Survival Analysis

Mark Lunt

Centre for Epidemiology Versus Arthritis University of Manchester

16/01/2024

Introduction

- Survival Analysis is concerned with the length of time before an event occurs.
- Initially, developed for events that can only occur once (e.g. death)
- Using time to event is more efficient that just whether or not the event has occured.
- It may be inconvenient to wait until the event occurs in all subjects.
- Need to include subjects whose time to event is not known (censored).

Plan of Talk

- Censoring
- Describing Survival
- Comparing Survival
- Modelling Survival

- Exact time that event occured (or will occur) is unknown.
- Most commonly right-censored: we know the event has not occured yet.
- Maybe because the subject is lost to follow-up, or study is over.
- Makes no difference *provided* loss to follow-up is unrelated to outcome.

Censoring Examples: Chronological Time

Censoring Examples: Followup Time

Other types of censoring

- Left Censoring:
 - Event had already occured before the study started.
 - Subject cannot be included in study.
 - May lead to bias.
- Interval Censoring:
 - We know event occured between two fixed times, but not exactly when.
 - E.g. Radiological damage: only picked up when film is taken.

Survivor function Stata Commands

Describing Survival: Survival Curves

- Survivor function: S(t) probability of surviving to time t.
- If there are r_k subjects at risk during the kth time-period, of whom f_k fail, probability of surviving this time-period for those who reach it is

$$\frac{r_k - f_k}{r_k}$$

• Probability of surviving the end of the k^{th} time-period is the probability of surviving to the end of the $(k - 1)^{th}$ time-period, times the probability of surviving the k^{th} time-period. i.e

$$S(k) = S(k-1) imes rac{r_k - f_k}{r_k}$$

Survivor function Stata Commands

Motion Sickness Study

- 21 subjects put in a cabin on a hydraulic piston,
- Bounced up and down for 2 hours, or until they vomited, whichever occured first.
- Time to vomiting is our survival time.
- Two subjects insisted on ending the experiment early, although they had not vomited (censored).
 - Is censoring independent of expected event time ?
- 14 subjects completed the 2 hours without vomiting.
- 5 subjects failed

Introduction Censoring Describing Survival Comparing Survival

Survivor function Stata Commands

Motion Sickness Study Life-Table

ID	Time	Censored	<i>r</i> _k	f_k	S(t)	
1	30	No	21	1	20/21	= 0.952
2	50	No	20	1	19/20 imes S(30)	= 0 .905
3	50	Yes	19	0	19/19 imes S(50)	= 0 .905
4	51	No	18	1	17/18 × S(50)	= 0 .855
5	66	Yes	17	0	17/17 imes S(51)	= 0 .855
6	82	No	16	1	15/16 × S(66)	= 0 .801
7	92	No	15	1	14/15 imes S(82)	= 0 .748
8	120	Yes	14	0	14/14 imes S(92)	= 0 .748
:						
21	120	Yes	14	0	14/14 imes S(92)	= 0.748

Survivor function Stata Commands

Kaplan Meier Survival Curves

- Plot of S(t) against (t).
- Always start at (0, 1).
- Can only decrease.
- Drawn as a step function, with a downwards step at each failure time.

Survivor function Stata Commands

Stata commands for Survival Analysis

• stset: sets data as survival

- Takes one variable: followup time
- Option failure = 1 if event occurred, 0 if censored
- sts list: produces life table
- sts graph: produces Kaplan Meier plot

Survivor function Stata Commands

Stata Output

sts list if group == 1

failure _d: fail analysis time _t: time

	Beg.		Net	Survivor	Std.		
Time	Total	Fail	Lost	Function	Error	[95% Con	f. Int.]
30	21	1	0	0.9524	0.0465	0.7072	0.9932
50	20	1	1	0.9048	0.0641	0.6700	0.9753
51	18	1	0	0.8545	0.0778	0.6133	0.9507
66	17	0	1	0.8545	0.0778	0.6133	0.9507
82	16	1	0	0.8011	0.0894	0.5519	0.9206
92	15	1	0	0.7477	0.0981	0.4946	0.8868
120	14	0	14	0.7477	0.0981	0.4946	0.8868

Survivor function Stata Commands

Kaplan Meier Curve: example

Comparing Survivor Functions

• Null Hypothesis Survival in both groups is the same

Alternative Hypothesis

- Groups are different
- One group is consistently better
- One group is better at fixed time t
- Groups are the same until time t, one group is better after
- One group is worse up to time t, better afterwards.
- No test is equally powerful against all alternatives.

Comparing Survivor Functions

Can use

- Logrank test
 - Most powerful against consistent difference
- Modified Wilcoxon Test
 - Most powerful against early differences
- Regression
- Should decide which one to use beforehand.

Motion Sickness Revisited

- Less than 1/3 of subjects experienced an endpoint in first study.
- Further 28 subjects recruited
- Freqency and amplitude of vibration both doubled
- Intention was to induce vomiting sooner
- Were they successful ?

Comparing Survival Curves

Comparison of Survivor Functions

- sts test group gives logrank test for differences between groups
- sts test group, wilcoxon gives Wilcoxon test

Test	χ^2	р
Logrank	3.21	0.073
Wilcoxon	3.18	0.075

What to avoid

- Compare mean survival in each group.
 - Censoring makes this meaningless
- Overinterpret the tail of a survival curve.
 - There are generally few subjects in tails
- Compare proportion surviving in each group at a fixed time.
 - Depends on arbitrary choice of time
 - Lacks power compared to survival analysis
 - Fine for description, not for hypothesis testing

The hazard function Cox Regression Proportional Hazards Assumption

Modelling Survival

- Cannot often simply compare groups, must adjust for other prognostic factors.
- Predicting survival function S is tricky.
- Easier to predict the hazard function.
 - Hazard function *h*(*t*) is the risk of dying at time *t*, given that you've survived until then.
 - Can be calculated from the survival function.
 - Survival function can be calculated from the hazard function.
 - Hazard function easier to model

The hazard function Cox Regression Proportional Hazards Assumption

The Hazard Function

Hazard for all cause mortality for time since birth

The hazard function Cox Regression Proportional Hazards Assumption

Options for Modelling Hazard Function

- Parametric Model
- Semi-parametric models
 - Cox Regression (unrestricted baseline hazard)
 - Smoothed baseline hazard

The hazard function Cox Regression Proportional Hazards Assumption

Comparing Hazard Functions

The hazard function Cox Regression Proportional Hazards Assumption

Parametric Regression

- Assumes that the shape of the hazard function is known.
- Estimates parameters that define the hazard function.
- Need to test that the hazard function is the correct shape.
- Was only option at one time.
- Now that semi-parametric regression is available, not used unless there are strong *a priori* grounds to assume a particular distribution.
- More powerful than semi-parametric if distribution is known

The hazard function Cox Regression Proportional Hazards Assumption

Cox (Proportional Hazards) Regression

- Assumes shape of hazard function is unknown
- Given covariates **x**, assumes that the hazard at time *t*,

$$h(t,x)=h_0(t)\times\Psi(\mathbf{x})$$

where $\Psi = \exp(\beta_1 x_1 + \beta_2 x_2 + ...)$.

- Semi-parametric: h_0 is non-parametric, Ψ is parametric.
- t affects h_0 , not Ψ
- **x** affects Ψ , not h_0

The hazard function Cox Regression Proportional Hazards Assumption

Cox Regression: Interpretation

Suppose x_1 increases from x_0 to $x_0 + 1$,

$$\begin{array}{rl} h(t,x_0) &= h_0(t) \times e^{(\beta_1 x_0)} \\ h(t,x_0+1) &= h_0(t) \times e^{(\beta_1 (x_0+1))} \\ &= h_0(t) \times e^{(\beta_1 x_0)} \times e^{\beta_1} \\ &= h(t,x_0) \times e^{\beta_1} \\ \Rightarrow & \frac{h(t,x_0+1)}{h(t,x_0)} &= e^{\beta_1} \end{array}$$

i.e. the **Hazard Ratio** is e^{β_1}

The hazard function Cox Regression Proportional Hazards Assumptior

- Results may be presented as β or e^{β}
- $\beta > 0 \Rightarrow e^{\beta} > 1 \Rightarrow$ risk increased
- $\beta < 0 \Rightarrow e^{\beta} < 1 \Rightarrow risk decreased$
- Should include a confidence interval.

The hazard function Cox Regression Proportional Hazards Assumption

Cox Regression: Testing Assumptions

- We assume hazard ratio is constant over time: should test.
- Possible tests:
 - Plot observed and predicted survival curves: should be similar.
 - Plot log(- log (S(t))) against log(t) for each group: should give parallel lines.
 - Formal statistical test:
 - Overall
 - Each variable
- May need to fit interaction between time period and predictor: assume constant hazard ratio on short intervals, not over entire period.

The hazard function Cox Regression Proportional Hazards Assumption

Cox Regression in Stata

- stcox varlist performs regression using varlist as predictors
- Option nohr gives coefficients in place of hazard ratios

The hazard function Cox Regression Proportional Hazards Assumption

Testing Proportional Hazards

- stcoxkm produced plots of observed and predicted survival curves
- stphplot produces log(- log (S(t))) against log(t) (log-log plot)
- estat phtest gives overall test of proportional hazards
- estat phtest, detail gives test of proportional hazards for each variable.

The hazard function Cox Regression Proportional Hazards Assumption

Cox Regression: Example

- Breslow me	thod for ties	s				
-	49		Number	of ob	s =	49
-	19					
= 44	157					
			LR chi2	2(1)	-	3.32
-67.2964	158		Prob >	chi2	-	0.0685
az. Ratio	Std. Err.	z	₽> z	[95%	Conf.	Interval]
2.45073	1.277744	1.72	0.086	.8820	678	6.809087
	- Breslow me = = 44 = -67.2964 	- Breslow method for tie = 49 = 19 = 4457 = -67.296458 	- Breslow method for ties = 49 = 19 = 4457 = -67.296458 	- Breslow method for ties = 49 Number = 19 = 4457 LR chi2 = -67.296458 Prob > 	- Breslow method for ties = 49 Number of ob = 19 = 4457 = -67.296458 Prob > chi2 	- Breslow method for ties = 49 Number of obs = 19 = 4457 = -67.296458 Prob > chi2 = az. Ratio Std. Err. z P> z [95% Conf. 2.45073 1.277744 1.72 0.086 .8820678

The hazard function Cox Regression Proportional Hazards Assumption

Testing Assumptions: Kaplan-Meier Plot

The hazard function Cox Regression Proportional Hazards Assumption

Testing Assumptions: log-log plot

The hazard function Cox Regression Proportional Hazards Assumption

Testing Assumptions: Formal Test

. estat phtest

Test of pi	roport	ional haz	ards assum	ption
	ļ	chi2	df	Prob>chi2
global tes	st	0.03	1	0.8585

The hazard function Cox Regression Proportional Hazards Assumption

Allowing for Non-Proportional Hazards

- Effect of covariate varies with time
- Need to produce different estimates of effects at different times
- Use stsplit to split one record per person into several
- Fit covariate of interest in each time period separately

The hazard function Cox Regression Proportional Hazards Assumption

Non-Proportional Hazards Example

The hazard function Cox Regression Proportional Hazards Assumption

Non-Proportional Hazards Example

. stcox i.treatment2 ______t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval] _____treatment2 | .7462828 .3001652 -0.73 0.467 .3392646 1.641604

. estat phtest

Test of proportional hazards assumption

 Time:
 Chi2
 df
 Prob>chi2

 global test |
 10.28
 1
 0.0013

The hazard function Cox Regression Proportional Hazards Assumption

Non-Proportional Hazards Example: Fitting time-varying effect

stsplit period, at(10)
gent1 - treatment2+(period -- 0)
gent2 - treatment2+(period -- 10)
. stcoxt1 t2

_t	Haz	z. Rat	io Std	. Err	. Z	P> z	[95% Co	onf. Interval
	+							
t1	1	.8369	38 .87	37408	1.2	8 0.20	1.723135	4.66626
t2	I -	10206	12 .08	53529	-2.7	3 0.00	6 .019815	.525670

. estat phtest

Test of proportional hazards assumption

Time: Time

	1		chi2	df	Prob>chi2
	+	 	 		
global	test		1.34	2	0.5114

The hazard function Cox Regression Proportional Hazards Assumption

Non-Proportional Hazards Example

The hazard function Cox Regression Proportional Hazards Assumption

Time varying covariates

- Normally, survival predicted by baseline covariates
- Covariates may change over time
- Can have several records for each subject, with different covariates
- Each record ends with a censoring event, unless the event of interest occurred at that time
- Need to have unique identifier for each individual so that stata knows which observations belong together
- \bullet Option ${\tt tvc}$ () is for variables that increase linearly with time

