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Abstract
In this paper we compare three different orthogonal systems in L2(R) which can be used

in the construction of a spectral method for solving the semi-classically scaled time depen-
dent Schrödinger equation on the real line, specifically, stretched Fourier functions, Hermite
functions and Malmquist–Takenaka functions. All three have banded skew-Hermitian differ-
entiation matrices, which greatly simplifies their implementation in a spectral method, while
ensuring that the numerical solution is unitary – this is essential in order to respect the Born
interpretation in quantum mechanics and, as a byproduct, ensures numerical stability with re-
spect to the L2(R) norm. We derive asymptotic approximations of the coefficients for a wave
packet in each of these bases, which are extremely accurate in the high frequency regime.
We show that the Malmquist–Takenaka basis is superior, in a practical sense, to the more
commonly used Hermite functions and stretched Fourier expansions for approximating wave
packets.

Keywords and phrases Orthogonal systems, orthogonal rational functions, Fast Fourier Transform,
Malmquist-Takenaka system, steepest descent, asymptotic approximation, wave packet
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1 Introduction
Highly oscillatory wave packets play an important role in quantum mechanics. A case in point is the semi-
classically scaled time dependent Schrödinger equation (TDSE), which describes the quantum dynamics
of the nuclei in a molecule [17]. It has the form

iε∂ψ(x, t)
∂t

=
[
−ε

2

2 ∆ + V (x)
]
ψ(x, t), (1.1)

where ψ(x, t) ∈ C, x ∈ Rd and t ∈ R. The Laplacian is ∆ =
∑d

k=1 ∂
2/∂x2

k, while V is a smooth potential,
V (x) : Rd → R.

This equation is important in a wide range of fields such as physical chemistry. However, solving TDSE
comes with a number of computational challenges. A major reason is the small parameter ε� 1, where ε2

describes the mass ratio of an electron and the nuclei. Consider equation (1.1) without V (x) (the so-called
free Schrödinger equation), then it can be shown that the solution to this problem generates oscillations of
frequency O

(
ε−1) in space and time [16]. Moreover, the current techniques used to solve equation (1.1)

are mainly defined on a finite interval. In that instance Fourier spectral and pseudo-spectral methods work
well in practice [6]. However, these approaches require the imposition of periodic boundary conditions,
which may lead to non-physical behaviour over longer time frames, because the solution inevitably reaches
the non-physical periodic boundary of the domain. Modern applications like quantum control also require
∗Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of

Cambridge, Wilberforce Rd, Cambridge CB4 1LE, United Kingdom, email: a.iserles@damtp.cam.ac.uk
†Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of

Cambridge, Wilberforce Rd, Cambridge CB4 1LE, United Kingdom, email: k.luong@damtp.cam.ac.uk
‡Department of Mathematics, University of Manchester, Alan Turing Building, Manchester M13 9PL, United

Kingdom, email: marcus.webb@manchester.ac.uk

1

 a.iserles@damtp.cam.ac.uk
 k.luong@damtp.cam.ac.uk
marcus.webb@manchester.ac.uk


much longer time frames. One solution to this problem, is to solve TDSE on the whole real line using
spectral methods and this underlies the setting of this paper.

In designing a spectral method, we first need to pick basis functions that approximate the solution to
equation (1.1). In this paper, we restrict our focus to systems that are orthonormal in L2(R) and have
banded skew-Hermitian differentiation matrices. When the basis has a skew-Hermitian differentiation
matrix, the solution operator is naturally unitary, so the Born interpretation of quantum mechanics is
respected. As a result, these methods are also stable by design [9, 11].

Heller in 1976 proposed that the solutions to the semi-classical TDSE can be approximated by Gaussian
type functions i.e. wave packets [10]. Hagedorn proved error bounds for time dependent wave packets
in 1980 [8]. Lubich in 2008, proved that for travelling wave packets with fixed width ∼ ε1/2 that a
representation of the solution by wave packets has an L2 error of O

(
ε1/2) for time intervals of size t ∼ 1

[18]. Thus, wave packets are a good first approximation to the solution to semi-classical TDSE. In fact, for
a quadratic potential with Gaussian initial data, they yield an exact solution to equation (1.1) [18]. Thus,
a major yardstick for the suitability of basis functions for equation (1.1) is how well they approximate
wave packets.

A univariate wave packet function has the form f(z) = e−α(z−x0)2
cos(ωz), where α > 0, x0 ∈ R and

ω ∈ R. The width of the wave packet is controlled by α, x0 is the position where the wave packet is
centred and ω is the frequency of oscillations. For simplicity much of our analysis is restricted to x0, ω > 0
and this should be assumed unless stated otherwise. The expansion coefficients of a wave packet function,
f(x), in an orthonormal set of L2(R) basis functions, {ϕn}n∈I where I is a countable index set such as Z,
is given by the following inner product,

an(ω) =
∫ ∞
−∞

e−α(x−x0)2
cos(ωx)ϕn(x)dx, (1.2)

= 1
2

∫ ∞
−∞

(
eiωx + e−iωx) e−α(x−x0)2

ϕn(x)dx = bn(ω) + bn(−ω),

where

bn(ω) := 1
2

∫ ∞
−∞

e−α(x−x0)2+iωxϕn(x)dx.

Much of our analysis concerns the asymptotics of bn(ω) in the large-ω regime, from which results about
an(ω) follow. Note we use the notation f(x) ∼ g(x) for x → ∞ to denote that functions f(x) and g(x)
are asymptotically equivalent as x→∞. This can be rewritten as f(x) = g(x)[1 + o(1)] [4].

The three systems under consideration in this paper are
• stretched Fourier functions, which are simply the Fourier functions scaled to an interval [−λ, λ],

ϕn(x) :=
{

(2λ)−1/2eiπnx/λ if x ∈ [−λ, λ],
0 for x ∈ R \ [−λ, λ].

• Hermite functions [22, Table 18.3.1]

ϕn(x) := 1
(2nn!π1/2)1/2 Hn(x)e−x

2/2, n ∈ Z+.

• Malmquist–Takenaka (MT) functions

ϕn(x) := in
√

2
π

(1 + 2ix)n

(1− 2ix)n+1 , n ∈ Z.

In this paper, we derive an asymptotic estimate of the coefficients in each basis, which will allow us to
compare and evaluate how well they approximate wave packets on the whole real line. For simplicity and
without loss of generality we restrict our analysis to α, x0, ω, n > 0.

For stretched Fourier functions, the asymptotic estimate of coefficients is described in Theorem 2.1.
In its more streamlined version, for any given ε > 0 it is possible to choose the stretching constant λ such
that

|an,λ(ω)| ≤
(

π

2αλ

)1/2
[

exp
(
− (π|n| − λω)2

4αλ2

)
+ ε

]
.

2



A specific choice that satisfies this bound is

λ = |x0|+

√
log(ε−1)

α
. (1.3)

From this estimate we expect the logarithm of the magnitude of the expansion coefficients to resemble
a hump, very similar to a sombrero, and we can observe these characteristics in Fig. 1.1. The sombrero-like
hump tells us that the coefficients decay spectrally until the small constant ε eventually dominates the
estimate. This drop off in decay rate is real, and for α = 1, x0 = 0 and ω = 50 in Fig. 1.1 occurs at about
ε = 10−20, in line with equation (1.3). We have a pessimistic certainty that for all n satisfying,

(π|n| − λω)2 ≤ 4αλ2 log
(
ε−1 (2 (2αλ/π)1/2 − 1

)−1
)
,

we have |an,λ(ω)| ≥ 2ε. The value of the stretching constant λ is discussed further in section 2. One
clear advantage of using the stretched Fourier basis is that we can take advantage of the structure seen in
Fig. 1.1, where we can confine our calculation to approximating N coefficients, the complement of which
is guaranteed to satisfy |an(ω)| ≤ ε, by a single Fast Fourier Transform (FFT) in O(N log2 N) operations.

Figure 1.1: Stretched Fourier functions: Wave packet coefficients in a stretched Fourier basis. The
solid line represents the exact coefficients and the (light) dashed line is a plot of the spectrally
decaying part of our estimate in (2.2) for n > 0. We can also see the sombrero-like hump that
is characteristic to stretched Fourier functions, which shows that our coefficients decay spectrally.
The slow decay rate of coefficients (the brim of the sombrero) was purposefully chosen to start
after ε = 10−20 using (1.3).

In summary, stretched Fourier functions hold a great deal of promise; we have proved that the coeffi-
cients exhibit spectral decay and can be approximated using FFT. However, in a more practical setting,
our method of determining the optimal cut-off of coefficients requires information about our wave packet
which is typically unavailable. Moreover, a typical solution resembles an unknown linear combination of
wave packets, whereas the nice performance e.g. in Fig. 1.1 is optimized for a single wave packet. This is
discussed in more detail in section 2.

The next contender is the basis of Hermite functions [22, Table 18.3.1]. Deferring the full asymptotic
estimate to Theorem 3.1, a simplified version for n > 0 and α > 1/2 is

an(ω) ∼
Cosc

[
1 +O

(
n−1)]√

ω(2α+ 1)

∣∣∣∣∣1 +
√

1 + 2 n
ω2 (4α2 − 1)√

2 n
ω2 (2α+ 1)

∣∣∣∣∣
n

× exp

[
− ω2

2(2α+ 1) + n

1 +
√

1 + 2 n
ω2 (4α2 − 1)

+ αx2
0

4α2 − 1

(
1− 2α√

1 + 2 n
ω2 (4α2 − 1)

)]
,

where Cosc is a bounded oscillatory component. It is difficult to deduce the ‘shape’ of these coefficients
from this expression. However, to help convince the reader, let us set cn,ω = n/ω2 to be constant – we see
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in section 3.2.3 that this is a reasonable assumption and note that this relationship keeps n and ω large.
Then we have
• a factor of 1/

√
ω which gently drives the size of an(ω) down.

• A factor, greater than one, to the power n drives the size up geometrically.
• The argument of the exponential is essentially dominated by the competing ω and n term. If we

replace n = cn,ωω
2 and note that for α > 1/2 this term is negative, we obtain rapid decay to zero.

Thus, overall we get geometric decay. The above expression matches the envelope of the an’s exceedingly
well. In Fig. 1.2, we can see that for large ω and small α and x0 we can clearly observe spectral decay.

Figure 1.2: Hermite functions: The left figure shows the exact coefficients in the lighter colour
and the asymptotic estimate with the bounded oscillatory term removed in the black dashed line.
To further make the point that our asymptotic estimate captures the characteristics of the exact
coefficients, the plot on the right is zoomed on the coefficients near the peak.

To understand how the number of coefficients grows with respect to ω, consider the following crude
inequality, the number of coefficients which are greater than ε in absolute value are all the n’s that such
that

|n| &

[
log |ε|+ log

∣∣∣∣√2α+ 1
Coscc1/4n,ω

∣∣∣∣−
∣∣∣∣∣ αx2

0
4α2 − 1

(
1− 2α√

1 + 2cn,ω (4α2 − 1)

)∣∣∣∣∣
]
,

where cn,ω is a constant, and α and x0 are fixed. Note that number of coefficients increases linearly with n
but quadratically with ω (as n = cn,ωω

2). Fig. 1.3 displays the number of coefficients required for varying
ε and fixed ω.

Although it is natural to think of Hermite functions in a quantum mechanical setting, since they are the
eigenfunctions of the quantum harmonic oscillator, we show in Section 3, that the convergence properties
leave much to be desired. The decay of Hermite function coefficients for highly oscillatory wave packets
with small α and x0 is fast indeed, but as α and x0 increase, this soon ceases to be true in practical terms.

Out of our three bases, Malmquist–Takenaka functions are the strongest contender when approxi-
mating wave packets on the real line for two reasons: firstly, the asymptotic estimate in Theorem 4.2
demonstrates spectral decay and secondly, the coefficients can be approximated using FFT. To give a
brief insight into our findings, the asymptotic estimate of coefficients is

|an(ω)| ≤
[
1 +O

(
ω−1)]

√
2ω (|n/ω| − 1/4)1/4 exp

(
−α

(√∣∣∣n
ω

∣∣∣− 1
4 − x0

)2)
, (1.4)

for ω ≥ 0. This holds for large |ω| regime and uniformly for n satisfying 1/4 ≤ |n/ω| ≤ c for any given
constant c (this is made more precise in Section 4). We can immediately deduce exponential decay with
respect to n within this regime relative to ω. This is be confirmed experimentally in Fig. 1.4.

This bound highlights how the presence of high oscillations can be an advantage. In the case of
no oscillations, ω = 0, Weideman found in [26] that the coefficients decay sub-exponentially. However,
counterintuitively, as ω > 0 grows, the estimate in (1.4) exhibits exponential convergence for n ≤ c · ω
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Figure 1.3: Hermite functions: This is the same plot of the decay rate of coefficients as Fig. 1.2
but with a larger range. The plot shows that for varying values of ε = 10−20, 10−30, 10−40 the
number of coefficients which are greater than ε are 3691, 4584, and 5316 respectively.

for some c. In other words, the presence of oscillations means that we see exponential convergence within
a domain and the range of the domain increases for larger values of ω. In the context of practical
computation, for very highly oscillatory wave packets the coefficients will essentially exhibit exponential
decay within the practical range of accuracy.

Our asymptotic estimate shows that we should expect our coefficients to decay spectrally. From (1.4),
we can readily deduce the location of the peak which is given by

n = ω
(
x2

0 + 1
4

)
, for ω ≥ 0.

Interestingly, the location of the peak does not depend on how much we stretch the wave packet. The
number of coefficients n > 0 that are greater than ε in absolute value is asymptotically equal to

ω

[
1
4 +

(
x0 +

√
− 1
α

log ε
c

)2]
.

That is the number of coefficients required to resolve a wave packet in MT basis grows linearly with
ω, which beats Hermite functions where the number of coefficients grow quadratically in ω!

Overall, MT functions seem to provide the most practical approach in approximating wave pack-
ets. The coefficients can be approximated rapidly using the FFT and we have proved that they exhibit
asymptotic exponential decay. A more in-depth discussion about these bases can be found in section 4.

Detailed derivation of the above asymptotic estimates is discussed in the sequel.

2 Stretched Fourier basis
Stretched Fourier functions are the familiar Fourier functions scaled to the interval [−λ, λ], where λ > 0
can be chosen based on the function f to be approximated and a desired error tolerance ε. Fourier
functions are the natural basis in the presence of periodic boundary conditions in a compact interval, but
in our setting we are truncating a function which is defined on the whole real line to the interval [−λ, λ],
and must contend with an error introduced by the Gibbs effect at the endpoints. The basis functions, for
a subspace of L2(R), have the form

ϕn(x) =
{

(2λ)−1/2eiπnx/λ if x ∈ [−λ, λ],
0 for x ∈ R \ [−λ, λ].

(2.1)
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Figure 1.4: MT functions: Equation (1.4) suggests that for x0 = 0 (left plot) we expect the rate
of decay of coefficients to resemble a straight line and this agrees with the exact coefficients. Note
that to aid the reader, we have removed the oscillations in our estimate in the left plot. As we
increase x0 (right plot), we observe that the coefficients form a hump. Our estimate is represented
as a dark dashed line and the exact coefficients are denoted by a light solid line.

For a wave packet, f(x) = e−α(x−x0)2
cos(ωx), where α > 0, x0, ω ∈ R, an integral expression for the

expansion coefficient is found by substituting (2.1) into (1.2) to get

an,λ(ω) = 1
(2λ)1/2

∫ λ

−λ
e−α(x−x0)2

cos(ωx) exp
(
−πinx

λ

)
dx. (2.2)

It is clear that a set of N of these coefficients can be approximated by a single FFT in O(N log2 N)
operations.

Dietert and Iserles in their unpublished report [5] showed that stretched Fourier expansions for func-
tions of the form f(x) = g(x) exp(−αx2) (where g(x) is an entire function which grows at most exponen-
tially) converge at spectral speed down to a specified error tolerance, provided that care is taken when
choosing λ. An appealing result shown therein is the ‘sombrero phenomenon’, whereby the logarithm of
the absolute value of the expansion coefficients is shaped like a sombrero. For the special case of the wave
packets considered in this paper, we apply their method to arrive at the result in Theorem 2.1, and give
an example to demonstrate the sombrero effect in Figure 2.1.

Theorem 2.1 (Coefficients for Stretched Fourier). Suppose that f(x) = e−α(x−x0)2
cos(ωx), where α > 0,

x0, ω ∈ R. The coefficients of f in the stretched Fourier basis (as in equation (2.1)) with stretching
parameter λ ≥ |x0| satisfy

|an,λ(ω)| ≤
(

π

2αλ

)1/2
[

exp
(
− (π|n| − λω)2

4αλ2

)
+ exp

(
−α(λ− |x0|)2)]. (2.3)

for all n ∈ Z.

Before proving the theorem, let us discuss this sombrero phenomenon in more detail. We do not expect
the reader to be familiar with millinery terminology, so allow us to explain that the main part of a hat in
which the head sits is called the crown and the projecting edge is called the brim. Drawing the analogy
with a sombrero seen in Figure 2.1, the crown of the sombrero exhibits super-exponential decay from the
central peak and the brim of the sombrero is where the decay rate is very slow – specifically, O(n−1),
as predicted by standard Fourier theory for a function of bounded variation. Note however, that if λ is
sufficiently large, as it turns out to be the case in Fig. 2.1, it is also a region where the magnitude of the
coefficients is smaller than the accuracy we need for practical computation. Thus we can truncate the
series for an approximation scheme and attain effective spectral convergence down to our desired accuracy.

Proof of Theorem 2.1. Essentially, we evaluate the integrals in Lemma 3 and 4 from [5] exactly. Consider
the modified coefficient given by an integral over the whole real line, which is much more amenable to
direct calculation:

ǎn,λ(ω) = 1
(2λ)1/2

∫ ∞
−∞

e−α(x−x0)2
cos(ωx) exp

(
−πinx

λ

)
dx
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Figure 2.1: Plot of stretched Fourier coefficients an,λ(ω) in (2.2) of a wave packet. Here λ = 9.5971
originates in equation (1.3) with ε = 10−40.

=
(

π

2αλ

)1/2 1
2

[
eix0(πn−λω)/λ exp

(
− (πn− λω)2

4αλ2

)
+ eix0(πn+λω)/λ exp

(
− (πn+ λω)2

4αλ2

)]
.

From this we have the bound,

|ǎn,λ(ω)| ≤ 1
2

(
π

2αλ

)1/2
[

exp
(
− (πn− λω)2

4αλ2

)
+ exp

(
− (πn+ λω)2

4αλ2

)]
≤ 1

2

(
π

2αλ

)1/2
exp
(
− (π|n| − λω)2

4αλ2

)[
1 + exp

(
−π|n|ω

αλ

)]
≤
(

π

2αλ

)1/2
exp
(
− (π|n| − λω)2

4αλ2

)
.

A bound for the original coefficient can then be found as follows.

|an,λ(ω)| ≤ |ǎn,λ(ω)|+ 1
(2λ)1/2

[∫ ∞
λ

e−α(x−x0)2
dz +

∫ −λ
−∞

e−α(x−x0)2
dx
]

= |ǎn,λ(ω)|+ 1
(2αλ)1/2

[∫ ∞
α1/2(λ−x0)

e−x
2
dx+

∫ ∞
α1/2(λ+x0)

e−x
2
dx
]

≤ |ǎn,λ(ω)|+
( 2
αλ

)1/2
∫ ∞
α1/2(λ−|x0|)

e−x
2
dx

≤ |ǎn,λ(ω)|+
(

π

2αλ

)1/2
e−α(λ−|x0|)2

.

In the last step we have used the known inequality,∫ ∞
t

e−x
2
dx ≤

√
π

2 e−t
2
,

which holds for t ≥ 0. Substituting the bound for |ǎn,λ(ω)| obtained above yields the result of the
theorem.

2.1 The choice of stretching parameter λ
It was found in [5] that the position of the sombrero brim depends on our choice of λ. In order to choose
an appropriate λ, we need to understand the characteristics of our bound in (2.3). It requires us to choose
λ ≥ |x0|, if we instead choose λ less than |x0| then we obtain a poor approximation to the original wave
packet. This can be seen in Fig. 2.2, where the wave packet has much of its ‘mass’ outside the interval
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of approximation. The bound also suggests that we are limited by the magnitude of exp
(
−α(λ− |x0|)2).

If this quantity is not smaller than some desired threshold ε then the coefficients are not guaranteed to
decay spectrally below O(ε), but instead we expect them to decay like O

(
n−1), until they reach such a

threshold. This can be seen in Figure 2.2, for λ = 1, the exp
(
−α(λ− |x0|)2) term for α = 1 and x0 = 2

becomes exp(−1) ≈ 0.368, resulting in slow decay. Whereas, for λ = 9, exp(−49) ≈ 5.24 × 10−22 so we
see spectral decay past 10−20.

There are many effective ways to define λ; for a given ε > 0, a simple choice is,

λoptimal = |x0|+

√
log(ε−1)

α
, (2.4)

in order to guarantee

|an,λ(ω)| ≤
(

π

2αλ

)1/2
[

exp
(
− (π|n| − λω)2

4αλ2

)
+ ε

]
. (2.5)

Figure 2.2: Stretched Fourier functions: To understand the characteristics of our bound in (2.3),
which requires us to choose λ ≥ |x0|, this plot shows the effect of choosing λ less than and greater
than |x0|. The figure shows the plot of the logarithm of the absolute value of coefficients. For
λ = 1, green dashed line, we see slow rate of decay as the majority of the ‘mass’ of the wave packet
is outside the interval [-1,1]. For λ = 9, we contain the majority of the wave packet in the interval
[-9,9] and we see that the coefficients decay spectrally down beyond 10−20.

Fig. 2.3 demonstrates the dependence of the wave packet coefficients on the choice of λ. If we choose λ
to be smaller than λoptimal we would need to choose n = O(ε−1) = O(1020) in order to reach our desired
accuracy, which is unrealistically large. For λ larger than our optimal value the brim of the sombrero lies
lower but the thickness of the crown is greater and we need to choose large (at least, only linearly) n to
reach 10−20 accuracy. Thus even though we get spectral decay with stretched Fourier bases, this approach
is extremely sensitive to how well we can define the optimal λ. This effect can also be seen theoretically
in Theorem 2.1.

In a more practical setting, a linear combination of wave packets is a more realistic approximate
solution to the semi-classical TDSE and due to our current method of determining λoptimal we need more
knowledge about the exact solution before we can approximate it. Our analysis indicates that it is safer
to overestimate λ than to underestimate it, providing a clue to a good strategy for a linear combination of
wave packets. The current practical limitations of stretched Fourier basis notwithstanding, the functions
still hold significant potential due to their simplicity, fast approximation of coefficients using FFT and
spectral rate of decay.

2.2 Number of coefficients required for a given tolerance
Given a tolerance ε > 0, once we choose λ as in equation (2.4) we can guarantee that the coefficients
satisfy (2.5). To gain a rough idea on the number of coefficients required for a given ε, we do the following
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Figure 2.3: Stretched Fourier functions: For |an(ω)| ≥ 10−20, λoptimal is roughly 6.7861. The plot
shows the effect of under- and overshooting. If we use a smaller λ, no matter how many coefficients
we use, we would not arrive at our desired accuracy in reasonable time. Once λ > λoptimal, though,
we reach ultimately excessive accuracy – but require more coefficients to reach the 10−20 tolerance.

overestimation by considering |an,λ(ω)| ≥ 2ε and finding all the n’s that satisfy this bound. That is all n
satisfying

(π|n| − λω)2 ≤ 4αλ2 [log
(
ε−1)− log

(
(2(2αλ/π)1/2 − 1)

)]
.

Neglecting the complicated term inside the logarithm (i.e. bounding this inequality from above), we
have

|n| ≤
ω + 2

√
α
√

log ε−1

π
λ

and, substituting λ = λoptimal from (2.4), we conclude with

|n| ≤
ω + 2

√
α
√

log ε−1

π

(
|x0|+

√
log ε−1

α

)
,

which emphasises the role different parameters play in the bound.
The important factor to note here is the linear dependence on both ω and |x0|, which is extremely

favourable compared to the other two bases considered in this paper. The downside, though, is that we
require prior knowledge of x0, α and ω to choose λ and that the approximation of a linear combination of
wave packets is likely to result in less favourable behaviour.

3 Hermite functions
It is natural to think of Hermite functions in the context of quantum mechanics since they are solutions of
the quantum harmonic oscillator. Hermite functions have a skew-symmetric and tridiagonal differentiation
matrix, which implies that their associated spectral methods are stable and preserve unitarity [9]. However,
computation of coefficients in an expansion in Hermite functions is associated with a number of practical
challenges. An obvious method of computing expansion coefficients in Hermite functions with quadrature
is by explicit integration of each coefficient at the overall cost of O(N2) operations. Nonetheless they
are still a contender when approximating wave packets and, less intuitively, it is possible to compute the
expansion coefficients in O(N(logN)2) operations using the fast multipole algorithm [2].

We consider normalised Hermite functions

ϕn(x) := 1
(2nn!π1/2)1/2 Hn(x)e−x

2/2, n ∈ Z+. (3.1)
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Figure 2.4: Stretched Fourier functions: Plot of (2.5) where the optimal λ is used, for fixed
accuracy of ε = 10−20, and varying α and and x0. This demonstrates experimentally that the
bound in Theorem 2.1 is representative of the behaviour of the coefficients in the crown of the
sombrero, although the estimate of the beginning of the brim is universally pessimistic. Changes
in the α parameter have minimal effect on the coefficients, whereas changes in x0 have a significant
effect.

The corresponding expansion integral is

an(ω) = 1
(2nn!π1/2)1/2

∫ ∞
−∞

e−α(x−x0)2
cos(ωx)Hn(x)e−x

2/2dx, n ∈ Z+,

= 1
(2nn!π1/2)1/2 Re

[∫ ∞
−∞

e−α(x−x0)2−x2/2+iωxHn(x)dx
]
. (3.2)

where the Hns are Hermite polynomials,∫ ∞
−∞

Hm(x)Hn(x)e−x
2
dx = 0 for m 6= n, and

∫ ∞
−∞

H2
n(x)e−x

2
dx = π1/22nn!.

Theorem 3.1 (Coefficients for Hermite functions). Suppose that f(z) = e−α(z−x0)2
cos(ωz), where α > 0,

x0 and ω are real. The asymptotic behaviour of the coefficients, an, with Hermite basis functions in equation
(3.1) is given by

For α > 1
2 : an ∼

1
2
√
ω(2α+ 1)

[
4α2 − 1

1 + 2 n
ω2 (4α2 − 1)

]1/4∣∣∣∣∣1 +
√

1 + 2 n
ω2 (4α2 − 1)√

2 n
ω2 (4α2 − 1)

∣∣∣∣∣
1/2

×

∣∣∣∣∣1 +
√

1 + 2 n
ω2 (4α2 − 1)√

2 n
ω2 (2α+ 1)

∣∣∣∣∣
n

exp

(
− ω2

2(2α+ 1) + n

1 +
√

1 + 2 n
ω2 (4α2 − 1)

+ αx2
0

4α2 − 1

[
1− 2α√

1 + 2 n
ω2 (4α2 − 1)

]
+O

(
ω−2))
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× Re

{[
1 + iαx0

ω
[
1 + 2 n

ω2 (4α2 − 1)
] +O(ω−2)

]

× exp

(
inπ
2 −

2iαx0ω
(
−2α+

√
1 + 2 n

ω2 (4α2 − 1)
)

4α2 − 1

+
ix0α

[
−3 + 6 n

ω2 + 8 n
ω2α

2 (x2
0 − 3

)]
3ω
[
1 + 2 n

ω2 (4α2 − 1)
]3/2

)}[
1 +O

(
n−1)] ,

For α = 1
2 :

x0 6= 0 : an =

√
π1/2

2nn! (x
2
0 + ω2)n/2e−(x2

0+ω2)/4 cos
(
ωx0

2 + n tan−1
(
ω

x0

))
,

x0 = 0 : an =

√
π1/2

2nn!ω
ne−ω

2/4 cos
(
nπ

2

)
,

For α < 1
2 :

n 6= ω2

2 (1− 4α2) : an ∼ Re

{
− 1√

ω(1 + 2α)

∣∣∣2α− 1
2α+ 1

∣∣∣n/2( |1− 4α2|
2 n
ω2 |1− 4α2| − 1

)1/4

×

(
1− iαx0

ω
(
2 n
ω2 |1− 4α2| − 1

) +O
(
ω−2))(1 +

√
1− 2 n

ω2 |1− 4α2|√
2 n
ω2 |1− 4α2|

)n+1/2

× exp
{

α

|1− 4α2|

(
ω2 − x2

0 + 2x0ω

√
2 n
ω2 |1− 4α2| − 1

)
+
αx0

(
8α2x2

0
n
ω2 + 6 n

ω2 |1− 4α2| − 3
)

3ω
(
2 n
ω2 |1− 4α2| − 1

)3/2
+i
[(
n+ 1

2

)
π

2 −
4α2x0ω

|1− 4α2| + ω2

2|1− 4α2|

√
2 n
ω2 |1− 4α2| − 1

+ 2α2x2
0

|1− 4α2|
√

2 n
ω2 |1− 4α2| − 1

]}}[
1 +O

(
n−1)] .

The asymptotic estimate for α > 1/2 holds uniformly for n > cn,ωω
2 for any given constant cn,ω. For

α < 1/2, this estimate holds uniformly for n < cn,ωω
2, cn,ω is some constant, and n outside of any given

neighbourhood of ω2/(2(1− 4α2)). These bounds hold uniformly as ω →∞.

The behaviour of the coefficients is hard to deduce by a direct examination of this expansion. It is
helpful to break down the result into three regimes. Note that in a more practical setting we would expect
α > 1/2, so the following analysis considers the asymptotics for this case:

1. When ω is large,

an(ω) ∼ Cosc√
ω

exp
(
− ω2

2(2α+ 1)

)
,

where Cosc is a bounded oscillatory term. The asymptotic expression only depends on ω and we
expect exponential decay.

2. When n is large,

an(ω) ∼ C

∣∣∣∣∣1 +
√

1 + 2 n
ω2 (4α2 − 1)√

2 n
ω2 (2α+ 1)

∣∣∣∣∣
n

exp

(
n

1 +
√

1 + 2 n
ω2 (4α2 − 1)

)
.

The expression is still fairly opaque but in Fig. 3.1 we can see that the envelope of the logarithm of
the absolute value of coefficients is approaching a straight line.
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Figure 3.1: Hermite functions: Increasing α makes our coefficients decay much slower. Just as
in Fig. 1.2 we can see that the our asymptotic estimate approximates the exact coefficients very
well. The figure shows how well the asymptotic estimate envelopes the exact coefficients.

3. When both n and ω are large subject to a power law, n = ωλ for some λ > 0, then

an(ω) ∼ C√
n1/λ(2α+ 1)

∣∣∣∣∣1 +
√

1 + 2n1−2/λ (4α2 − 1)
√

2n1−2/λ(2α+ 1)

∣∣∣∣∣
n

× exp

(
− n2/λ

2(2α+ 1) + n

1 +
√

1 + 2n1−2/λ (4α2 − 1)

)
,

Figure 3.2: Hermite functions: For a large shift in x0, the estimate does not do too well for small
n. As n increases the estimate gets better.

Comparing Fig. 3.1 to Fig. 1.2 we observe that increasing α renders the rate of decay of coefficients
worse. The same happens when we increase x0 in Fig. 3.2.

3.1 Fourier-type integral of Hermite functions
The main idea behind the proof is to consider a Fourier type integral of Hermite functions,

12



Lemma 3.2. It is true that

Hn,c,p = 1√
2πc

∫ ∞
−∞

e−x
2/(2c)Hn(x)eipxdx = (1− 2c)n/2 e−cp

2/2Hn

(
cp√

2c− 1

)
(3.3)

for Re c > 0, c 6= 1
2 and

Hn, 1
2 ,p

= e−p
2/4(ip)n. (3.4)

The branch choice in eqn (3.3) for
√

2c− 1, 0 < c < 1
2 , is unimportant because only the even powers of√

2c− 1 occur on the right-hand side due to symmetry of the Hermite polynomials.

Proof. Consider Hermite functions in a Cauchy integral form,

Hn(z) = n!
2πi

∫
γ

e2wz−w2 dw
wn+1 ,

where the contour γ encircles the origin. Substituting this into (3.3) and changing the order of integration,

Hn,c,p = 1√
2πc

n!
2πi

∫
γ

∫ ∞
−∞

e−x
2/(2c)+ipx+2wxdxe−w

2 dw
wn+1

= n!
2πi

∫
γ

e−(cp2)/2+2icpw−(1−2c)w2 dw
wn+1

= e−(cp2)/2 n!
2πi

∫
γ

e2(cp/√2c−1)ξ−ξ2 dξ
ξn+1 (1− 2c)n/2

(
ξ = (1− 2c)1/2w

)
= (1− 2c)n/2 e−(cp2)/2Hn

(
cp√

2c− 1

)
.

For c = 1/2, the proof of (3.4) is identical (and easier!) to the steps above: we deduce that

Hn, 1
2 ,p

= e−p
2/4(ip)n.

We proceed by comparing (3.3) with (3.2) to deduce that

c = 1
1 + 2α, p = ω − 2iαx0,

and
an(ω) = 1√

2nn!π1/2
e−αx

2
0

( 2π
1 + 2α

)1/2
ReHn,(1+2α)−1,ω−2iαx0 . (3.5)

After some algebraic manipulation (see A.1) and setting

X = 2αx0

|4α2 − 1|1/2
, Y = ω

|4α2 − 1|1/2
,

where for simplicity we restrict our analysis to α, x0, ω > 0 so that X and Y are positive real numbers, we
note that our expressions are different for different values of α,

α >
1
2 : an = π1/4

(2nn!)1/2

( 2
1 + 2α

)1/2 ∣∣∣1− 2α
1 + 2α

∣∣∣n/2exp
(
|1− 2α|

4α (X2 + 2αY 2)
)

× Re
[
e−i|2α−1|XY Hn(X + iY )

]
, (3.6)

α = 1
2 : an = π1/4

(2nn!)1/2 (x2
0 + ω2)n/2e−(x2

0+ω2)/4 cos
(
ωx0

2 + n tan−1
(
ω

x0

))
, (3.7)

α <
1
2 : an = π1/4

(2nn!)1/2

( 2
1 + 2α

)1/2 ∣∣∣1− 2α
1 + 2α

∣∣∣n/2 exp
(
−|1− 2α|

4α (X2 + 2αY 2)
)

× Re
[
ei|2α−1|XY+inπHn(Y − iX)

]
. (3.8)

Thereafter we focus on the asymptotics for α 6= 1
2 , the remaining case can be also obtained by a limiting

process. Note that (3.7) are the exact coefficients for α = 1/2 and the plot of (3.7) can be seen in Fig. 3.3.
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Figure 3.3: Hermite functions: Plot of (3.7) for different x0. We see that the decay rate of the
exact hermite coefficients for α = 1/2 resembles a hump.

3.2 An asymptotic estimate
3.2.1 The method of steepest descent
The method of steepest descent (MSD), also known as the saddle point approach, is a key tool used in our
Hermite and Malmquist–Takenaka estimates. We give a brief overview here; for a more in-depth review
we refer to [4, 7, 21, 29]. It is an approximation method that can be applied to integrals of the form

I(t) =
∫ b

a

G(z)e−tF (z)dz,

where t is a large parameter. Let us assume that F (z) is a complex-valued meromorphic function and
G(z) is an entire function.

The main idea is to deform the path of integration over a complex contour Γ to pass through (or near)
certain saddle points of F (z), that is, points z∗ such that F ′(z∗) = 0. As well as passing through a subset of
saddle points, the path of integration is also designed so that ImF (z) is constant, i.e. ImF (z) = ImF (z∗),
which ensures that exp(−tF (z)) is non-oscillatory along the contour. If F ′′(z∗) > 0 then exp(−tF (z))
decays rapidly away from z∗ along this contour – the path of steepest descent. We assume at the outset
that G(z) can be expanded as convergent power series about the neighbourhood of z∗.

Skipping many technical details, suppose that there exists an ordered set of contours Γ1,Γ2, . . . ,Γs
such that each contour contains a single saddle point (z∗k ∈ Γk), within each contour F satisfies ImF (z) =
ImF (z∗k), each saddle point in question satisfies F ′′(z∗k) > 0, G(z) can be expanded as a convergent
power series about each z∗k, and such that

∫ b
a

e−tF (z)dz =
∑s

k=1

∫
Γk
G(z)e−tF (z)dz. Then as t → ∞ and

G(z∗k) 6= 0, to first order approximation our integral can be expressed as

I(t) ∼
s∑

k=1

G(z∗k)e−tF (z∗
k

)
√

2π
tF ′′(z∗k)

[
1 +O

(
t−1)] (3.9)

([4, eq. 5.7.2]).
Remark 3.3. The power of this approach is that the first approximation depends only on the values of F ,
F ′′ and G at a certain subset of the saddle points, and nowhere else. Note that the terms hidden in the
O error term in (3.9) is a polynomial in G

′
/G,G

′′
/G, F

′′′
, F (IV ) and 1/F

′′
, see [23, eq. 2.4.16], evaluated

at a subset of saddle points. These terms depend on z and κ, where κ is a carefully chosen parameter
with some dependence on t – more importantly they must remain controlled as t → ∞ thus imposing
constraints on κ. This ensures that (3.9) holds uniformly as t→∞.

3.2.2 Steepest descent: Hermite functions
To find the asymptotic behaviour of (3.5), we consider Hn(z) for z given in (3.6) and (3.8), where n is a
large parameter and Y is large in the complex argument, z. We start by considering Hermite functions in
a Cauchy integral form,

Hn(z) = n!
2πi

∫
γ

e2zw−w2

wn+1 dw,
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where γ is a contour encircling the origin. Let ζ = z/ν, so that

Hn(νζ) = n!
2πiνn

∫
γ

e−ν
2φ(w) dw

w1/2 ,

where φ(w) = w2 − 2ζw + 1
2 logw, ν =

√
2n+ 1. The saddle points are the zeros of φ′, namely w± =

1
2 (ζ ± i

√
1− ζ2).

Deforming our path of integration to pass through the dominant saddle point, w∗, then applying (3.9),
gives us

Hn(z) ∼ 1
2πi

n!
νn+1 exp

(
−ν2φ(w∗)

)[ 2π
w∗φ′′(w∗)

]1/2[
1 +O

(
n−1)] (3.10)

– note that φ′′(w∗) = 2 − 1/(2w2
∗). This asymptotic approximation is valid for large values of n and ω.

For small values of ω a similar contribution from the remaining saddle point should also be included.
By remark 3.3, in order for the estimate in (3.10) to hold uniformly with respect to ζ for ω → ∞,

we require the existence of c > 0 such that c < |w∗| < c−1, which is guaranteed as long as ζ is bounded.
We also require |ζ − 1| > δ, δ being a small positive number, to avoid the coalescing of saddle points, in
which case we would need to use uniform asymptotic methods, see [25, §23.4]. This leads to the combined
conditions δ < |ζ − 1| < δ−1.

We have the key ingredient to find the asymptotic expansion of the Hermite coefficients. For α > 1/2,
we want to apply (3.10) to Hn(z) in (3.6), the dominant root is w− and w−φ

′′(w−) = −2i(1 − ζ2)1/2.
Recall that for this case, ζ = (X + iY )/ν, where

X = 2αx0

|4α2 − 1|1/2
, Y = ω

|4α2 − 1|1/2
, (3.11)

ω is a large parameter, while α and x0 are fixed. For α < 1/2, we want to do the same, apply (3.10) to
Hn(z) in (3.8), w+ root accounts for the main contribution to the asymptotic estimate and w+φ

′′(w+) =
2i(1− ζ2)1/2. In this case, ζ = (Y − iX)/ν.

As highlighted in remark 3.3, care must be taken to constrain ζ so that our approximation in (3.10)
holds uniformly as ω →∞. For α 6= 1/2 and large ω,

ζ ∼ ω√
(1− 4α2)(2n+ 1)

.

We have two competing large parameters n and ω, and we want to find a substitution which preserves the
relationship between the two terms,

√
n ∝ ω, c1 = n

ω2 , for some c1 > 0. (3.12)

This satisfies the condition in remark 3.3 for ζ to remain bounded for large n and ω. The additional
condition in the remark for non-coalescing saddle points, δ < |ζ − 1| is equivalent to∣∣ω2/n− 2

(
1− 4α2)∣∣ > c2, for some c2 > 0. (3.13)

3.2.3 α > 1/2: Deriving an asymptotic estimate
In a more practical setting, we would expect α > 1/2 and we commence by finding the asymptotics for
this case. Equation (3.10) is instrumental in deriving first-order asymptotics when large degree coexists
with large argument: higher order estimates can be obtained from [20], but we do not pursue this theme
further.

We observe that for reasonable values of x0 we can simplify things by requiring Y � X so ζ ∼ iY/ν.
However, for more accurate asymptotics we want to retain x0 explicitly in our expansions. As discussed
in the last section, to satisfy remark 3.3, (3.12) must hold for ζ to remain bounded for large n and ω.
Moreover, as α > 1/2 we have 2(1−4α2) < 0, so condition (3.13) is automatically satisfied. Thus the MSD
approximation in (3.10) holds uniformly for n > cn,ωω

2 for any given constant cn,ω. The relationship is
demonstrated in our numerical experiments, shown in Fig. 3.4.

Applying (3.10) to (3.6) (with identical notation), we have

an ∼ Re
[

π1/4

(2nn!)1/2

( 2
1 + 2α

)1/2 ∣∣∣2α− 1
2α+ 1

∣∣∣n/2 exp
(
|1− 2α|

4α (X2 + 2αY 2)
)
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× exp
(2iαωx0

1 + 2α

)
× 1

2πi
n!
νn+1 exp

(
−ν2φ(w−)

)( 2π
w−φ′′(w−)

)1/2
][

1 +O
(
n−1)] = Re (AB),

where

A = 1
i21/2π1/4ν(1 + 2α)1/2 exp

(
− αx2

0
1 + 2α + 2iαωx0

1 + 2α

)
1

[w−φ′′(w−)]1/2
, (3.14a)

B =
(
n!
2n
)1/2 1

νn

∣∣∣2α− 1
2α+ 1

∣∣∣n/2 exp
(
|1− 2α|

2 Y 2 − ν2φ(w−)
)
. (3.14b)

A is slowly varying for large n, Y and ν =
√

2n+ 1, while B is the dominant contribution, the fast
component.

At this point, the reader can refer to section A.2 for the full derivation of the asymptotics. To
summarise, we substitute terms w−φ′′(w−), φ(w−) and (3.11) into (3.14a) and (3.14b).

Figure 3.4: Hermite functions: Numerical experiments to determine the relationship between n
and ω. The first figure is a plot of the position of the peak, n, as ω varies. The relationship follows
n = ω2/2. The second figure is the experiment where we found the largest of coefficients such
that |an| > 10−20. This relationship follows n = 1

2 (ω+18.5)2. The two experiments are consistent
with

√
n ∝ ω relationship. The last plot shows the peak position in black dotted line and largest

n in dashed line for α = 2, x0 = 2 and ω = 100.

Setting n = cn,ωω
2 where cn,ω is some constant, then expanding about ω we arrive at

A ∼ 1
iπ1/4

√
−2i(2α+ 1)

exp
(
−αx2

0 + 2iωαx0

2α+ 1

)[
4α2 − 1

1 + 2cn,ω (4α2 − 1)

]1/4 1
(2cn,ω)1/4ω

×
{

1 + iαx0

ω [1 + 2cn,ω (4α2 − 1)] +O
(
ω−2)} and
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Figure 3.5: Hermite functions: The dashed line represents our estimate without oscillations.
This line envelopes the oscillations in the lighter colour, which further confirm that our estimate
provides an accurate representation of the exact coefficients. The left column of figures are plots
of log10 |an| against n, where the vertical scale goes from −20 to 0. The figures in the right column
are close-up plots to show how well we are able to bound from above the exact coefficients.

B ∼ (2πn)1/421/2eiπ(n+1/2)/2

× exp

(
ω2

[
− 1

2(2α+ 1) + cn,ω

(
1

1 +
√

1 + 2cn,ω (4α2 − 1)
+ log

∣∣∣∣∣1+
√

1+2cn,ω (4α2−1)
√

2cn,ω (2α+1)

∣∣∣∣∣
)]

−
2iαx0ω

(
−1 +

√
1 + 2cn,ω (4α2 − 1)

)
4α2 − 1 + 2x2

0α
2

4α2 − 1

(
1− 1√

1 + 2cn,ω (4α2 − 1)

)

+ 1
2 log

∣∣∣∣∣1 +
√

1 + 2cn,ω (4α2 − 1)√
2cn,ω (4α2 − 1)

∣∣∣∣∣+
ix0α

[
−3 + 6cn,ω + 8cn,ω

(
−3 + x2

0
)
α2]

3ω [1 + 2cn,ω (4α2 − 1)]3/2
+O

(
ω−2)).

Substituting A and B back into an and restoring cn,ω = n/ω2, we obtain the asymptotic estimate of
coefficients,

an(ω) ∼ 1√
ω(2α+ 1)

[
4α2 − 1

1 + 2 n
ω2 (4α2 − 1)

]1/4
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×

∣∣∣∣∣1 +
√

1 + 2 n
ω2 (4α2 − 1)√

2 n
ω2 (2α+ 1)

∣∣∣∣∣
n ∣∣∣∣∣1 +

√
1 + 2 n

ω2 (4α2 − 1)√
2 n
ω2 (4α2 − 1)

∣∣∣∣∣
1/2

× exp

(
− ω2

2(2α+ 1) + n

1 +
√

1 + 2 n
ω2 (4α2 − 1)

+ αx2
0

4α2 − 1

[
1− 2α√

1 + 2 n
ω2 (4α2 − 1)

]
−
[
−1 + 2 n

ω2 + 8 n
ω2α

2 (x2
0 − 1

)]2
16n

[
1 + 2 n

ω2 (4α2 − 1)
]5/2

)

×

{
cos

[
nπ

2 −
2αx0ω

(
−2α+

√
1 + 2 n

ω2 (4α2 − 1)
)

4α2 − 1

+
x0α

[
−3 + 6 n

ω2 + 8 n
ω2α

2 (x2
0 − 3

)]
3ω
[
1 + 2 n

ω2 (4α2 − 1)
]3/2

]

− αx0

ω
[
1 + 2 n

ω2 (4α2 − 1)
] sin

(
nπ

2 −
2αx0ω

(
−2α+

√
1 + 2 n

ω2 (4α2 − 1)
)

4α2 − 1

+
x0α

[
−3 + 6 n

ω2 + 8 n
ω2α

2 (x2
0 − 3

)]
3ω
[
1 + 2 n

ω2 (4α2 − 1)
]3/2

)}[
1 +O

(
n−1)] . (3.15)

Fig. 3.5 demonstrates how remarkably well our estimate models the size of the coefficients.
The dominant term in the Hermite estimate with the bounded oscillations (the terms in the curly

brackets in (3.15)) removed has the form

an(ω) ∼ Cosc√
ω(2α+ 1)

∣∣∣∣∣1 +
√

1 + 2 n
ω2 (4α2 − 1)√

2 n
ω2 (2α+ 1)

∣∣∣∣∣
n

(3.16)

× exp

(
− ω2

2(2α+1) + n

1+
√

1+2 n
ω2 (4α2 − 1)

+ αx2
0

4α2−1

[
1− 2α√

1 + 2 n
ω2 (4α2−1)

])[
1+O

(
n−1)].

Figure 3.6: Hermite functions: For increasing α, we see that the rate of decay becomes slower.
The dashed line indicate our asymptotic estimate as described by (3.16). Note how well our result
envelopes the exact coefficients in the lighter plots.
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3.2.4 α < 1/2 asymptotics
We have used the same method as for α > 1/2 so we have omitted some technical details and the bulk of
the algebra has been moved to the appendix.

To apply the MSD, we first need to satisfy the conditions in remark 3.3 which, in our case, translate
to (3.12) and (3.13). For α < 1/2, (3.13) requires ω2/n to be kept away from 2(1− 4α2). Combining the
two constraints, the MSD estimates will hold uniformly for n > cn,ωω

2 and values of n outside any given
neighbourhood of ω2/(2(1− 4α2)).

We proceed by applying, (3.10). For α < 1/2

an ∼ Re
[

π1/4

(2nn!)1/2

( 2
1 + 2α

)1/2 ∣∣∣2α− 1
2α+ 1

∣∣∣n/2 exp
(
−|1− 2α|

4α (X2 + 2αY 2)
)

× exp
(2iαωx0

1 + 2α

)
× n!
νn+1

1
2πi e

−ν2φ(w+)
(

2π
w+φ′′(w+)

)1/2
][

1 +O
(
n−1)] = Re (AB),

Note that for this case we apply the MSD on Hn(ζ) for ζ = (Y − iX)/ν where our contour of integration
passes from the saddle point w+. Like before, we can rewrite an in terms of A and B, the slow and fast
components respectively,

A = 1
iπ1/4

√
2i(1 + 2α)

exp
(
− αx2

0
1 + 2α + 2iαωx0

1 + 2α

)
1√

ν(X2 + 2iXY − Y 2 + ν2)1/4 , (3.17)

B ∼ (2πn)1/421/2√−i× exp
(
− ω2

2(2α+ 1) + n

2 log
∣∣∣2α− 1
2α+ 1

∣∣∣ (3.18)

+ (2n+ 1)(X + iY )
2(X + iY +

√
X2 − Y 2 + 2iXY + ν2)

(3.19)

+ (2n+ 1)
2 log

∣∣∣∣X + iY +
√
X2 − Y 2 + 2iXY + ν2

ν

∣∣∣∣) . (3.20)

Here, we have substituted w+φ
′′(w+) and φ(w+) in terms of X and Y , into A and B (see section A.3). In

(3.18) we have used Stirling’s formula.
From equations (3.17), (3.19) and (3.20), the key term we need to approximate is

X2 − Y 2 + 2iXY + ν2 = 1 + ω2
(

2cn,ω −
1

1− 4α2

)
+ 4iαx0ω

1− 4α2 + 4α2x2
0

1− 4α2 .

Here we have substituted n = cn,ωω
2, like before, and we want to expand around ω. First thing to note

is that the large ω term is given by

ω2
(

2cn,ω −
1

1− 4α2

)
.

Observe that there is a change in behaviour at

c∗n,ω = 1
2 (1− 4α2) .

This tells us that for a small neighbourhood around c∗n,ω, we would expect this region to have different
asymptotics to the the region away from it. This agrees nicely with our constraints discussed at the start
of this section, where we have identified that the non-coalescing saddle point regime in remark 3.3 is
equivalent to considering cn,ω away from c∗n,ω.

Going through the same steps as in the previous section and sparing the reader more algebra (see
section A.3.1 for full derivation), for cn,ω 6= c∗n,ω we obtain

an(ω) = Re(AB) ∼ Re

{
− 1√

ω(1 + 2α)

∣∣∣2α− 1
2α+ 1

∣∣∣n/2( |1− 4α2|
2 n
ω2 |1− 4α2| − 1

)1/4

×

(
1− iαx0

ω
(
2 n
ω2 |1− 4α2| − 1

) +O
(
ω−2))(1 +

√
1− 2 n

ω2 |1− 4α2|√
2 n
ω2 |1− 4α2|

)n+1/2
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× exp
(

α

|1− 4α2|

(
ω2 − x2

0 + 2x0ω

√
2 n
ω2 |1− 4α2| − 1

)
+
αx0

(
8α2x2

0
n
ω2 + 6 n

ω2 |1− 4α2| − 3
)

3ω
(
2 n
ω2 |1− 4α2| − 1

)3/2
+i
[(
n+ 1

2

)
π

2 −
4α2x0ω

|1− 4α2| + ω2

2|1− 4α2|

√
2 n
ω2 |1− 4α2| − 1

+ 2α2x2
0

|1− 4α2|
√

2 n
ω2 |1− 4α2| − 1

])}[
1 +O

(
n−1)] .

The asymptotics are displayed in Fig. 3.7, which confirms the remarkable fit of our formulæ with
computed values of the coefficients.

Figure 3.7: Hermite functions: The figures on the left show the decay rate of the coefficients where
log10 |an| > 10−20. In the top row we have α = 1/4, x0 = 2 and ω = 30. In the first figure (on
the left) we can see that our estimate starts to blow up around n = 600, this is expected as c∗

n,ω

for these parameters occurs at n = 600. The plots in the right column are a closeup of the figures
to the left. The plots in the second and third row, further show that our asymptotic estimates
are accurate for varying α, x0 and ω. Note, for these figures the c∗

n,ω occurs outside of the plotted
region of log10 |an| > 10−20.
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4 Malmquist–Takenaka functions
MT functions have a long history. Discovered simultaneously by Malmquist [19] and Takenaka [24] in
1925, they have since been studied in fields ranging from signal processing (Wiener in 1949 [28]) to
spectral methods (Christov in 1982 [3]). In [12], Iserles and Webb proved that this is essentially the
only orthonormal and complete system in L2(R) with a banded tridiagonal skew-Hermitian differentiation
matrix, and the coefficients can be computed using the Fourier transform. This is part of Iserles and
Webb’s ongoing work classifying bases with banded skew-Hermitian differentiation matrices [13, 14, 15].
It was the work of Boyd in [1] and Weideman in [26, 27] that highlighted the interesting approximation
properties of MT functions. The approximating characteristics of MT functions do not obey simple rules.
As an example, for f(x) = 1/(1 + x4) the coefficients decay at a spectral rate of an ∼ O

(
(1 +

√
2)−|n|

)
,

however if we include an oscillatory factor so that our function is in the form f(x) = sin(x)/(1 + x4), our
approximation collapses from spectral to algebraic convergence, an ∼ O

(
|n|−9/4), see Fig. 4.1. Why does

multiplying by sin(x), an entire function, have such a large effect on the rate of convergence? How do we
get exponential convergence?

Figure 4.1: MT functions: The left figure shows f(x) = sin x/(1 + x4) (solid green line) and
f(x) = 1/(1 + x4) (dotted black line). The right figure shows the corresponding logarithm of the
absolute value of MT coefficients for sin x/(1 + x4) (solid green line) and 1/(1 + x4) (dotted black
line).

In [1] and [27] (respectively), Boyd and Weideman proved that MT expansion coefficients decay expo-
nentially if and only if f(z) decays at least linearly as |z| → ∞ in the complex plane, and f is analytic in
a region which may exclude ±i/2 but which must include the point at infinity. Analyticity at infinity is a
strong condition to impose, since sin z, for example, blows up as z →∞ along the imaginary axis. This is
not unexpected because the proof of exponential convergence in a compact interval (e.g. with orthogonal
polynomials) depends on functions being analytic within a Bernstein ellipse surrounding this interval.

Interestingly, Weideman (in [26]) found that the coefficients, an, of a Gaussian function asymptotically
decay close to exponential convergence, an ∼ O

(
e− 3

2 |n|
2/3
)
. Note, we do not have exact spectral decay as

the Gaussian function has an essential singularity at∞. What does this mean for wave packet coefficients?
We proved that for wave packet functions the coefficients exhibit asymptotic exponential convergence. In
other words as ω gets larger, we get closer to exponential convergence up to some threshold. For example,
if f(x) = e−x

2
cos(ωx) the coefficients decay like an ∼ O

(
e−n/ω

)
.This can be seen in Figure 4.2, where

even though the cos(50x) factor decreases the rate of convergence compared to just the Gaussian function,
we still see asymptotic spectral decay, at least in the regime |an(ω)| ≥ 10−10.

To see how we have proved this, let us start by defining our system. From [12] the Malmquist–Takenaka
system is defined as

ϕn(z) := in
√

2
π

(1 + 2iz)n

(1− 2iz)n+1 , n ∈ Z. (4.1)

Substituting (4.1) into (1.2) yields the expansion coefficients

an(ω) = (−i)n
√

2
π

∫ ∞
−∞

e−α(x−x0)2
cos(ωx)

(1− 2ix
1 + 2ix

)n dx
1 + 2ix , (4.2)
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Figure 4.2: MT functions: The plot compares the decay rate of the MT coefficients of the Gaussian
(dotted black line) and the wave packet (solid green line). Note the slower decay rate of the wave
packets relative to the decay rate of the Gaussian coefficients.

= (−i)n√
2π

∫ ∞
−∞

(
eiωx + e−iωx) e−α(x−x0)2−2in tan−1(2x) dx

1 + 2ix ,

= bn(ω) + bn(−ω),

where

bn(ω) = (−i)n√
2π

∫ ∞
−∞

e−ωg(x) dx
1 + 2ix , (4.3)

g(x) = −ix+ β(x− x0)2 + 2icn,ω tan−1(2x), (4.4)

where α = βω, n = cn,ωω and we take the principal value of tan−1. We initially restrict ourselves to the
case n ≥ 0, ω ≥ 0. The remaining cases will be considered in section 4.3.

4.1 The case ω ≥ 0, n ≥ 0: the method of steepest descent
This section draws inspiration from Weideman in [26], who found the rate of decay of MT coefficients for
the Gaussian function, e−x

2
by applying MSD to the coefficient integral. Our analysis will be considerably

more involved than that of Weideman’s for the Gaussian function, because we have two large parameters,
n and ω. A brief explanation of the MSD can be found in section 3.2.1.

Since β = α/ω, it is bounded for large ω. We stipulate that n and ω vary so that cn,ω is bounded:
details will be discussed further in the next section.The main step of the MSD is to deform our integral
in (4.3) over a complex contour that passes through (or near) a saddle point of (4.4). This represents the
path of steepest descent. We can find the saddle points by solving

g′(z) = −i + 2β(z − x0) + 4icn,ω
4z2 + 1 = 0,

with some manipulation i.e. multiplying through by 1 + 4z2 then collecting z terms, this reduces to the
cubic

8βz3 − 4 (i + 2βx0) z2 + 2βz + i (4cn,ω − 1)− 2x0β = 0 (4.5)

Our formulation in (4.3) has a nice symmetry aspect that comes from the tan−1. For example, when β = 0
there are two saddle points

z− = −
√
cn,ω − 1

4 , z+ =
√
cn,ω − 1

4 . (4.6)

As α is not an asymptotic parameter, β will be small for large ω, and the two shown values z± in (4.6)
will be close to two exact saddle points, while the third one approaches infinity when β → 0.
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We have for two saddle points z2 and z3 expansions

z2 = z+ + c
(2)
1 β + c

(2)
2 β2 + . . . , z3 = z− + c

(3)
1 β + c

(3)
2 β2 + . . . , (4.7)

where cn,ω should be bounded away from 1
4 and

c
(∗)
1 = icn,ω(x0 − z∗)

z∗
,

c
(∗)
2 = −cn,ω(x0 − z∗)

2z3
∗

[−cn,ωx0 + z∗ (4x0z∗ − 5cn,ω + 1)] .

We obtain this from substituting (4.7) into (4.5), then collecting β terms to find the c(∗)k s, the coefficients
cks at saddle point z∗ ∈ {z1, z2, z3}. For the third saddle point, z1, we use a property of the cubic equation.
Writing the equation as a3z

3 + a2z
2 + a1z + a0 = 0,

z1 + z2 + z3 = −a2

a3
= x0 + i

2β ,

and z3 has the expansion

z1 = −a2

a3
− z2 − z3 = x0 + i

2β + 2icn,ωβ −
(
c
(2)
2 + c

(3)
2

)
β2 − . . . . (4.8)

The two saddle points z2 and z3 become nearly equal when cn,ω → 1
4 . That is, there is a special case,

when ω ∼ 4n. In this case, we cannot use the MSD and will have to use uniform asymptotic methods
– this method can be found in [21, 25, 29]. We do not consider this case in the paper and assume that
cn,ω ≥ 1

4 + δ where δ > 0 is small. This is a necessary constraint to satisfy remark 3.3 and we discuss this
further in the next section.

4.2 Large ω asymptotics
Our main goal is to find out how many MT functions are required to approximate a wave packet with a
frequency of ω to prescribed accuracy. We want to estimate the number of {an : |an| = |bn(ω)+bn(−ω)| ≥
ε} for any given ε > 0. Our asymptotic expansion requires a subtle approach as both n and ω are large
parameters.

We have learnt from numerical experiments that it is a poor idea to fix one parameter and let the
other become large i.e. fix ω and let n� 1, as the asymptotics from this regime miss on the spectral decay
behaviour that we wish to capture. A simple explanation for this alludes to the relationship between n
and ω in the square-root term in equation (4.6).

We found that there was an intermediate range where n and ω followed a relationship of the form

cn,ω < n < c cn,ω = n

ω
>

1
4 ,

for any given constant c. This range satisfies remark 3.3 and ensures that the MSD approximation holds
uniformly for ω →∞.

Writing (4.7) and (4.8) in orders of ω, i.e. substituting β = α/ω, the roots have the form

z1 ∼ x0 + iω
2α + 2icn,ωα

ω
+O

(
ω−2) , (4.9)

z2 ∼
√
cn,ω − 1

4 +
iαcn,ω(x0 −

√
cn,ω − 1

4 )
ω
√
cn,ω − 1

4

+O
(
ω−2) , (4.10)

z3 ∼ −
√
cn,ω − 1

4 −
iαcn,ω(x0 +

√
cn,ω − 1

4 )
ω
√
cn,ω − 1

4

+O
(
ω−2) . (4.11)

We require cn,ω > 1
4 so

√
cn,ω − 1

4 is always positive. For α, x0, n, ω ≥ 0, z3 stays in the third quadrant,
z2 can be located in the first or fourth quadrant and z1 is located in first quadrant of the complex plane.
Moreover, if x0 = 0, then z2 would only be in the fourth quadrant. From z1, we see that the root is shifted
from the pure imaginary axis by x0. By requiring Re z2 > x0, we get cn,ω > 1

4 + x2
0 and past this point

we see that Im z2 < 0, so in this regime z2 is confined to the fourth quadrant.
The plot below suggests that z2 and z3 may be appropriate saddle points through which to deform

the contour.
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Figure 4.3: MT functions: Plot of the roots (4.9), (4.10) and (4.11) for varying n. Left plot: Plot
of saddle points when x0 = 0. All the saddle points are on the imaginary line when cn,ω < 1

4 ,
when cn,ω > 1

4 , z2 is the reflection of z3 on the y axis. Right plot: Plot of saddle points when
x0 = 2. z1 is shifted x0 = 2 away from the imaginary axis and z2 travels from the first quadrant
to the fourth quadrant as n increases.

4.2.1 Paths of steepest descent
The path of steepest descent is chosen so that Im g(z) is constant and passes through the saddle point z∗
of g(z). Recall from equation (4.4) that

g(z) = −iz + β(z − x0)2 + 2icn,ω tan−1(2z).

Substituting z = x+ iy, and using the identity

tan−1(a+ ib) = 1
2 tan−1

(
2a

1− (a2 + b2)

)
+ i

2 tanh−1
( 2b

1 + a2 + b2

)
,

the imaginary part of g(z) has the form

Img(x+ iy) = −x+ 2βy(x− x0) + cn,ω tan−1
(

4x
1− 4x2 − 4y2

)
. (4.12)

We choose the path of steepest descent to be the path where Im g(z) = constant, the constant being chosen
so that the path passes through the saddle point z∗ i.e. path = {z : Im g(z) = Im g(z∗)}. Figure 4.4, shows
a plot of steepest descent paths, equation (4.12), for certain parameter values.

To construct our steepest descent contour Γ, we split Γ = Γ(3) ∪ Γ(2), where Γ(2) is the contour that
passes through z2, i.e. the integral that goes from 0 to ∞. Note that for n > 0 (4.2) has a pole at i/2 and
a zero at −i/2 and it is sensible to avoid the pole in the upper half plane. From our discussion on the
location of our roots in the last section, z2 can be in the first or fourth quadrant. For cn,ω > 1

4 + x2
0, z2

is in the fourth quadrant. For simplicity we will consider the root to be located in the fourth quadrant,
but the same principle can be applied when the root is in the first quadrant. We start by defining contour
Γ(2) at −i/2:
• This was chosen simply because we want to avoid the pole at i/2. We can show that −i/2 is always

on our steepest descent path by substituting −i/2 into (4.12) which gives Im g(−i/2) = βx0 = αx0/ω
where α, x0, ω > 0 with no dependence on n. For a visual representation see the bottom plot of
Fig. 4.4, where the steepest descent contour through z2 passes through both the pole and the zero.
We can simply choose to construct our contour from −i/2 as there is nothing to look for along the
path from 0 to −i/2. Moreover, the point z = −i/2 is the central point of a valley which is why the
path of steepest descent may visit this point.

• By starting our contour from −i/2 means our curve looks nice and smooth. The imaginary part
converges to ω/2α whilst the real part tends to infinity. As the real part of our contour tends to
infinity, the integrand tends to zero very fast. Although this step is not necessary, we can bring the
tail back to the real line by travelling straight down, only varying the imaginary part of our path,
to reach the real line and then carrying on towards infinity.
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Figure 4.4: MT functions: Plot of (4.12) for given α, ω, x0 and n. The ×s on the imaginary axis
represent the pole at i/2 and zero at −i/2 for n ≥ 0. It can be seen in the top plots that the
contour approaches an asymptote that is independent of x0. In the bottom plot, we see a zoomed
in plot of the top left plot, the steepest descent contours pass through the pole at i/2 and zero at
−i/2 for n ≥ 0.

The same idea can be applied to the remaining integral, Γ(3), from −∞ to 0. For a schematic repre-
sentation see Fig. 4.5.

The key argument used in constructing Γ(2) is that the imaginary part of the path of steepest descent
converges to ω/2α as Re z → ∞. Note, this also eliminates the choice of z1 as Im(z1) > ω/2α which can
be seen from eqn (4.9). The same idea holds for Re z → −∞. We can observe this in Fig. 4.4 for a given
α, ω x0 and n.

Lemma 4.1. For sufficiently large x there exists a function y = γ(x) such that x+ iy ∈ Γ. Furthermore,
limx→±∞ γ(x) = ω/2α.

Proof. Our steepest descent contour satisfies

−x+ 2βy(x− x0) + cn,ω tan−1
(

4x
1− 4x2 − 4y2

)
= Im g(z∗),

where for some fixed n and ω the RHS is constant. Let z∗ = c+ id, where c and d are constants. We have

0 = x (2βy − 1)− c (2βd− 1) + 2βx0(d− y)

+ cn,ω

[
tan−1

(
4x

1− 4x2 − 4y2

)
− tan−1

( 4c
1− 4c2 − 4d2

)]
.
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We retrieve the γ(x) by the implicit function theorem. Dividing through by x and letting x→ ±∞,

0 = 2βy − 1 + lim
x→±∞

[ 1
x

(−c (2βd− 1) + 2βx0(d− y))
]

+
(

lim
x→±∞

1
x

)
cn,ω

[
lim

x→±∞
tan−1

(
4

1/x− 4x− 4y2/x

)
− tan−1

( 4c
1− 4c2 − 4d2

)]
.

Taking the limit we are left with y = 1/(2β) = ω/(2α), (where β = α/ω) as required.

Figure 4.5: MT functions: Schematic representation of the contour of integration Γ. The steepest
descent path looks like a Gaussian centred around our root.

Once the desired path is chosen, we can apply the MSD as discussed in section 3.2.1. The integral in
(4.3) can be rewritten as

bn(ω) = (−i)n√
2π

(∫
Γ(3)

e−ωg(z) dz
1 + 2iz +

∫
Γ(2)

e−ωg(z) dz
1 + 2iz

)
,

where the path of integration Γ(3) starts at −∞, passes through the saddle point z3 and terminates at
− 1

2 i, and Γ(2) starts at that point, runs through the saddle point z2 and terminates at +∞.
The transformations

g(z)− g(z2) = 1
2 t

2, g(z)− g(z3) = 1
2 t

2 (4.13)
result in

bn(ω) = (−i)n√
2π

(
e−ωg(z3)

∫
R
e−

1
2ωt

2
f (3)(t) dt+ e−ωg(z2)

∫
R

e−
1
2ωt

2
f (2)(t) dt

)
,

where1

f (∗)(t) = dz
dt

1
1 + 2iz ,

dz
dt = t

g′(z) . (4.14)

In the transformations in (4.13) we assume that z on the infinite part of the steepest descent path
from −∞ to z3 corresponds to a nonpositive t-value, and that z on the finite part from z3 to − 1

2 i with
a nonnegative t-value. Similarly for the integral through z2: the points z on the part from − 1

2 i to z2
correspond to t ≤ 0, the points z on the part from z2 to +∞ correspond to t ≥ 0. In this way there
is a one-to-one relation of points z ∈ Γ(∗) and t ∈ R. Observe that on the paths of steepest decent the
quantities g(z)− g(z∗) are real and non-negative and their graphs are convex, like the graph of 1

2 t
2 on R.

1f (∗)(t) denotes f (2)(t) or f (3)(t), z∗ denotes z2 or z3. Similar notation will be used throughout.
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Substituting the Taylor expansion f (∗)(t) =
∞∑
k=0

a
(∗)
k tk, the asymptotic expansion becomes

bn(ω) ∼ (−i)n√
2π

(
e−ωg(z3)

∞∑
k=0

a
(3)
2k

∫
R

e−
1
2ωt

2
t2k dt+ e−ωg(z2)

∞∑
k=0

a
(2)
2k

∫
R

e−
1
2ωt

2
t2k dt

)
, (4.15)

where the odd k terms disappear as we are integrating an odd integrand over the real line. The integrals
now look like Gamma integrals of the form

Γ(z) =
∫ ∞

0
xz−1e−x dx, R(z) > 0.

Let y = ωt2/2,
(
y−1/2/

√
2ω
)

dy = dt and t2k = (2y/ω)k, then∫
R

e−
1
2ωt

2
t2k dt =

√
2
ω

2k

ωk

∫ ∞
0

e−yyk−1/2dy,

=
√

2
ω

2k

ωk
Γ(k + 1/2),

=
√

2π
ω

2k

ωk

(1
2

)
k
, (4.16)

where
(

1
2

)
k
is the Pochhammer symbol, (x)n = Γ(x + n)/Γ(x). By substituting (4.16) into (4.15) we

obtain

bn(ω) ∼ (−i)n√
ω

(
e−ωg(z3)

∞∑
k=0

a
(3)
2k

2k
(

1
2

)
k

ωk
+ e−ωg(z2)

∞∑
k=0

a
(2)
2k

2k
(

1
2

)
k

ωk

)
, (4.17)

as ω →∞, and large n = cn,ωω such that cn,ω ≥ 1
4 + δ, with δ a small positive number. The next step is

to determine the a2k’s, the full derivation can be found in section B.1. The first coefficients have the form

a
(3)
0 = 1

(1 + 2iz3)
√
g′′(z3)

, a
(2)
0 = 1

(1 + 2iz2)
√
g′′(z2)

.

Substituting into (4.17) we obtain the first-order approximation

bn(ω) ∼ (−i)n
{

e−ωg(z3)

(1 + 2iz3)
√
ωg′′(z3)

[
1 +O

(
ω−1)]+ e−ωg(z2)

(1 + 2iz2)
√
ωg′′(z2)

[
1 +O

(
ω−1)]}. (4.18)

4.2.2 Asymptotic expansion
To complete the asymptotic expansion, we substitute (4.10), (4.11) and β = α/ω into the integrand in
(4.18) and expand for large ω. This yields

−ωg(z2) ∼ −α4

(√
4cn,ω − 1− 2x0

)2
+ iω

2
√

4cn,ω − 1− 2icn,ωω tan−1
(√

4cn,ω − 1
)

+O
(
ω−1),

ωg′′(z2) ∼ 8α− 2α
cn,ω
√

4cn,ω − 1

(
6x0cn,ω +

√
4cn,ω − 1− 2x0

)
− iω
cn,ω

√
4cn,ω − 1 +O

(
ω−1),

1 + 2iz2 ∼ 1 + i
√

4cn,ω − 1 +O
(
ω−1),

−ωg(z3) ∼ −α4

(√
4cn,ω − 1 + 2x0

)2
(4.19)

− iω
2
√

4cn,ω − 1 + 2icn,ωω tan−1
(√

4cn,ω − 1
)

+O
(
ω−1),

ωg′′(z3) ∼ 8α− 2α
cn,ω
√

4cn,ω − 1

(
−6x0cn,ω +

√
4cn,ω − 1 + 2x0

)
+ iω
cn,ω

√
4cn,ω − 1 +O

(
ω−1),

1 + 2iz3 ∼ 1− i
√

4cn,ω − 1 +O
(
ω−1).
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It follows from the first term in (4.19) that, as x0 increases, e−ωg(z3) gets smaller than e−ωg(z2). Substituting
the terms inside (4.18), the following asymptotic expansion holds for cn,ω = n/ω > 1

4 , n ≥ 0, α, x0, ω ≥ 0,

bn(ω) ∼ (−i)n
{

exp
(
−α4

(√
4cn,ω−1− 2x0

)2
+ iω

2
√

4cn,ω−1− 2icn,ωω tan−1
(√

4cn,ω−1
)

+O
(
ω−1))

×
[

8α− 2α
cn,ω
√

4cn,ω − 1

(
6x0cn,ω +

√
4cn,ω − 1− 2x0

)
− iω
cn,ω

√
4cn,ω − 1 +O

(
ω−1)]−1/2

×
[
1 + i

√
4cn,ω − 1 +O

(
ω−1)]−1 [

1 +O
(
ω−1)]

+ exp
(
−α4

(√
4cn,ω − 1 + 2x0

)2
− iω

2
√

4cn,ω − 1 + 2icn,ωω tan−1
(√

4cn,ω − 1
)

+O
(
ω−1))

×
[

8α− 2α
cn,ω
√

4cn,ω − 1

(
−6x0cn,ω +

√
4cn,ω − 1 + 2x0

)
+ iω
cn,ω

√
4cn,ω − 1 +O

(
ω−1)]−1/2

×
[
1− i

√
4cn,ω − 1 +O

(
ω−1)]−1 [

1 +O
(
ω−1)]} ,

∼ Ce−α
(√

cn,ω−1/4−x0
)2 [

1 +O
(
ω−1)]

The final line of the above equation vividly demonstrates that our asymptotics exhibit exponential
decay. This can also be seen in appendix B.2 where we find a bound for |bn(ω)| which leads to the result
in (4.21). All that remains is to consider the n < 0 and ω < 0 cases.

4.3 Reduction to the case n ≥ 0 and ω > 0
At the outset we have assumed n, ω > 0, in this subsection we demonstrate that this can be extended to
n ∈ R, ω ∈ R.

4.3.1 A symmetry argument
Noting that ϕ−n−1(x) = (−i)2n+1ϕn(−x) for all n ∈ Z, consider

b−n−1(−ω) = 1
2

∫ ∞
−∞

e−α(z−x0)2−iωzϕ−(n+1)(z)dz = i2n+1

2

∫ ∞
−∞

e−α(z−x0)2−iωzϕn(−z)dz.

Let z′ = −z, dz′ = −dz. Relabelling, we obtain

b−n−1(−ω) = −i2n+1 1
2

∫ ∞
−∞

e−α(z−x0)2+iωzϕn(z)dz = −i2n+1bn(ω) = (−1)n−1ibn(ω). (4.20)

Using this symmetry we deduce the results for n ≤ −1, ω ≤ 0 from n ≥ 0, ω ≥ 0 for all n ∈ Z.

4.3.2 Laguerre coefficients argument
We can further reduce our range by considering the case where n ≤ −1, ω > 0 by using the relationship
of MT functions to Laguerre polynomials, considered in [12]. Taking an inverse Fourier transform of our
wave packet

e−α(z−x0)2+iωz = 1√
2α

1√
2π

∫ ∞
−∞

e−(ω+ξ)2/(4α)+ix0(ω+ξ)e−iξzdz = 1√
2α
F−1

[
e−(ω+ξ)2/(4α)+ix0(ω+ξ)

]
(z).

It is proved in [12] that for n ≤ −1 the MT functions are

ϕn(x) = − (−i)n√
2π

∫ ∞
0

L−n−1(ξ)e−ξ/2−ixξ dξ = −(−i)nF−1[χ[0,∞)(ξ)L−(n+1)(ξ)e−ξ/2
]
(x)

Therefore, substituting into the expression for the coefficients in terms of eiωx−α(z−x0)2
and ϕn, we get

bn(ω) = −in

2 3
2
√
α

∫ ∞
−∞
F−1

[
e−(ξ+ω)2/(4α)+ix0(ξ+ω)

]
(z)×F−1

[
χ[0,∞)(ξ)L−(n+1)(ξ)e−ξ/2

]
(z) dz
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Figure 4.6: MT functions: Plot of (4.21) for varying α, ω and x0. x0 = 0, demonstrates linear
spectral decay. As we increase x0, the width grows.

By Parseval’s identity, we deduce that

bn(ω) = −in

2 3
2
√
α

∫ ∞
0

e−(ξ+ω)2/(4α)+ix0(ξ+ω) L−n−1)(ξ)e−ξ/2 dξ.

As both Ln(ξ)e−ξ/2 and eix0(ξ−ω) have L2(R) unit norm, by Cauchy–Schwartz,

|bn(ω)| ≤ 2−3/2
√
α

(∫ ∞
0

e−(ξ+ω)2/(2α) ∣∣eix0(ξ+ω)∣∣2 dξ
)1/2(∫ ∞

0
|L−n−1(ξ)|2 e−ξ dξ

)1/2

= 2−3/2
√
α

(∫ ∞
0

e−(ξ+ω)2/(2α) dξ
)1/2

= 2−3/2
√
α

e−ω
2/(4α)

(∫ ∞
0

e−ξ
2/(2α)e−(ξω)/α dξ

)1/2

.

Now, if ω ≥ 0 then e−ξω < 1. Finally,
∫∞

0 e−ξ
2/(2α)dξ =

√
πα/2 leads to

|bn(ω)| ≤ π
1
4 2−

7
4α−1/4e−ω

2/(4α) for ω ≥ 0, n ≤ −1.

Thus by the symmetry argument in (4.20), this result holds for ω ≤ 0, n ≥ 0.
As we have shown in our crude bound above, the coefficients for bn(ω) are small for ω ≥ 0 and n ≤ −1.

Moreover, we can use the above symmetry argument to evaluate bn(−ω).
Finally, tying everything together, we formulate our estimate for an(ω) in equation (4.2) throughout

the entire range of parameters.

Theorem 4.2 (Malmquist–Takenaka function). Suppose that f(z) = e−α(z−x0)2
cos(ωz), where α > 0,

while x0 and ω are real. The asymptotic behaviour of the coefficients, an, with Malmquist–Takenaka basis
functions

ϕn(z) = in
√

2
π

(1 + 2iz)n

(1− 2iz)n+1 , n ∈ Z,

is subject to the estimate

|an(ω)| ≤ |bn(ω)|+ |bn(−ω)|,
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where for ω ≥ 0

n < 0 : |bn(−ω)| ≤ π
1
4 2−

7
4α−1/4 · e−ω

2/(4α), and

n ≥ 0 : |bn(ω)| ≤
[
1 +O

(
ω−1)]

2
√

2ω (|n/ω| − 1/4)1/4

{
exp

(
−α

(√∣∣∣n
ω

∣∣∣− 1
4 − x0

)2)
+ exp

(
−α

(√∣∣∣n
ω

∣∣∣− 1
4 + x0

)2)}
. (4.21)

The bound in (4.21) is valid uniformly for n satisfying 1/4 ≤
∣∣n
ω

∣∣ ≤ c for any given constant c. The
remaining case, ω < 0, can be found by applying the symmetry argument in (4.20). These bounds hold as
|ω| → ∞.

Remark 4.3. For practical purposes, the values of n satisfying 1/4 ≤
∣∣n
ω

∣∣ ≤ c are the only values of n
we care about because, with reasonable assumptions on the size of c, we can ensure that |an| < ε for n
outside this range.

Figs 4.6 and 4.7 depict the asymptotic bound in (4.21). We see that they capture exceedingly well the
characteristics of the exact coefficients and can observe asymptotic spectral decay.

Figure 4.7: MT functions: Plot of (4.21) for varying α, and fixed x0 and ω. As we increase α we
see that the spectral decay rate increases.
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A Hermite
A.1 Different values of α
Starting from equation (3.5), it is helpful to define

ãn(ω) = e−αx
2
0Hn,(1+2α)−1,ω−2iαx0 , (A.1)

which satisfies
an(ω) = 1√

2nn!π1/2

( 2π
1 + 2α

)1/2
Re ãn(ω), (A.2)

and distinguish between the cases α = 1
2 and α 6= 1

2 .

Case I: α = 1
2 . We need to use (3.4), namely

ãn(ω) = exp
(
−ω

2

4 −
x2

0
4 + ix0ω/2

)
(x0 + iω)n

= (x2
0 + ω2)n/2e−(x2

0+ω2)/4 exp
(

iωx0

2 + in tan−1
(
ω

x0

))
.

Substituting this into equation (A.2) yields

an(ω) =

√
π1/2

2nn! (x
2
0 + ω2)n/2e−(x2

0+ω2)/4 cos
(
ωx0

2 + n tan−1
(
ω

x0

))
.

Case II: α > 1
2 . Using equation (3.3) and (A.1), we obtain,

ãn(ω) =
(2α− 1

1 + 2α

)n/2
exp
(
− αx2

0
1 + 2α −

ω2

2(1 + 2α) + 2iαωx0

1 + 2α

)
Hn

(
ω − 2iαx0

(1− 4α2)1/2

)
=
∣∣∣1− 2α
1 + 2α

∣∣∣n/2exp
(
|1− 2α|

4α (X2 + 2αY 2)− i|1− 2α|XY
)

Hn(X + iY )

where

X = 2αx0

|1− 4α2|1/2
, Y = ω

|1− 4α2|1/2
.

Note that Y � X in the high frequency regime.

Case III: α < 1
2 . We obtain,

ãn(ω) = in
(1− 2α

1 + 2α

)n/2
exp
(
− αx2

0
1 + 2α −

ω2

2(1 + 2α) + 2iαωx0

1 + 2α

)
Hn

(
ω − 2iαx0

(1− 4α2)1/2

)
=
∣∣∣1− 2α
1 + 2α

∣∣∣n/2exp
(
−|1− 2α|

4α (X2 + 2αY 2) + i|1− 2α|XY
)

inHn(Y − iX).
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A.2 α > 1/2: asymptotics
The terms w−φ′′(w−) and φ(w−) in term of X and Y are

w−φ
′′(w−) = −2i

√
1− ζ2 = −2i

ν

√
−X2 − 2iXY + Y 2 + ν2

φ(w−) = w2
− − 2ζw− + 1

2 log(w−)

= − 1
4 −

Y − iX
2
[
Y − iX +

√
−X2 − i2XY + Y 2 + ν2

]
− 1

2 log(2i)− 1
2 log

∣∣∣∣Y − iX +
√
−X2 − i2XY + Y 2 + ν2

ν

∣∣∣∣ ,
where

w− = 1
2

(
ζ − i

√
1− ζ2

)
, ν =

√
2n+ 1.

Substituting these terms into (3.14a) and (3.14b),

A = 1
iπ1/4

√
−2i(2α+ 1)

exp
(
− αx2

0
1 + 2α + 2iαωx0

1 + 2α

)
1√
ν

1
(−X2 − 2iXY + Y 2 + ν2)1/4 , (A.3a)

B =
(
n!
2n
)1/2 1

νn
exp
(
− ω2

2(2α+ 1) + n

2 log
∣∣∣2α− 1
2α+ 1

∣∣∣− ν2φ(w−)
)
. (A.3b)

We need to be careful when choosing which large parameter we wish to expand around. Recalling that

ζ = X + iY
ν

= 2αx0 + iω√
(4α2 − 1)(2n+ 1)

,

while α and x0 are fixed variables, we want to preserve the relationship between our large parameters n
and ω so √

n ∝ ω, n = cn,ωω
2.

This agrees with our numerical experiment seen in figure 3.4.
We start by expanding (A.3a), substituting n = cn,ωω

2:

ν−1/2 =
(
2cn,ωω2 + 1

)1/4 =
(
2cn,ωω2)−1/4

(
1 + 1

2cn,ωω2

)−1/4

= 1
(2cn,ω)1/4ω1/2 −

1
8 · 21/4c5/4ω5/2

+ 5
128 · 21/4c9/4ω9/2 +O(ω−13/2),

(
−X2 − i2XY + Y 2 + ν2)−1/4 ∼ 1√

ω

(
4α2 − 1

1 + 2cn,ω(4α2 − 1)

)1/4

+
ix0α

(
4α2 − 1

)1/4
ω3/2 [1 + 2cn,ω (4α2 − 1)]5/4

+O
(
ω−5/2),

ν−1/2 (−X2 − i2XY + Y 2 + ν2)−1/4 =
[

4α2 − 1
1 + 2cn,ω (4α2 − 1)

]1/4 1
(2cn,ω)1/4ω

×
[

1 + iαx0

ω (1 + 2cn,ω (4α2 − 1)) +O
(
ω−2)] .

Substituting terms back into (A.3a), we obtain

A ∼ 1
iπ1/4

√
−2i(2α+ 1)

exp
(
−αx2

0 + 2iωαx0

2α+ 1

)[
4α2 − 1

1 + 2cn,ω (4α2 − 1)

]1/4 1
(2cn,ω)1/4ω

×
{

1 + iαx0

ω [1 + 2cn,ω (4α2 − 1)] +O
(
ω−2)} .
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Evaluating B in (A.3b), by the Sterling formula,√
n!
2n

1
νn
∼ (2π)1/4nn/2+1/4en/2

2n/2
lim
n→∞

(2n+ 1)−n/2 ∼ (2πn)1/4e−
1
2 (n+ 1

2 )2−n.

Thus, B is estimated by

B ∼ (2πn)1/421/2 exp
(

iπ
2

(
n+ 1

2

)
− ω2

2(2α+ 1) + n

2 log
∣∣∣2α+ 1
2α− 1

∣∣∣
+ (2n+ 1)(Y − iX)

2
(
Y − iX +

√
−X2 − i2XY + Y 2 + ν2

) (A.4a)

+ (2n+ 1)
2 log

(
Y − iX +

√
−X2 − i2XY + Y 2 + ν2

ν

))
. (A.4b)

Setting n = cn,ωω
2 and expanding about ω,

Eqn (A.4a) ∼ (2n+ 1)

2
[
1 +

√
1 + 2cn,ω (4α2 − 1)

]
−

2icn,ωx0α(2n+ 1)
(
4α2 − 1

)
ω
[
1 +

√
1 + 2cn,ω (4α2 − 1)

][
1 + 2cn,ω (4α2 − 1) +

√
1 + 2cn,ω (4α2 − 1)

] +O
(
ω−2) ,

Eqn (A.4b) ∼ −1 + 2cn,ω + 8cn,ω(x2
0 − 1)α2

4 [1 + 2cn,ω (4α2 − 1)]3/2
+ 1

2 log

∣∣∣∣∣1 +
√

1 + 2cn,ω (4α2 − 1)√
2cn,ω (4α2 − 1)

∣∣∣∣∣
+ cn,ωω

2 log

∣∣∣∣∣1 +
√

1 + 2cn,ω (4α2 − 1)√
2cn,ω (4α2 − 1)

∣∣∣∣∣− i2cn,ωαx0ω√
1 + 2cn,ω (4α2 − 1)

− ix0α

3ω [1 + 2cn,ω (4α2 − 1)]5/2
{3 + cn,ω (−9 + 6cn,ω

− 4α2 [−9 + 12cn,ω + 2x2
0(1 + cn,ω)

]
+ 32α4cn,ω(3 + x2

0)
)}

+O
(
ω−2) .

Assembling all this,

B ∼ (2πn)1/421/2eiπ(n+1/2)/2

× exp

(
ω2

[
− 1

2(2α+ 1) + cn,ω

(
1

1 +
√

1 + 2cn,ω (4α2 − 1)
+ log

∣∣∣∣∣1+
√

1+2cn,ω (4α2−1)
√

2cn,ω (2α+1)

∣∣∣∣∣
)]

−
2iαx0ω

(
−1 +

√
1 + 2cn,ω (4α2 − 1)

)
4α2 − 1 + 2x2

0α
2

4α2 − 1

(
1− 1√

1 + 2cn,ω (4α2 − 1)

)

+ 1
2 log

∣∣∣∣∣1 +
√

1 + 2cn,ω (4α2 − 1)√
2cn,ω (4α2 − 1)

∣∣∣∣∣+
ix0α

[
−3 + 6cn,ω + 8cn,ω

(
−3 + x2

0
)
α2]

3ω [1 + 2cn,ω (4α2 − 1)]3/2
+O

(
ω−2)).

This results in

ãn(ω) ∼ 1
2
√
ω(2α+ 1)

[
4α2 − 1

1 + 2cn,ω(4α2 − 1)

]1/4 [
1 + iαx0

ω [1 + 2cn,ω (4α2 − 1)] +O(ω−2)
]

× exp
(
ω2
[
− 1

2(2α+ 1)

+ cn,ω

(
iπ
2 + 1

1 +
√

1 + 2cn,ω (4α2 − 1)
+ log

∣∣∣∣∣1 +
√

1 + 2cn,ω (4α2 − 1)
√

2cn,ω(2α+ 1)

∣∣∣∣∣
)]

−
2iαx0ω

(
−2α+

√
1 + 2cn,ω (4α2 − 1)

)
4α2 − 1
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+ 1
2 log

∣∣∣∣∣1 +
√

1 + 2cn,ω (4α2 − 1)√
2cn,ω (4α2 − 1)

∣∣∣∣∣+ αx2
0

4α2 − 1

[
1− 2α√

1 + 2cn,ω (4α2 − 1)

]

+
ix0α

[
−3 + 6cn,ω + 8cn,ωα2 (x2

0 − 3
)]

3ω [1 + 2cn,ω (4α2 − 1)]3/2
+O

(
ω−2)).

Restoring cn,ω = n/ω2 and recalling that an(ω) ∼ Re ãn(ω), we obtain

an(ω) ∼ 1√
ω(2α+ 1)

[
4α2 − 1

1 + 2 n
ω2 (4α2 − 1)

]1/4

×

∣∣∣∣∣1 +
√

1 + 2 n
ω2 (4α2 − 1)√

2 n
ω2 (2α+ 1)

∣∣∣∣∣
n ∣∣∣∣∣1 +

√
1 + 2 n

ω2 (4α2 − 1)√
2 n
ω2 (4α2 − 1)

∣∣∣∣∣
1/2

× exp

(
− ω2

2(2α+ 1) + n

1 +
√

1 + 2 n
ω2 (4α2 − 1)

+ αx2
0

4α2 − 1

[
1− 2α√

1 + 2 n
ω2 (4α2 − 1)

]

−
[
−1 + 2 n

ω2 + 8 n
ω2α

2 (x2
0 − 1

)]2
16n

[
1 + 2 n

ω2 (4α2 − 1)
]5/2

)

×

[
cos

(
nπ

2 −
2αx0ω

(
−2α+

√
1 + 2 n

ω2 (4α2 − 1)
)

4α2 − 1 +
x0α

[
−3 + 6 n

ω2 + 8 n
ω2α

2 (x2
0 − 3

)]
3ω
[
1 + 2 n

ω2 (4α2 − 1)
]3/2

)

− αx0

ω
[
1 + 2 n

ω2 (4α2 − 1)
] sin

(
nπ

2 −
2αx0ω

(
−2α+

√
1 + 2 n

ω2 (4α2 − 1)
)

4α2 − 1

+
x0α

[
−3 + 6 n

ω2 + 8 n
ω2α

2 (x2
0 − 3

)]
3ω
[
1 + 2 n

ω2 (4α2 − 1)
]3/2

)]
.

A.3 α < 1/2: asymptotics
Take ζ = (Y − iX)/ν and let our contour of integration pass through the root w+,

w+φ
′′(w+) = 2i

√
1− ζ2 = 2i

ν

√
X2 + 2iXY − Y 2 + ν2,

φ(w+) = w2
+ − 2ζw+ + 1

2 log(w+),

= − 1
4 −

X + iY
2
[
X + iY +

√
X2 + i2XY − Y 2 + ν2

] ,
− 1

2 log(−2i)− 1
2 log

∣∣∣∣X + iY +
√
X2 + i2XY − Y 2 + ν2

ν

∣∣∣∣ ,
where

w+ = 1
2

(
ζ + i

√
1− ζ2

)
, ν =

√
2n+ 1.

Just like in α > 1/2, numerical experiments show that the relationship between n and ω follows

n ∝ ω2.

See figure A.8.
Here we return to section 3.2.4 where we observe that for α < 1/2, our asymptotics require us to

consider cn,ω 6= c∗n,ω, where

c∗n,ω = 1
2 (1− 4α2) . (A.5)
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Figure A.8: Numerical experiments to determine the relationship between n and ω. The first
figure is a plot of the position of the peak, n, as ω varies. The relationship follows n = 2ω2. The
second figure is the experiment where we found the largest of coefficients such that |an| > 10−20.
This relationship follows n = 2.2ω2 + 200. The two experiments are consistent with a

√
n ∝ ω

relationship.

A.3.1 cn,ω 6= c∗
n,ω: full derivation

Commencing from eqn (3.17), substituting n = cn,ωω
2 and expanding about ω, we get

ν−1/2(X2 + 2iXY − Y 2 + ν2)−1/4 = ν−1/2
[

1 + ω2
(

2cn,ω −
1

|1− 4α2|

)
+ 4α2x2

0
|1− 4α2| + 4iαx0ω

|1− 4α2|

]−1/4

∼ |1− 4α2|1/4

(2cn,ω|1− 4α2| − 1)1/4
1

(2cn,ω)1/4ω

×
[

1− iαx0

ω (2cn,ω|1− 4α2| − 1) +O
(
ω−2)].

We substitute this back into (3.17). Now, moving on to the asymptotics of B, expanding about ω having
substituted n = cn,ωω

2,

Eqn (3.19) ∼
cn,ωω

2
(

1 + i
√

2cn,ω|1− 4α2| − 1
)

2cn,ω|1− 4α2| +
2αx0ω

(
cn,ω|1− 4α2| − 1s

)
|1− 4α2|

√
2cn,ω|1− 4α2| − 1|

− 2iαx0ω

|1− 4α2|

− 1
4|1− 4α2| (2cn,ω|1− 4α2| − 1)3/2

[
8iα2x2

0 + i|1− 4α2| − 24icn,ωα2x2
0|1− 4α2|

− 2icn,ω|1− 4α2|2 + 8x2
0α

2 (2cn,ω|1− 4α2| − 1
)3/2]

+
αx0cn,ω

∣∣1− 4α2
∣∣ (8α2x2

0cn,ω + 2cn,ω|4α2 − 1| − 1
)

ω (2cn,ω|1− 4α2| − 1)5/2 +O
(
ω−2) ,

Eqn (3.20) ∼
(1

2 + cn,ωω
2
)

log

∣∣∣∣∣∣
(

i +
√

2cn,ω|1− 4α2| − 1
)

√
2cn,ω |1− 4α2|

∣∣∣∣∣∣+ 2cn,ωαx0ω√
2cn,ω|4α2 − 1| − 1

−
i
(
8α2x2

0cn,ω + 2cn,ω|1− 4α2| − 1
)

4 (2cn,ω|1− 4α2| − 1)3/2

+
αx0

[
3− 8α2x2

0cn,ω − cn,ω
(
9 + 8α2x2

0cn,ω
)
|1− 4α2|+ 6c2n,ω|1− 4α2|2

]
3ω (2cn,ω|1− 4α2| − 1)5/2 +O

(
ω−2).

Combining the two results,

Eqn (3.19) + Eqn (3.20) ∼
(
cn,ωω

2 + 1
2

)
log

(
i +
√

2cn,ω|1− 4α2| − 1√
2cn,ω|1− 4α2|

)
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+ cn,ωω
2

2cn,ω|1− 4α2|

(
1 + i

√
2cn,ω|1− 4α2| − 1

)
+ 2αx0ω

|1− 4α2|

(
−i +

√
2cn,ω|1− 4α2| − 1

)
+

2α2x2
0

(
i−
√

2cn,ω|1− 4α2| − 1
)

|1− 4α2|
√

2cn,ω|1− 4α2| − 1

+
αx0

(
8cn,ωα2x2

0 + 6cn,ω|1− 4α2| − 3
)

3ω (2cn,ω|1− 4α2| − 1)3/2 +O
(
ω−2),

which we substitute back into B. Bringing all the terms together,

an(ω) = Re(AB) ∼ Re

(
− 1√

ω(1 + 2α)

∣∣∣2α− 1
2α+ 1

∣∣∣n/2( |1− 4α2|
2 n
ω2 |1− 4α2| − 1

)1/4

×

[
1− iαx0

ω
(
2 n
ω2 |1− 4α2| − 1

) +O
(
ω−2)](1 +

√
1− 2 n

ω2 |1− 4α2|√
2 n
ω2 |1− 4α2|

)n+1/2

× exp
{

α

|1− 4α2|

(
ω2 − x2

0 + 2x0ω

√
2 n
ω2 |1− 4α2| − 1

)
+
αx0

(
8α2x2

0
n
ω2 + 6 n

ω2 |1− 4α2| − 3
)

3ω
(
2 n
ω2 |1− 4α2| − 1

)3/2
× i
[(
n+ 1

2

)
π

2 −
4α2x0ω

|1− 4α2| + ω2

2|1− 4α2|

√
2 n
ω2 |1− 4α2| − 1

+ 2α2x2
0

|1− 4α2|
√

2 n
ω2 |1− 4α2| − 1

]})
.

B Malmquist–Takenaka
B.1 Determining a2k’s
The final step is to determine the coefficients a(∗)

2k . To do this, we first need to find the coefficients of the
expansion near the saddle points,

z = z∗ +
∞∑
k=0

b
(∗)
k tk. (B.1)

They can be obtained from the transformations in (4.13), where we rewrite the transformations as values
of z near the saddle points

∞∑
k=2

g(k)(z∗)
k! (z − z∗)k = 1

2 t
2,

or, taking the square root,

t = (z − z∗)

[
g(2)(z∗) + 2

∞∑
k=3

g(k)(z∗)
k! (z − z∗)k−2

]1/2
. (B.2)

This equation can be inverted by using standard inversion methods. Substituting the expansions given in
(B.1) and collecting equal powers of t, we can find the coefficients b(∗)k of (B.1), the first being

1
2g

(2)(z∗)b(∗)1 t
2

= 1
2 t

2 =⇒ b
(∗)
1 = 1√

g(2)(z∗)
.

Here and in (B.2) we have taken the positive square root, this comes from the expansion in (B.1), in fact
z − z∗ ∼ b(∗)1 t, and we have assumed conditions as explained below (4.14).
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More coefficients can be obtained by using computer algebra. The next ones are

b
(∗)
2 = −g

(3)(z∗)b(∗)1
2

6g(2)(z∗)
= − g(3)(z∗)

6 [g(2)(z∗)]2
,

b
(∗)
3 = −g

(4)(z∗)b(∗)1
4

+ 12g(3)(z∗)z∗2b
(∗)
1

2
+ 12g(2)(z∗)b(∗)2

24g(2)(z∗)b(∗)1

,

= −
3g(4)(z∗)g(2)(z∗)− 5

[
g(3)(z∗)

]2
72 [g(2)(z∗)]7/2

.

To obtain a2k’s we use (4.14) and (B.1)

dz
dt

1
1 + 2iz =

(
∞∑
k=0

kb
(∗)
k tk−1

)[
∞∑
k=0

1
k!

(
dk

dzk
1

1 + 2iz

)
z=z∗

(z − z∗)k
]

=
∞∑
k=0

a
(∗)
k tk

Equating powers of t we obtain the first coefficients of the expansion in (4.17), which are

a
(∗)
0 = b

(∗)
1

1 + 2iz∗ = 1
(1 + 2iz∗)

√
g′′(z∗)

,

a
(∗)
2 = −12z∗2b(∗)3 + 12z∗b(∗)1 b

(∗)
2 − 4b(∗)1

3
+ 12iz∗b(∗)3 − 6ib(∗)1 b

(∗)
2 + 3b(∗)3

(1 + 2iz∗)3 ,

= 1
2(i− 2z∗)g′′7/2(z∗)

{
8g′′2(z∗) + g(2)(z∗)

[
2g(3)(z∗)(2z∗ − i)− g(4)(z∗)

4 (i− 2z∗)2
]

+ 5
12g

(3)2
(z∗)(1− 2iz∗)2

}
.

B.2 Bounding |bn(ω)| for ω ≥ 0 and n ≥ 0
The result obtained in (4.21) is not obvious from the asymptotic expansions in section 4.2.2 as they require
further manipulation. In this section, we walk through the steps taken to bound (4.18).

Applying the triangle inequality to (4.18) results in

|bn(ω)| .

∣∣∣∣∣ e−ωg(z3)

(1 + 2iz3)
√
ωg′′(z3)

∣∣∣∣∣+

∣∣∣∣∣ e−ωg(z2)

(1 + 2iz2)
√
ωg′′(z2)

∣∣∣∣∣ . (B.3)

Following the same expansion steps as described in section 4.2.2, we obtain asymptotics that would
help us bound |bn(ω)|,

e−ωg(z2) ∼ exp
(
−α
ω

(√
cn,ω − 1− 2x0

)2
)[

cos
(
ω
√

4cn,ω − 1
2 − 2cn,ωω tan−1

(√
4cn,ω − 1

)
+O

(
ω−1))

+i sin
(
ω
√

4cn,ω − 1
2 − 2cn,ωω tan−1

(√
4cn,ω − 1

)
+O

(
ω−1))] ,

e−ωg(z3) ∼ exp
(
−α
ω

(√
cn,ω − 1 + 2x0

)2
)[

cos
(
−ω
√

4cn,ω − 1
2 + 2cn,ωω tan−1

(√
4cn,ω − 1

)
+O

(
ω−1))

+i sin
(
−ω
√

4cn,ω − 1
2 + 2cn,ωω tan−1

(√
4cn,ω − 1

)
+O

(
ω−1))] ,

(1 + 2iz2)−1 ∼ 1
4cn,ω

{
1− i

√
4cn,ω − 1− α

ω
√

4cn,ω − 1

[
(1− 2cn,ω)(

√
4cn,ω − 1− 2x0)

+i
(

2x0
√

4cn,ω − 1− 4cn,ω + 1
)]

+O
(
ω−1)} ,

(1 + 2iz3)−1 ∼ 1
4cn,ω

{
1 + i

√
4cn,ω − 1− α

ω
√

4cn,ω − 1

[
(1− 2cn,ω)(2x0 +

√
4cn,ω − 1)
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+i
(

2x0
√

4cn,ω − 1 + 4cn,ω − 1
)]

+O
(
ω−1)} ,(

ωg′′(z2)
)−1/2 ∼

(1 + i)√cn,ω
√

2ω (4cn,ω − 1)1/4

{
1− iα

ω (4cn,ω − 1)3/2

[
16
(
cn,ω −

1
4

)2
− 6x0

(
cn,ω −

1
3

)√
4cn,ω − 1

]
+O

(
ω−2)} ,

(
ωg′′(z3)

)−1/2 ∼
(−1 + i)√cn,ω
√

2ω (4cn,ω − 1)1/4

{
1 + iα

ω (4cn,ω − 1)3/2

[
6x0

(
cn,ω −

1
3

)√
4cn,ω − 1 + 16

(
cn,ω −

1
4

)2
]

+O
(
ω−2)} .

Substituting the above terms into (B.3), separating each term into real and imaginary parts, and using
the definition of the L2 norm |x+ iy| =

√
x2 + y2 we obtain the following bounds∣∣∣∣∣ e−ωg(z2)

(1 + 2iz2)
√
ωg′′(z3)

∣∣∣∣∣ ≤ exp
(
−α4 (

√
4cn,ω − 1− 2x0)2)

2
√
ω (4cn,ω − 1)1/4

[
1− α (

√
4cn,ω − 1− 2x0)
ω
√

4cn,ω − 1
+O

(
ω−2)]1/2

,∣∣∣∣∣ e−ωg(z3)

(1 + 2iz3)
√
ωg′′(z3)

∣∣∣∣∣ ≤ exp
(
−α4 (

√
4cn,ω − 1 + 2x0)2)

2
√
ω (4cn,ω − 1)1/4

[
1− α (

√
4cn,ω − 1 + 2x0)
ω
√

4cn,ω − 1
+O

(
ω−2)]1/2

.

From this point we can see that we obtain the bound in (4.21).
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