hazards assumptions for each of the variables separately with
stphtest, detail. Do any of the predictors show non-proportionality ?
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