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Abstract

In this paper we explore orthogonal systems in L2(R) which give rise to a real
skew-symmetric, tridiagonal, irreducible differentiation matrix. Such systems are
important since they are stable by design and, as necessary, preserve Euclidean
energy for a variety of time-dependent partial differential equations.

We prove that there is a one-to-one correspondence between such an or-
thonormal system {ϕn}n∈Z+

and a sequence of polynomials {pn}n∈Z+
orthonor-

mal with respect to a symmetric probability measure dµ(ξ) = w(ξ)dξ. If dµ is
supported by the real line this system is dense in L2(R), otherwise it is dense in
a Paley–Wiener space of band-limited functions. The path leading from dµ to
{ϕn}n∈Z+

is constructive and we provide detailed algorithms to this end.
We also prove that the only such orthogonal system consisting of a polynomial

sequence multiplied by a weight function is the Hermite functions.
The paper is accompanied by a number of examples illustrating our argument.
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1 The rationale

1.1 Differentiation matrices

The broad theme underlying this paper are the important benefits accrued in the
semidiscretisation of time-dependent partial differential equations once space deriva-
tives are approximated in a skew-symmetric (or skew-Hermitian in the complex case)
manner. It is instructive to commence with three examples where, for simplicity, we
assume a single spatial variable: The diffusion equation

∂u

∂t
=

∂

∂x

[
a(x)

∂u

∂x

]
, x ∈ [−1, 1], t ≥ 0, (1.1)

where a(x) > 0, x ∈ [−1, 1], given with an initial condition for t = 0 and either
periodic or zero Dirichlet boundary conditions at x = ±1, the nonlinear advection
equation

∂u

∂t
=
∂u

∂x
+ f(u), x ∈ R, t ≥ 0, (1.2)

where vf(v) ≤ 0 for all v ∈ R, given with an L2(R) initial condition at t = 0, and the
linear Schrödinger equation in the semiclassical regime,

iε
∂u

∂t
= −ε2 ∂

2u

∂x2
+ V (x)u, x ∈ [−1, 1], t ≥ 0, (1.3)

given with an initial condition at t = 0 and periodic boundary conditions at x = ±1.
Here 0 < ε� 1, while the interaction potential V is real.

It is a trivial exercise to prove that the solutions of both (1.1) and (1.2) are non-
increasing in the usual L2 norm, while the L2 norm of (1.3) is conserved. This rep-
resents a critical structural feature of the three equations which should ideally be
preserved under discretisation. Moreover, once the L2 norm is uniformly bounded
under discretisation, the underlying method is stable.

We commence from (1.1) and assume that it is semi-discretised by, say, finite
differences, a spectral method or spectral collocation.1 The outcome is a set of linear
ODEs,

u′ = DADu, t ≥ 0, u(0) = u0,

where A is positive definite. The matrix D is the result of discretising the space
derivative and we call this the differentiation matrix. Therefore

1

2

d‖u‖2

dt
= u>u′ = u>DADu = (D>u)A(Du),

where ‖ · ‖ is the `2 norm. Suppose now that the differentiation matrix D is skew
symmetric. Then D> = −D and, A being positive definite, it follows at once that
d‖u‖2/ dt ≤ 0: the numerical solution is dissipative (and, incidentally, stable!) Like-
wise, semi-discretising (1.2) with finite differences, we have

u′ = Du + f(u), t ≥ 0, u(0) = u0,

1Semidiscretisation with finite elements requires trivial amendments to our argument but its main
thrust remains valid.
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where fm(u) = f(um) – we can again prove, identically to the above argument, that
d‖u‖2/ dt ≤ 0 once D is skew symmetric. Finally, semi-discretising the Schrödinger
equation (1.3), we have

u′ = iεD2u− iε−1Vu, t ≥ 0, u(0) = u0,

where the matrix V is real. Assuming again that D is skew symmetric,

1

2

d‖u‖2

dt
= Reu∗u′ = Reu∗

(
iεD2u− iε−1Vu

)
= 0,

because u?Vu and u∗D2u = (D>u)∗(Du) = −‖Du‖2 are both real. Therefore the
semidiscretisation is conservative, mimicking the behaviour of the original equation.
We should perhaps add that, in this context, |u(x, t)|2 is the probability of finding a
particle at x: preservation of the norm is not an optional extra but a basic requirement
once we wish to get the physics right.

Skew symmetric differentiation matrices have been already analysed in some length
in the context of finite differences in (Hairer & Iserles 2016, Hairer & Iserles 2017,
Iserles 2014, Iserles 2016). The simplest second-order finite-difference discretisation of
a derivative,

D =
1

2∆x



0 1 0 · · · 0

−1 0
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . 0 1
0 · · · 0 −1 0


,

is skew-symmetric but this is false dawn: this is the highest-order skew symmetric
finite-difference differentiation matrix on uniform grid (Iserles 2014). It is possible to
construct higher-order skew-symmetric differentiation matrices on special grids but
this is far from easy and large orders become fairly complicated (Hairer & Iserles
2016, Hairer & Iserles 2017). Arguably this complexity makes them less suitable for
efficient computation.

1.2 Two spectral examples

In this paper we explore a general mechanism to generate orthogonal systems with
skew-symmetric differentiation matrices since such systems can be implemented in
the context of spectral methods. We do now address the issue of time discretisation,
noting in passing that it might require a great deal of additional care, cf. for example
(Bader, Iserles, Kropielnicka & Singh 2014). We commence with two examples. Firstly,
consider the task of approximating a smooth periodic function on [−π, π]. The obvious
choice in this setting is the Fourier basis, which we write in a real setting,

ϕ0(x) ≡ 1

(2π)1/2
, ϕ2n(x) =

cosnx

π1/2
, ϕ2n+1(x) =

sinnx

π1/2
, n ∈ N (1.4)

3



– note that the basis is orthonormal. The differentiation matrix is

D =



0 0 0 0 0 0 0 · · ·
0 0 1 0 0 0 0 · · ·
0 −1 0 0 0 0 0 · · ·
0 0 0 0 2 0 0 · · ·
0 0 0 −2 0 0 0 · · ·
0 0 0 0 0 0 3 · · ·
0 0 0 0 0 −3 0 · · ·
...

...
...

...
...

...
...

. . .


.

It is indeed skew symmetric, as well as tridiagonal and reducible. Once we can use a
Fourier basis, it must be an obvious first choice. The problem is, though, that periodic
boundary conditions in a compact interval are something of an exception. Most partial
differential equations of interest are either Cauchy problems defined on the entire
Euclidean space or possess Dirichlet, Neumann or mixed boundary conditions in a
compact domain. The focus of this paper is on Cauchy problems on the real line
and the motivation, which originates in (1.3) and its multivariate counterparts, is
explained in greater detail in (Iserles 2016). Briefly, periodic boundary conditions are
useful for numerical simulation only in very short-time integration, leading to wrong
behaviour once the solution (which originally has, to all intents and purposes, finite
support and moves at finite speed) reaches the boundary. Modern computational
challenges, not least in quantum control, call for a long-time solution of (1.3) and
modern time-stepping methods (for example those described in (Bader et al. 2014))
can indeed achieve the stability required to achieve this if there exists a discretisation
yielding a skew-symmetric differentiation matrix. Hence the challenge to design and
explore orthogonal systems on the real line with this property.

One example of such an orthogonal system, Hermite functions, is familiar in math-
ematical physics:

ϕn(x) =
(−1)n

(2nn!)1/2π1/4
e−x

2/2Hn(x), n ∈ Z+, x ∈ R, (1.5)

where Hn is the nth Hermite polynomial. It follows at once from standard theory of
orthogonal polynomials that∫ ∞

−∞
ϕm(x)ϕn(x) dx = δm,n, m, n ∈ Z+,

hence {ϕn}n∈Z+ is indeed an orthonormal sequence, dense in L2(R). It is well known
(and can be confirmed easily using standard mixed recurrence relations for Hermite
polynomials) that

ϕ′n(x) = −
√
n

2
ϕn−1(x) +

√
n+ 1

2
ϕn+1(x), n ∈ Z+, (1.6)

therefore the corresponding differentiation matrix is skew-symmetric – in addition, it
is tridiagonal (making computations easier) and irreducible.
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Hermite functions have many interesting features: they obey the Cramér inequality
|ϕn(x)| ≤ 0.816049 . . ., n ∈ Z+, x ∈ R, are eigenfunctions of the Fourier transform,
obey a second-order linear ordinary differential equation and are related to Whittaker
functions and parabolic cylinder functions. Insofar as this paper is concerned, (1.6)
represents their most germane feature and a paradigm for more general systems of
orthogonal functions in L2(R).

1.3 Plan of this paper

The purpose of this paper is to characterise all orthogonal systems in L2(R) which
possess a real skew-symmetric, tridiagonal, irreducible differentiation matrix.

An obvious approach is to consider different orthogonal systems {ϕn}n∈Z+
in L2(R)

and to check for each whether the differentiation matrix is of the right form – this
hit-and-miss approach is unlikely to take us far. In Section 2 we adopt an alterna-
tive organising principle: we start from a countable sequence of functions {ϕn}n∈Z+

in L2(R) which are hardwired to possess a skew-symmetric, tridiagonal, irreducible
differentiation matrix and seek conditions for their orthogonality.

On the face of it, we have just replaced one hit-and-miss approach by another, yet
there is crucial difference. In Section 3 we demonstrate that such a set of functions can
be mapped by means of the Fourier transform, subject to rescaling, into a set {pn}n∈Z+

of polynomials which are orthogonal with respect to some symmetric measure dµ(x) =
w(x) dx. This argument can be reversed: given a real, symmetric measure dµ, we can
construct an underlying set of orthonormal polynomials. These polynomials obey the
familiar three-term recurrence relation from which we can recover the elements of D.
Finally, we recover the functions ϕn by inverse-Fourier-transforming

√
wpn, n ∈ Z+.

It follows from the Parseval Theorem that these functions form an orthonormal set.
We prove that this set is dense in L2(R) if dµ is supported by R, otherwise it is dense
in a Paley–Wiener space.

In Section 4 we describe practical algorithms for the evaluation of the ϕns, in
Section 5 we explore the structure of the functions {ϕn}n∈Z+

, while in Section 6 we
present a number of examples. The paper concludes in Section 7 with a brief summary
and discussion.

2 The main paradigm

The purpose of this paper is to investigate orthogonal systems Φ = {ϕn}n∈Z+
of

functions which are orthogonal on the real line with respect to the standard L2(R) inner
product and such that their differentiation matrix D is skew-symmetric, tridiagonal
and irreducible,

D =


0 b0 0 · · ·

−b0 0 b1
. . .

0 −b1
. . .

. . .
...

. . .
. . .

. . .

,
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where b0, b1, . . . are real, nonzero constants. In other words, we wish Φ to satisfy the
skew-symmetric differentiation matrix relation

ϕ′0(x) = b0ϕ1(x),

ϕ′n(x) = −bn−1ϕn−1(x) + bnϕn+1(x), n ∈ N. (2.1)

Given a seed function ϕ0 ∈ C∞(R), remaining functions can be defined uniquely by
recursion from (2.1):

n = 0 : ϕ1(x) =
1

b0
ϕ′0(x),

n = 1 : ϕ2(x) =
1

b1
[ϕ′1(x) + b0ϕ0(x)] =

1

b0b1
[b20ϕ0(x) + ϕ′′0(x)],

n = 2 : ϕ3(x) =
1

b2
[ϕ′2(x) + b1ϕ1(x)] =

1

b0b1b2
[(b20 + b21)ϕ′0(x) + ϕ′′′0 (x)]

and so on. In general, easy induction confirms that

ϕn(x) =
1

b0b1 · · · bn−1

bn/2c∑
`=0

αn,`ϕ
(n−2`)
0 (x), n ∈ N, (2.2)

where

αn+1,0 = 1, αn+1,` = b2n−1αn−1,`−1 + αn,`, ` = 1, . . . ,
⌊n

2

⌋
.

The first thing to notice from this formula is that the ϕn must indeed be a smooth (i.e.
infinite-differentiable) function for all n ∈ Z+. Also note that, while cumbersome, this
formula provides a practical method of generating examples.

Note, however, a major problem which provides the focus of this paper: the above
procedure produces a set Φ which is guaranteed to satisfy (2.1) but a priori there is
absolutely no reason why it should be orthogonal, whether with respect to a standard
or any other inner product. Likewise, even if orthogonal, there is no a priori reason
for Φ to be complete in the separable Hilbert space L2(R).

Example 1 (Hermite functions) Given the seed function and differentiation coef-
ficients,

ϕ0(x) = π−
1
4 e−x

2/2, bn =

√
n+ 1

2
, n ∈ Z+,

the functions generated form the orthonormal Hermite function basis, which we have
already encountered in Section 1.

Example 2 (Spherical Bessel functions) Given the seed function and differenti-
ation coefficients

ϕ0(x) =
1√
2

J 1
2
(x)
√
x

= π−
1
2 j0(x), bn =

n+ 1√
(2n+ 1)(2n+ 3)

, n ∈ Z+,
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the functions generated are

ϕn(x) =

√
n+ 1

2

x
Jn+ 1

2
(x) =

√
2n+ 1

π
jn(x), (2.3)

which are the spherical Bessel functions. Note that while the Bessel functions Jn+ 1
2
(z)

have a branch cut in (−∞, 0], the spherical Bessel function jn(z) is entire.

Example 3 (Quasi-Hermite) Suppose we use the Gaussian seed function and con-
stant differentiation coefficients,

ϕ0(x) = e−x
2

, bn = 1, n ∈ Z+. (2.4)

Then the generated function sequence is

ϕ2n(x) = e−x
2

n∑
`=0

(
n+ `

2`

)
H2`(x),

ϕ2n+1(x) = e−x
2

n∑
`=0

(
n+ `+ 1

2`+ 1

)
H2`+1(x),

where Hk(x) is the kth Hermite polynomial. We do not prove this formula since, as
will transpire in Section 5, such functions cannot be orthogonal, hence are of little
merit.

To recap, whatever the merits of (2.2) – and is certainly useful for generating the
desired function sequence {ϕn}n∈Z+

– this construction does not make obvious what
properties the sequence might have, such as orthogonality or its norm. Indeed, the
Hermite functions and the spherical Bessel functions generating the above examples
turn out to be orthonormal in L2(R), but it is not obvious from this construction
that that would happen. It can be shown that the function sequence generated in
Example 3 is not orthogonal with respect to any real-valued measure. Other types of
constructions will be considered in Sections 3 and 4, for which the orthogonality of
the sequence can be more obviously predicted.

We commenced this section specifying a seed ϕ0 and nonzero real coefficients
{bn}n∈Z+ . As becomes clear in the next section, once we seek orthogonality, the right
procedure is more minimalistic: it is enough to choose a symmetric positive Borel
measure dµ on the real line, which determines both the seed and the coefficients in
a unique manner whilst ensuring orthogonality and completeness in a certain Hilbert
space.

3 The Fourier transform and orthogonal polynomi-
als

3.1 There and back again

We commence our journey from a given sequence of real-valued, square-integrable,
smooth functions Φ = {ϕn}n∈Z+ , which has a skew-symmetric differentiation matrix

7



with nonzero real constants {bn}n∈Z+
as in (2.1). For our departure, we require the

unitary Fourier transform,

F [ϕ](ξ) =
1√
2π

∫ ∞
−∞

ϕ(x)e−ixξ dx. (3.1)

As is well known, the Fourier transform and differentiation have the commutation
relation

F [ϕ′](ξ) = −iξF [ϕ](ξ). (3.2)

This motivates our definition of a transformed sequence of functions, Ψ = {ψn}n∈Z+
,

where,
ψn(ξ) = inF [ϕn](ξ).

Each ϕn has a well-defined Fourier transform, being square-integrable on the real line.
From the equation for differentiation of a Fourier transform given above, we have for
all n ∈ Z+,

ξψn(ξ) = inξF [ϕn](ξ) = in+1(−iξ)F [ϕn](ξ) = in+1F [ϕ′n](ξ).

Next, using the skew-symmetric differentiation property of Φ, we see that the trans-
formed functions Ψ satisfy

ξψ0(ξ) = b0iF [ϕ1](ξ) = b0ψ1(ξ),

ξψn(ξ) = −bn−1in+1F [ϕn−1](ξ) + bnin+1F [ϕn+1](ξ) = bn−1ψn−1(ξ) + bnψn+1(ξ).

In other words, they satisfy a three-term recurrence relation! A simple consequence of
this is ψn(ξ) = pn(ξ)ψ0(ξ), where P = {pn}n≥0 is a sequence of polynomials satisfying
a three-term recurrence,

p0(ξ) = 1, p1(ξ) = b−1
0 ξ

pn+1(ξ) =
ξ

bn
pn(ξ)− bn−1

bn
pn−1(ξ), n ∈ N. (3.3)

We can now use the classical Favard Theorem (Favard 1935, Chihara 1978) to de-
duce that these polynomials are orthogonal with respect to a real-valued, finite Borel
measure.

Theorem 4 (Favard) Let P = {pn}n≥0 be a sequence of real polynomials such that
deg(pn) = n. P is an orthogonal system with respect to the inner product 〈f, g〉µ =∫
f(ξ)g(ξ) dµ(ξ) for some probability measure2 dµ on the real line if and only if the

polynomials satisfy the three-term recurrence,

pn+1(ξ) = (αn − βnξ)pn(ξ)− γnpn−1(ξ), n ∈ Z+, (3.4)

for some real sequences {αn}n∈Z+
, {βn}n∈Z+

, {γn}n∈Z+
with γ0 = 0 and γnβn−1/βn >

0 for all n ∈ N.

2A probability measure is a scalar-valued Borel measure which is positive and has total mass equal
to 1.
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The polynomials from equation (3.3) fall under the umbrella of Favard’s Theorem,
with αn = 0, βn = −b−1

n and γn = bn−1b
−1
n , because

γnβn−1

βn
=

(bn−1b
−1
n )(−b−1

n−1)

−b−1
n

= 1 > 0. (3.5)

We can now deduce even more about the polynomials, because there exist simple
relationships between the polynomials, the coefficients of the three-term recurrence,
and the measure of orthogonality, as follows.

Lemma 5 Let P be as in Favard’s Theorem above.

1. The polynomials are orthonormal if and only if γnβn−1/βn = 1 for all n ∈ N
and

∫
p0(ξ)2 dµ(ξ) = 1.

2. The measure dµ is symmetric (i.e. dµ(−ξ) = dµ(ξ)) if and only if αn = 0 for
all n ∈ Z+. In this case, pn(−ξ) = (−1)npn(ξ) for all n ∈ Z+.

3. For each n ≥ 0 the sign of βn is negative if and only if the signs of the leading
coefficient of pn and pn+1 are the same. Otherwise βn is positive.

Proof We sketch the proofs because they are elementary but not obvious. Multi-
plying the three-term recurrence by pn+1 and integrating, dropping the terms which
are zero by orthogonality, then applying the three-term recurrence to ξpn(ξ) (and
dropping more terms which are zero by orthogonality) shows that,∫

pn(ξ)2 dµ(ξ) =
γnβn−1

βn

∫
pn−1(ξ)2 dµ(ξ). (3.6)

This proves part 1 of this Lemma. Part 2 of the Lemma is proved in Theorem 4.3
of (Chihara 1978). Part 3 follows from the fact that the leading coefficient of pn+1 is
equal to the leading coefficient of −βnξpn(ξ), which equals the leading coefficient of
pn times −βn. 2

By Lemma 5 part 1 and 2, the polynomials in equation (3.3) are always orthonormal
with respect to a symmetric probability measure dµ on the real line. Note that this is
regardless of the signs and magnitudes of each bn. In fact, by part 3 of Lemma 5, the
leading coefficients of these orthonormal polynomials will have signs which depend on
the sign of each bn.

Taking stock, we see that our journey has led us from the sequence of functions
Φ = {ϕn}n∈Z+

with a real, skew-symmetric, irreducible differentiation matrix, to the
transformed functions Ψ = {ψn}n∈Z+ , which are of the form ψn(ξ) = pn(ξ)g(ξ), where
P = {pn}n∈Z+ are orthonormal polynomials with respect to a symmetric probability
measure dµ and g(ξ) = ψ0(ξ) = F [ϕ0](ξ). By equation (2.2), ϕ0 is infinitely differen-
tiable, which implies that g(ξ) → 0 superalgebraically as |ξ| → ∞. Since we assume
that ϕ0 is real-valued, then the functions g = F [ϕ0] must have an even real part
and an odd imaginary part (although in all specific cases considered in this paper, g
is real-valued and even). Furthermore, since ϕ0 is square-integrable, so is g. In the
current context we refer to such functions as mollifiers.
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Let us now embark on a return journey. Commencing with a symmetric probability
measure dµ on the real line, we let P = {pn}n∈Z+

be a family of real orthonormal
polynomials for the measure dµ, with p0 = 1. Then by Favard’s Theorem and Lemma
5, there exists a sequence of nonzero real numbers {bn}n∈Z+ such that the three term
recurrence (3.3) holds. Also by Lemma 5, the sign of each bn depends on the changes
in sign of the leading coefficients of the polynomials, which can be arbitrary.

Define the functions Φ = {ϕn}n∈Z+
by,

ϕn(x) = (−i)nF−1[g · pn],

where g is a mollifier as discussed above. By Lemma 5 part 2, pn is has the same parity
as a function as n has as an integer. Since g has even real part and odd imaginary
part, this implies that (−i)ng · pn has even real part and odd imaginary part too.
This implies that ϕn is real-valued for all n ∈ Z+. Furthermore, since g is square-
integrable and decays superalgebraically to zero at infinity, this implies that g · pn is
square-integrable, and hence so is ϕn for all n ∈ Z+.

It is our intent that Φ has a skew-symmetric differentiation matrix. Indeed, using
the equation for differentiation of a Fourier transform (equation (3.2)), and the three-
term recurrence for P , we have

ϕ′n = F−1[(−iξ)F [ϕn](ξ)] = F−1[(−i)n+1ξg(ξ)pn(ξ)]

= bn−1(−i)n+1F−1[g · pn−1] + bn(−i)n+1F−1[g · pn+1]

= −bn−1ϕn−1 + bnϕn+1.

Similarly, ϕ′0 = b0ϕ1. The return journey goes off without a hitch! The mollifier g is
also uniquely determined by the family Φ: we have g = F [ϕ0], because p0 = 1. This
proves the following theorem.

Theorem 6 (Fourier characterisation for Φ) The sequence Φ = {ϕn}n∈Z+
of real-

valued, square-integrable functions has a real, skew-symmetric, tridiagonal, irreducible
differentiation matrix if and only if

ϕn(x) =
(−i)n√

2π

∫ ∞
−∞

eixξ pn(ξ) g(ξ) dξ, (3.7)

where P = {pn}n∈Z+ is an orthonormal polynomial system on the real line with re-
spect to a symmetric probability measure dµ, and g is mollifier (as defined above).
Furthermore, P and g are uniquely determined by Φ and {bn}n∈Z+

.

Remark 7 Relaxing conditions on what it means to be a mollifier yields further exam-
ples of sequences Φ with a real, skew-symmetric, tridiagonal, irreducible differentiation
matrix, but which are not necessarily square-integrable or real-valued. Furthermore,
relaxing the symmetry condition on the measure dµ leads to skew-Hermitian differen-
tiation matrices. We do not pursue these extensions in this paper.

3.2 Orthogonal bases

It turns out that this characterisation using the Fourier transform lends itself well to
determination of orthogonality. Recall Parseval’s Theorem, namely that the unitary
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Fourier transform in (3.1) satisfies∫ ∞
−∞

ϕ(x)ψ(x) dx =

∫ ∞
−∞
F [ϕ](ξ)F [ψ](ξ) dξ,

for all ϕ,ψ ∈ L2(R).

Theorem 8 (Orthogonal bases) Let ϕn = (−i)nF−1[g · pn] for n ∈ Z+ as in The-
orem 6. Then Φ is orthogonal in L2(R) if and only if P is orthogonal with respect to
the measure |g(ξ)|2dξ. Furthermore, whenever Φ is orthogonal, the functions ϕn/‖g‖2
are orthonormal.

Proof By Parseval’s Theorem,∫ ∞
−∞

ϕn(x)ϕm(x) dx = (−i)m−n
∫ ∞
−∞

pn(ξ)pm(ξ)|g(ξ)|2 dξ.

Clearly Φ is orthogonal if and only if P is orthogonal with respect to |g(ξ)|2dξ. For the
final part of the Theorem, recall the earlier discussion, that P is always orthonormal
with respect to the probability measure dµ(ξ)/

∫
p2

0 dµ(ξ). Therefore, in the present
case, P is orthonormal with respect to |g(ξ)|2dξ/‖g‖22. Therefore ‖ϕn‖2 = ‖g‖2 for all
n ∈ Z+. This completes the proof. 2

What Theorems 6 and 8 show, is: that there is a one-to-one correspondence
between orthogonal systems Φ with real, skew-symmetric, irreducible dif-
ferentiation matrices, and sequences P of orthonormal polynomials with
respect to a symmetric probability measure of the form dµ(ξ) = w(ξ)dξ
(note that we allow the leading coefficients of the orthonormal polynomials to have
arbitrary signs for this correspondence).

One more question we shall answer now is the following. We have characterised
when Φ is an orthogonal basis, but what Hilbert space is it an orthogonal basis for?

Let us go right ahead with the answer. Define the Paley–Wiener space,

PWΩ(R) := {ϕ ∈ L2(R) : F [ϕ](ξ) = 0 for a.e. ξ ∈ R \ Ω},

where Ω is the support of dµ (Stein & Weiss 1971). Restricting a function’s Fourier
transform to lie within a subset Ω of the real line is known as band-limiting, and
Paley–Wiener spaces are often referred to as band-limited function spaces and have
numerous applications in signal processing.

Before proceeding to prove that this answer is the right one, we have a small
disclaimer. From here onwards we assume that the measure dµ in Theorems 6 and 8
is such that polynomials are dense in the space L2(R, dµ), so that P forms a complete
orthonormal basis of the whole space. This is a technical condition, and only in esoteric
examples does it fail (Chihara 1978, p. 73). We will not dwell upon it here, just warn
the reader.

Theorem 9 (Orthogonal bases for PW space) Let Φ be a sequence of orthogonal
functions in L2(R) with a real, skew-symmetric, tridiagonal, irreducible, differentiation
matrix. Then Φ forms an orthogonal basis for the Paley–Wiener space PWΩ(R), where
Ω is the support of F [ϕ0].

11



Proof By Theorem 8, we may write ϕn = (−i)nF−1[g · pn]. Recall that F [ϕ0] = g,
so Ω is the support of g. Define the linear map M from the set of polynomials by

M [p] = F−1[g · p],

for any polynomial p. Because g is a mollifier we have that g · p ∈ L2(R), and since
the Fourier transform maps L2(R) itself, we have that M [p] ∈ L2(R). Furthermore,
for any ξ /∈ Ω,

F [M [p]](ξ) = g(ξ) · p(ξ) = 0 · p(ξ) = 0, (3.8)

because g = F [ϕ0] and Ω is its support. Therefore M maps into PWΩ(R).
Now, consider the inner product after applying M to polynomials p and q:∫ ∞

−∞
M [p](x)M [q](x) dx =

∫
Ω

g(ξ)p(ξ)g(ξ)q(ξ) dξ =

∫
Ω

p(ξ)q(ξ) dµ(ξ).

We used Parseval’s Theorem for the first equality. First of all, we see from this that M
is a bounded linear operator from polynomials to PWΩ(R). Since we have assumed
that polynomials are dense in L2(R, dµ), we can extend M continuously to the entirety
of L2(R, dµ). Hence M is in fact an isometry between L2(R, dµ) and PWΩ(R).

One can readily check that M has a left and right inverse given by M−1[ϕ](ξ) =
F [ϕ](ξ)/g(ξ) for ξ ∈ Ω and M−1[ϕ](ξ) = 0 otherwise. We see that M is an isomet-
ric isomorphism between L2(R, dµ) and PWΩ(R) which maps the orthogonal basis
{(−i)npn}n∈Z+

to {ϕn}n∈Z+
. This proves that Φ is an orthogonal basis for PWΩ(R).

2

4 Construction of orthogonal systems

It follows from the analysis of the last section that the right starting point for our
analysis is choosing a symmetric Borel measure dµ(ξ) = w(ξ) dξ in Fourier space,
supported either on R or in an interval of the form [−a, a], a > 0. This measure
determines the mollifier g, the constants {bn}n∈Z+

and ultimately the orthogonal
sequence Φ in a unique manner. Alternatively, we may choose a positive sequence
{bn}n∈Z+

and reconstruct the measure dµ from (3.4) using Theorem 4, but this is
more problematic because the Favard Theorem does not ensure uniqueness of the
measure unless, for example, the Carleman criterion is satisfied (Chihara 1978, p. 75).
Yet another alternative is to commence from the seed ϕ0 and Fourier-transform it,
thereby recovering the mollifier and the measure. In the sequel we restrict ourselves
to the first of these three approaches.

We will now demonstrate how to take a symmetric Borel measure dµ(ξ) = w(ξ) dξ
(which is not necessarily normalised to be a probability measure), and produce coef-
ficients {bn}n∈Z+ and a seed function ϕ0 which generate an orthogonal sequence Φ.

Consistent with the last section, we let g(ξ) =
√
w(ξ) for all ξ in Ω, the support of

dµ and g(ξ) = 0 otherwise.
To determine the coefficients {bn}n∈Z+

, take any sequence P = {1, p1, p2, . . .} of
orthonormal polynomials for the normalised measure dµ(ξ)/

∫
dµ(ξ). The leading

12



coefficients of p1, p2 and so on may be be negative. Favard’s Theorem states that P
must satisfy a three-term recurrence,

pn+1(ξ) = (αn − βnξ)pn(ξ)− γnpn−1(ξ), n ∈ Z+. (4.1)

By Lemma 5, αn = 0 and γnβn−1/βn = 1, since dµ is a symmetric and positive
measure, and P is orthonormal with respect to a probability measure. Now, if we set
bn = β−1

n , then

pn+1(ξ) =
1

bn
ξpn(ξ)− bn−1

bn
pn−1(ξ), n ∈ Z+

(where b−1 = 0); here we have used the fact that γnβn−1/βn = 1. The signs of the
bn’s will be negative if the signs of the leading coefficients of pn and pn+1 are the same,
and positive otherwise, by Lemma 5.

By the discussion in Section 3, the seed for these coefficients {bn}n∈Z+ which will
lead to an orthogonal system is any scalar multiple of

ϕ0 =
F−1[w1/2](∫
w(ξ) dξ

) 1
2

. (4.2)

This particular multiple of the seed function will generate an orthonormal sequence
by the last part of Theorem 8.

In some situations all one has to hand are some orthogonal polynomials P̃ for dµ
which are not necessarily orthonormal, and have a three term recurrence of the form

p̃n+1(ξ) = −β̃nξp̃n(ξ)− γ̃np̃n−1(ξ), n ∈ Z+, (4.3)

which by Favard’s Theorem (Theorem 4) satisfies γ̃0 = 0 and γ̃nβ̃n−1/β̃n > 0. From
equation (3.6) in the proof of Lemma 5, we have∫

p̃n(ξ)2 dµ(ξ) = γ̃n · · · γ̃1
β̃0

β̃n

∫
p̃0(ξ)2 dµ(ξ). (4.4)

Therefore, p̃n(ξ) = cnpn(ξ) where

cn = ±

√
γ̃n · · · γ̃1

β̃0

β̃n

∫
p̃0(ξ)2 dµ(ξ). (4.5)

Either sign may be used to obtain all possible orthonormal polynomial sequences P .
Using this relationship and the three-term recurrence for P̃ we can rewrite the three-
term recurrence for P as

pn+1(ξ) = − cn
cn+1

β̃nξpn(ξ)− cn−1

cn+1
γ̃npn−1(ξ). (4.6)

From this we see that we may take

bn = ±
√

γ̃n+1

β̃n+1β̃n
, n ∈ Z+, (4.7)

13



and seed function to be any scalar multiple of

ϕ0 =
F−1[w1/2 · p0](∫
p0(ξ)2 w(ξ) dξ

) 1
2

. (4.8)

As before, this particular multiple generates an orthonormal sequence Φ.

4.1 Algorithm I

The simplest approach is to follow (4.7) and (4.8) by consecutive differentiation

ϕn+1 =
1

bn
(ϕ′n + bn−1ϕn−1), n ∈ Z+, (4.9)

where b−1 = 0. The simplest, alas, is not the best: it produces a sequence of functions
but it then depends on ingenuity and a great deal of careful algebra to identify the
underlying construct – if possible – with more familiar functions. A good example is
that of Hermite functions (1.5): now w(x) = e−x

2

, therefore g(x) = e−x
2/2 and it is

possible, using standard formulæ for Hermite polynomials, to prove by induction that

ϕn+1(x) =

√
2

n+ 1

[
ϕ′n(x) +

√
n

2
ϕn−1(x)

]
is consistent with the orthonormal sequence

ϕn(x) =
1

(2nn!π1/2)1/2
e−x

2/2Hn(x), n ∈ Z+,

but this is neither the most natural nor the simplest way of doing so.

4.2 Algorithm II

We commence by constructing an orthonormal polynomial system {pn}n∈Z+
explicitly.

For numerous measures dµ such systems are known explicitly, otherwise we might use
the three-term recurrence relation (3.3), perhaps in tandem with the Golub–Welsch
algorithm (Golub & Welsch 1969). This is followed by computing (3.7),

ϕn(x) = (−i)nF−1[w1/2 · pn], n ∈ Z+.

Note that by the discussion in Section 3, we need to have these polynomials normalised
so that their norms in L2(R, dµ) are all the same, or else we will not obtain a sequence
Φ with a skew-symmetric differentiation matrix3.

Returning to Example 1, all we need is to recall that Hermite functions are eigen-
functions of the Fourier transform and that, wishing to obtain an orthonormal se-
quence, ∫ ∞

−∞
H2
n(x)e−x

2

dx = 2nn!π1/2, n ∈ Z+

3The resulting differentiation matrix will clearly be a diagonal similarity transform of a skew-
symmetric matrix, which will have the desirable property of having all eigenvalues lie along the
imaginary axis, but this is not the aim of our exercise.
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(Olver, Lozier, Boisvert & Clark 2010, table 18.3.1).
A more interesting example is that of dµ(ξ) = χ[−1,1](ξ) dξ and Legendre polyno-

mials. Now w(ξ) = χ[−1,1](ξ) and

(n+ 1)Pn+1(ξ) = (2n+ 1)ξPn(ξ)− nPn−1(ξ)

(Rainville 1960, p. 160), in tandem with (4.7), imply

bn =
n+ 1√

(2n+ 1)(2n+ 3)
, n ∈ Z+ (4.10)

– we recover Example 2 from Section 1. Fourier transforms of Legendre polynomials
are known and we deduce from (Olver et al. 2010, eqn 18.17.19) that

ϕn(x) =

√
n+ 1

2

x
Jn+ 1

2
(x), n ∈ Z+. (4.11)

The factor of
√
n+ 1

2 comes from the normalisation of the Legendre polynomials.

Since dµ is supported by [−1, 1], the above orthonormal sequence is dense in the
Paley–Wiener space PW [−1,1](R). Interestingly enough, we did not find a reference
to the formula ∫ ∞

−∞
Jm(x)Jn(x)

dx

x
= 0, m 6= n, m, n ∈ Z+,

which follows from our construction, but note that it can be derived directly from
(Olver et al. 2010, eqn 10.22.6) with little difficulty.

4.3 Algorithm III

The formula (2.2) is the starting point to an alternative means to derive the sequence
Φ. Recall that

F [ϕ
(m−2`)
0 ] = (iξ)m−2`F [ϕ0].

Fourier-transforming (2.2) therefore yields

ψn(ξ) = (−i)nF [ϕ0](ξ) =
(−1)nψ0(ξ)

b0b1 · · · bn−1

bn/2c∑
`=0

(−1)`αn,`ξ
n−2`, n ∈ Z+.

The polynomial pn, being of the same parity as n, can be written in the form

pn(ξ) =

bn/2c∑
`=0

pn,`ξ
n−2`

and, comparing with ψn = ψ0pn, we deduce that

ϕn(x) =

bn/2c∑
`=0

(−1)n−`pn,`ϕ
(n−2`)
0 (x), n ∈ Z+. (4.12)
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This, together with (2.2), implies that

αn,` = (−1)n−`b1 · · · bn−1pn,`, ` = 0, . . . ,
⌊n

2

⌋
and, more importantly, provides an explicit formula for Φ in the ubiquitous case when
the pn,`s are known.

Inasmuch as (4.12) looks very attractive, we observe that it trades in the compu-
tation of Fourier transforms of the pns (as in Algorithm II) for the computation of
derivatives of ϕ0, which is often fairly complicated. Thus, returning to the example
of Legendre polynomials, we deduce from (Rainville 1960, p. 161) that

pn,` =
(−1)`( 1

2 )n−`2
n−2`

`!(n− 2`)!
, ` = 0, . . .

⌊n
2

⌋
,

while

ϕ0(x) =
J 1

2
(x)
√
x

=

√
2

π
j0(x),

where jn is the (entire) spherical Bessel function. We deduce that

ϕn(x) = (−1)n
bn/2c∑
`=0

( 1
2 )n−`2

n−2`

`!(n− 2`)!
j
(n−2`)
0 (x), n ∈ Z+. (4.13)

It is far from straightforward to prove that (4.13) is identical to (4.11), e.g. iterating
(Olver et al. 2010, eqn 10.51.2).

5 Systems of quasi-polynomials

The normalised Fourier transforms ψn from Section 3 were all of the form gpn, with a
mollifier g =

√
w and orthogonal polynomials pn, each of degree n. Similar pattern is

displayed by the functions Φ in the special case of Hermite functions (Example 1 from
Section 2). In general, we say that {fn}n∈Z+

is a sequence of quasi-polynomials if each
fn is a multiple of a function G and a polynomial qn of degree n – thus, disregarding
scaling, for Hermite functions we have G(x) = e−x

2/2 and qn = Hn. Another example
of quasi-polynomial Φ are the quasi-Hermite functions from Example 3.

Quasi-polynomials are of a very attractive form, hence it is of interest to explore
which orthogonal sets Φ lend themselves to this representation. We somewhat ex-
tend the framework from orthogonality in L2(R) to one in L2(Ω, dν) for an arbitrary
measure residing in a real interval Ω = [a, b] – in other words,∫ b

a

ϕm(x)ϕn(x) dν(x) = 0, m 6= n, m, n ∈ Z+,

and assume that ϕn(x) = G(x)qn(x), deg qn = n, n ∈ Z+. We further assume that
G−1 ∈ L2(Ω) and define dη(x) = G−2(x) dν(x): the orthogonality conditions become∫ b

a

qm(x)qn(x) dη(x) = 0, m 6= n, m, n ∈ Z+.
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In other words, {qn}n≥0 is an orthogonal polynomial system corresponding to the
measure dη. Being orthogonal, the qns obey the three-term reccurrence relation

qn+1(x) = (αnx− βn)qn(x)− γnqn−1(x), n ∈ Z+, (5.1)

where γ0 = 0 and γn > 0, n ∈ N.

Theorem 10 The only system of quasi-polynomials that is orthogonal on a real in-
terval and whose differentiation matrix is real, skew-symmetric, tridiagonal and irre-
ducible is, up to rescaling, the Hermite system (1.5).

Proof Our first observation is that ϕn = Gqn, where qn is an nth degree polyno-
mial, implies that {qn}n∈Z+

is on orthogonal polynomial system with respect to the
measure G2(x) dx. Therefore all zeros of qn are real and distinct.

Since we require a skew-symmetric, tridiagonal, irreducible differentiation matrix,
we are within the framework of this paper and the functions ϕn = Gqn obey (2.1).
Therefore, assuming G is differentiable,

G′qn +Gq′n = −bn−1Gqn−1 + bnGqn+1

and, dividing by G, we deduce that

G′

G
=
q′n + bn−1qn−1 − bnqn+1

qn
, n ∈ Z+.

We have on the right a rational function – a ratio of a polynomial of degree n + 1
and of a polynomial of degree n. The poles are distinct, because qn is an orthogonal
polynomial, and we deduce that there exist constants cn,1, c2,ndn,1, dn,2, . . . , dn,n such
that

G′

G
= cn,1 + cn,2x+

n∑
`=1

dn,`
x− ζn,`

, (5.2)

where ζn,1, . . . , ζn,n ∈ (a, b) are the zeros of qn. Note however that the left-hand side
of (5.2) is independent of n – this implies that cn,1 = c1, cn,2 = c2 and dn,1 = · · · =
dn,n = 0 – in other words,

G′ = (c1 + c2x)G.

The solution of this ODE is G(x) = ec1x+c2x
2

G(0) for some G(0) 6= 0, therefore

(c1 + c2x)qn = q′n + bn−1qn−1 − bnqn+1.

This is the moment to use the recurrence relation (5.1) to replace qn+1: we obtain

(c1 + c2x)qn = bn(αnx+ βn)qn − q′n − (bn−1 + bnγn)qn−1.

We have polynomials of degree n + 1 on both sides and, comparing the coefficient of
xn+1, we deduce that c2 = bnαn – the equality reduces to

c1qn = bnβnqn − q′n − (bn−1 + bnγn)qn−1.
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We now have on the left and the right polynomials of degree n and compare the
coefficients of xn there – this yields c1 = bnβn and we are left with

q′n = −(bn−1 + bnγn)qn−1, n ∈ Z+. (5.3)

We next recall the classical theorem of Hahn (1935), namely that the only orthogonal
polynomial systems whose derivatives are also orthogonal are Jacobi, Laguerre and
Hermite polynomials.4 Specifically,

dP
(α,β)
n (x)

dx
=
α+ β + n+ 1

2
P

(α+1,β+1)
n−1 (x),

dL(α)(x)

dx
= −L

(α+1)
n−1 (x),

dHn(x)

dx
= 2nHn−1(x).

We need, however, more: to be consistent with (5.3), we want q′n to be a constant
multiple of qn−1, therefore orthogonal with respect to the same measure – and this
is the case only once (up to a multiplicative constant) qn = Hn. Then, the Hermite
measure being determinate (Chihara 1978, p. 58), necessarily for orthogonality G(x) =

e−x
2/2 and the proof is complete. 2

6 Examples

In this section we present a number of examples, grouped into two: orthogonality
in the Paley–Wiener space PW [−1,1](R) and orthogonality in L2(R). Not all these
examples are completely worked out, they are often no more than pointers toward
interesting instances of orthogonal systems Φ, calling for further research.

A word about terminology: once a system of orthogonal functions Φ originates in a
named set of orthogonal polynomials, we call them transformed named functions. For
instance if Φ originated in the fictitious Bloggs Polynomials, we call them transformed
Bloggs functions.

6.1 Paley–Wiener spaces

6.1.1 Ultraspherical polynomials

We set dµ(x) = χ[−1,1](x)(1 − x2)α dx, where α > −1: the underlying ultraspherical

polynomials P
(α,α)
n obey the three-term recurrence relation

P
(α,α)
n+1 (x) =

(2n+ 2α+ 1)(n+ α+ 1)

(n+ 1)(n+ 2α+ 1)
xP(α,α)

n (x)− (n+ α)(n+ α+ 1)

(n+ 1)(n+ 2α+ 1)
P

(α,α)
n−1 (x)

4Some versions of this theorem mention also Bessel polynomials (Chihara 1978, p. 151), but they
are not orthogonal with respect to a positive-definite measure and, anyway, their inclusion does not
change our argument.
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(Rainville 1960, p. 263). Special case are Legendre polynomials Pn (α = 0), which
we have already considered in Section 4, and (under different scaling) Chebyshev
polynomials of the first kind, Tn and second kind, Un, for α = − 1

2 and α = 1
2

respectively. Up to another rescaling, ultraspherical polynomials for α > − 1
2 are the

same as Gegenbauer polynomials (Rainville 1960, p. 276).
The mollifier is g(x) = χ[−1,1](x)(1− x2)α/2 and, according to (4.7),

bn =
1

2

√
(n+ 1)(n+ 2α+ 1)

(n+ α+ 1
2 )(n+ α+ 3

2 )
, n ∈ Z+.

Note that for α = 0 this is consistent with (4.10).
Very lengthy algebra of little intrinsic interest yields

ϕ0(x) =
1√
2π

∫ 1

−1

(1− ξ2)α/2eixξ dξ =
2α/2Γ(1 + α

2 )

x
1
2 +α

2

J 1
2 +α

2
(x)

and this can be extended to other ϕns with Algorithm II.5 Intriguingly, while ϕ1 is
a scalar multiple of J 3

2 +α
2

(x)/x
1
2 +α

2 , consistently with the special case of Legendre
polynomials, this neat representation is no longer true for ϕ2 and beyond.

In Fig. 6.1 we display the functions ϕn, n = 0, . . . , 5, corresponding to the Cheby-
shev measure of the second kind, dµ(ξ) = χ[−1,1](ξ)(1 − ξ2)1/2 dξ – in other words,

α = 1
2 and bn ≡ 1

2 . The functions ϕn are linear combinations (with polynomial
coefficients) of Bessel functions.

6.1.2 Konoplev polynomials

Let α, β > −1 and consider dµ(ξ) = χ[−1,1](ξ)|ξ|2β+1(1 − ξ2)α dξ. Corresponding

orthogonal polynomial systems {S(α,β)
n }n≥0 have been originally considered by Szegő

(1918) in the case α = 0, and the general case is due to Konoplev (1961). They can
be conveniently expressed in terms of Jacobi polynomials,

S
(α,β)
2n (ξ) = P(α,β)

n (2ξ2 − 1), S
(α,β)
2n+1(ξ) = ξP(α,β+1)

n (2ξ2 − 1), n ∈ Z+,

while the recurrence relation for monic Konoplev polynomials {Š(α,β)
n }n≥0 is

Š
(α,β)
n+1 (ξ) = ξŠ(α,β)

n (ξ)− γnŠ
(α,β)
n−1 (ξ),

where

γ2n =
n(n+ α)

(2n+ α+ β)(2n+ α+ β + 1)
, γ2n+1 =

(n+ β + 1)(n+ α+ β + 1)

(2n+ α+ β + 1)(2n+ α+ β + 2)

(Chihara 1978, p. 221). Of course, bn =
√
γn+1 and note that this reduces to the

ultraspherical case from §6.1.1 once β = − 1
2 .

5Section 18.17 of (Olver et al. 2010) lists explicitly the Fourier transforms of all classical orthogonal

polynomials, inclusive of P
(α,α)
n . Unfortunately, this is irrelevant for us (except when α = 0) because

of the need to square-root the weight function.
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Figure 6.1: Transformed Chebyshev functions of the second kind ϕn for n = 0, . . . , 5:
darker colour denotes greater n.

The calculation of ϕ0 is long and complicated: the outcome is

ϕ0(x) = 2Γ(α+ 1)

{
Γ(α+ β + 5

2 )Γ(β + 1) sin(πβ)1F2

[
β + 1;
1
2 , α+ β + 2;

− x2

4

]
(6.1)

+ Γ(2 + α+ β)Γ(β + 3
2 ) cos(πβ)x1F2

[
β + 3

2 ;
3
2 , α+ β + 5

2 ;
− x2

4

]}
.

In the most interesting special case α = 0 this can be simplified. Given a, b > −1,

1F2

[
a;
a+ 1, b+ 1;

− x2

4

]
=

∞∑
`=0

(−1)`
(a)`

`!(a+ 1)`(b+ 1)`

x2`

4`
= a

∞∑
`=0

(−1)`

`!(b+ 1)`4`
x2`

a+ `

= ax−2a

∫ x

0

τ2a−1
∞∑
`=0

1

`!(b+ 1)`

(
−τ

2

4

)̀
dτ

= a2bΓ(b+ 1)x−2a

∫ x

0

τ2a−b−1Jb(τ) dτ.

Substitution in (6.1) and lengthy algebra result in a far simpler formula,

ϕ0(x) = 2Γ(β + 2)Γ(β + 5
2 )x−2β−2

∫ x

0

τ2β+1 sin(τ + πβ) dτ.
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Subsequent ϕns (obtained by the brute-force Algorithm I) do not appear to possess
any recognisable structure.

6.2 Systems dense in L2(R)

While orthogonal systems Φ which are dense in a Paley–Wiener space have, as far as
we can see, limited applications, this is hardly the case with systems dense in L2(R),
which have an immediate relevance to spectral methods, along the lines of Section 1.

6.2.1 Generalised Hermite polynomials

Hermite functions are a familiar tool and the most important example of an orthogonal
system that shares all the welcome properties sought in this paper: a skew-symmetric,
tridiagonal, irreducible differentiation matrix and density in L2(R). It is interesting,
though, to generalise them in line with the Szegő (1975, Problem 25) generalisation
of Hermite polynomials.

Letting η > − 1
2 , we denote by H

(η)
n the polynomials orthogonal with respect to the

measure
dµ(ξ) = |ξ|2ηe−ξ

2

dξ, ξ ∈ R.

They obey the three-term recurrence relation

H
(η)
n+1(ξ) = 2ξH(η)

n (ξ)− 2(n+ θn)H
(η)
n−1(ξ),

where

θn =

{
0, n even,

2η, n odd

(Chihara 1978, p. 156–7) They can be represented explicitly in terms of Laguerre
polynomials,

H
(η)
2n (ξ) = (−1)n22nn!L

(η− 1
2 )

n (ξ2), H
(η)
2n+1(ξ) = (−1)n22n+1n!L

(η+ 1
2 )

n (ξ2). (6.2)

The coefficients are thus

b2n =
√
n+ η + 1, b2n+1 =

√
n+ 1, n ∈ Z+,

while the mollifier is g(ξ) = |ξ|ηe−ξ
2/2. Assuming that η is not an odd integer, it

follows from (4.8) that

ϕ0(x) =
1√
2π

∫ ∞
−∞
|ξ|ηe−ξ

2/2+ixξ dξ =
e−x

2/4

2 cos πη2
[U(−η − 1

2x) + U(−η − 1
2 ,−x)],

where U are Weber parabolic cylinder functions,

U(a, z) =
π1/2e−z

2/4

2
a
2 + 1

4 Γ(a2 + 3
4 )

1F1

[
1
2a+ 1

4 ;
1
2 ;

z2

2

]
− π1/2ze−z

2/4

2
a
2−

1
4 Γ(a2 + 1

4 )
1F1

[
1
2a+ 3

4 ;
3
2 ;

z2

2

]
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(Olver et al. 2010, eqn 12.7.12). It follows that

U(−η − 1
2x) + U(−η − 1

2 ,−x) =
π1/22η/2+1e−z

2/4

Γ( 1
2 −

η
2 )

1F1

[
−η2 ;
1
2 ;

x2

2

]
and we simplify,

ϕ0(x) = c0e−x
2/2

1F1

[
− 1

2η;
1
2 ;

x2

2

]
, c0 =

1

cos πη2

π1/22η/2

Γ( 1
2 −

η
2 )
.

According to (Olver et al. 2010, eqn 13.3.16)

dm

dxm
1F1

[
a;
b;

z

]
=

(a)m
(b)m

1F1

[
a+m;
b+m;

z

]
, m ∈ Z+,

Using this, it is easy (though laborious) to prove by induction that

ϕ
(2m)
0 (x) = c0(−1)m2m( 1

2 + η
2 )me−x

2/2
1F1

[
− 1

2η −m;
1
2 ;

x2

2

]
,

ϕ
(2m+1)
0 (x) = c0(−1)m2m( 3

2 + η
2 )mxe−x

2/2
1F1

[
−η2 −m;
3
2 ;

x2

2

]
.

Since (e.g. using (6.2))

H
(η)
2n (x) =

n∑
`=0

(
n

`

)
(−n− η + 1

2 )`x
2n−2`,

H
(η)
2n+1(x) =

n∑
`=0

(
n

`

)
(−n− η − 1

2 )`x
2n+1−2`,

we now have all that is required to implement Algorithm III: the outcome is

ϕ2n(x) = c0
(−1)n( 1

2 + η
2 )n

2n
e−x

2/2
n∑
`=0

(
n

`

)
(−1)`(−n−η+ 1

2 )`

2`(−n+ 1
2 −

η
2 )`

1F1

[
−n+`− η

2 ;
1
2 ;

x2

2

]
,

ϕ2n+1(x) = c0
(−1)n( 3

2 + η
2 )n

2n
xe−x

2/2
n∑
`=0

(
n

`

)
(−1)`(−n−η− 1

2 )`

2`(−n− 1
2η−

1
2 )`

1F1

[
−n+`− η

2 ;
3
2 ;

x2

2

]
.

Once η is an even integer, the above expansions terminate, however only for η = 0
we recover quasi-polynomials, in line with Theorem 11. For example, for η = 2

ϕ2m(x) = c2me−x
2/2

m+1∑
k=0

(2m+ 2− k)
(−1)k

k!( 1
2 )k

x2k

– it is a multiple of G(x) = e−x
2/2 by a polynomial of degree 2m+ 2, hence does not

fit the definition of quasi-polynomials.
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6.2.2 Carlitz polynomials

The original Carlitz polynomials (Carlitz 1959) have been defined with respect to a
measure supported by a vertical line in the complex plane: letting λ ∈ (−1, 1), we
consider polynomials

Ω(λ)
n (z) =

(−1)n(1 + λ)nn!

2m( 1
2 )m

3F2

[
−n, n+ 1, 1 + z;
1, 1 + λ;

1

]
, n ∈ Z+,

which obey the orthogonality conditions∫ −c+i∞

−c−i∞

Ω
(λ)
m (z)Ω

(λ)
n (z) dz

sin(πz) sin(π(z − λ))
=

2iλ

sinπλ

(−1)mm!2(1 + λ)m(1− λ)m
(2m+ 1)(m− 1)!!2

δm,n,

where c ∈ (0, 1) and m!! =
∏m−1
j=0 (2j + 1) = (2m + 1)!/(2mm!) is the double facto-

rial. Original interest in such polynomials sprung from the connection between their
moments and the classical Bernoulli polynomials (Chihara 1978, p. 192–3).

We can recover orthogonality on the real line by a change of variables,

G(λ)
n (ξ) = (−i)nΩ(λ)

n

(
λ− 1 + iξ

2

)
, n ∈ Z+,

whereby

dµ(ξ) =
dξ

cosπλ+ coshπξ
, ξ ∈ R.

The three-term recurrence relation for monic Carlitz polynomials being

G
(λ)
n+1(ξ) = ξG(λ)

n (ξ)− n2(n2 − λ2)

4n2 − 1
G

(λ)
n−1(x),

we have

bn = (n+ 1)

√
(n+ 1)2 − λ2

(2n+ 1)(2n+ 3)
, n ∈ Z+.

Unfortunately, the closed form of the seed

ϕ0(x) =
1√
2π

∫ ∞
−∞

eixξ dξ

cosπλ+ coshπξ
, x ∈ R,

is in general unknown for λ ∈ (−1, 1). For λ = 0, though, it can be computed. The
measure reduces to

dµ(ξ) =
2 dξ

cosh2(πξ)
, ξ ∈ R,

and its moments µn =
∫∞
−∞ ξn dµ(ξ) are

µ2m = (−1)m
(

2

π

)3/2

B2m( 1
2 ), µ2m+1 = 0, m ∈ Z+,

where the Bns are Bernoulli polynomials.

23



We next compute the seed: since
√

1 + coshπξ =
√

2 cosh πξ
2 , we have

ϕ0(x) =
1

2
√
π

∫ ∞
−∞

eixξ dξ

cosh πξ
2

.

According to (Olver et al. 2010, Table 1.14(vii)),

F−1

(
cosh aξ

cosh ξ

)
=

√
2

π

cos a2 cosh x
2

cos a+ coshx
, |a| < π.

It follows at once by trivial rescaling that

ϕ0(x) = 2

√
2

π

coshx

1 + cosh 2x
=

√
2

π

1

coshx
.

Dropping the factor (2/π)1/2, we thus have

ϕ0(x) =
1

coshx
,

ϕ1(x) = −
√

3
sinhx

cosh 2x
,

ϕ2(x) =

√
5

2

(
2

coshx
− 3

cosh3 x

)
,

ϕ3(x) =

√
7

2
sinhx

(
2

cosh2 x
− 5

cosh4 x

)
,

ϕ4(x) =

√
9

8

(
8

coshx
− 40

cosh3 x
+

35

cosh5 x

)
and so on. We can certainly discern some structure, although this issue is not pursued
further in the current paper. Further structure is revealed in Fig. 6.2: each ϕn appears
to have n real zeros which interlace.

Although we do not pursue further this theme, transformed Carlitz functions might
well be a good subject for further investigation. As things stand, we just record them
as an example of an orthogonal system Φ of an entirely different flavour than, say,
Hermite and transformed generalised Hermite functions.

6.2.3 Freud polynomials

Given η > − 1
2 and an even function Q ∈ C∞(R), such that Q(x) ≥ 0 for |x| � 1,

orthogonal polynomials with respect to |x|ηe−Q(x) dx are called Freud polynomials
(Levin & Lubinsky 2001, Van Assche 2018). Hermite polynomials form the simplest
example, other familiar cases are Q(x) = x4 − tx2 for some t ∈ R and Q(x) = |x|
(whereby smoothness fails at the origin without any ill effects).

General rules governing the asymptotic behaviour of recurrence coefficients for
Freud polynomials have been a major open problem in the theory of orthogonal poly-
nomials which has been solved in a celebrated paper by Fokas, Its & Kitaev (1992).
(See also (Deift, Kriecherbauer, McLaughlin, Venakides & Zhou 1999).) This has
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Figure 6.2: Transformed Carlitz functions ϕn for n = 0, . . . , 5: darker colour denotes
greater n.

led to a burgeoning body of work, combining theory of orthogonal polynomials, the
Riemann–Hilbert transform, Painlevé equations and random matrix theory. Yet, even
in the simplest non-trivial case, dµ(x) = e−x

4

dx, explicit expressions of recurrence
coefficients, the one item of information necessary for the formation of Φ, are unknown.

Yet, the sequence {γm}m∈Z+ can in this case be generated recursively from

γ0 = 0, γ1 =
Γ( 3

4 )

Γ( 1
4 )
, 4γn(γn−1 + γn + γn+1) = n, n ∈ N (6.3)

(Shohat 1939). The string relation (6.3) had been extended by Magnus (1995) to the

measure dµ(x) = e−x
4+tx2

dx,

γn(γn−1 + γn + γn+1) + 2tγn = n, n ∈ N, (6.4)

where

γ0 = 0, γ1 =
|t|[K 3

4
( t

2

8 )−K 1
4
( t

2

8 )]

4K 1
4
( t

2

8 )

and Kν is a modified Bessel function of the second kind (also known as Macdonald

function). Further generalisation to dµ(x) = |x|ηe−x
4+tx2

dx has been presented
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in (Clarkson & Jordaan 2018), who have also given explicit relations of recurrence
coefficients in terms of Wronskians related to the Painlevé-IV equation.6
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Figure 6.3: Transformed Freud functions ϕn (with t = η = 0) for n = 0, . . . , 5: darker
colour denotes greater n.

At least in principle, we may use either (6.3) or (6.4) to calculate as many coeffi-
cients γn (therefore also bn =

√
γn+1) as required. The other ingredient in constructing

Φ is ϕ0, the (scaled) inverse Fourier transform of the square root of the weight function.
For t = 0 (corresponding to (6.3)) we have

ϕ0(x) =
2

3
4

4Γ( 3
4 )

{
2π0F2

[
—;
1
2 ,

3
4 ;

x4

128

]
− x2Γ2( 3

4 )0F2

[
—;
5
4 ,

3
2 ;

x4

128

]}
,

while for t 6= 0 the explicit form of the seed ϕ0 is unknown.
In Fig. 6.3 we have plotted the first six functions ϕm for the above transformed

Freud functions. Inasmuch as they look quite complicated – linear combinations with
polynomial coefficients of 0F2 hypergeometric functions – they display fairly regular
behaviour. It is too early to guess what the features are (in particular insofar as
approximation theory is concerned) of this orthogonal system and whether it is of any
importance in the context of spectral methods on the real line.

6These explicit coefficients, unfortunately, cannot be computed easily and rapidly.
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7 Conclusions and pointers to future research

In this paper we have completely characterised orthogonal systems Φ in L2(R) whose
differentiation matrix is real, skew-symmetric, tridiagonal and irreducible. In essence,
to every symmetric probability measure dµ(ξ) = w(ξ) dµ(ξ) there corresponds an
essentially unique Φ, which is dense in L2(R) if the support of dµ is the real line or
dense in an appropriate Paley–Wiener space depending on the support of dµ. We have
also presented constructive algorithms for practical computation of Φ and a number
of examples.

Future research in this area is likely to focus on three general themes.

• Firstly, generalising the basic idea underlying this paper, ‘good’ approximation
of a differentiation matrix in the setting of spectral methods. Are there any other
separable Hilbert spaces, except for L2(R), that give raise to skew-symmetric,
tridiagonal, irreducible differentiation matrices? How does one obtain such or-
thogonal systems? The question is of great relevance insofar as L2[−1, 1], say,
and L2[0,∞) are concerned, when the Fourier-transform-based tools of this pa-
per are no longer applicable – at least not in a straightforward manner.

Likewise, what about higher-order differentiation matrices, ‘encoding’ higher
derivatives? In particular, approximating the second derivative with a negative
semidefinite matrix is of major importance because of the ubiquity of the Laplace
operator. Of course, the quindiagonal matrix D2 describes the action of second
derivative in Φ and, as long as D is skew symmetric, D2 is negative semidefinite.
However, can we find Φ with a tridiagonal, negative semidefinite, irreducible
second-order differentiation matrix?

• Secondly, what are the features of orthogonal function systems Φ which act
on L2(R) and possess a skew-symmetric, tridiagonal, irreducible differentiation
matrix D? For example, where are their zeros? Brief examination of Figs 6.1–3
seems to indicate that transformed Chebyshev functions of the second kind and
transformed Freud functions have an infinity of real zeros, while each Carlitz
function ϕn has exactly n real zeros. Intriguingly, in all three cases the zeros of
ϕn and of ϕn+1 seem to interlace.

A feature which is of central importance, once we wish to harness Φ in a spec-
tral method, is its approximation power. How well do the ϕns approximate an
arbitrary L2(R) function?

Many dispersive equations of quantum mechanics have solutions which can be
conveniently expressed (for simplicity, in one space dimension) in terms of wave
packets e−α(x−x0) cosωx, where α > 0 and ω � 1. How well does Φ approximate
wave packets? Initial exploration indicates that there are substantial differences
in using different orthogonal systems insofar as the number of terms for fixed
error tolerance is concerned, once ω becomes very large and the wave packet
oscillates rapidly.

• Finally, how do we implement this entire body of ideas in a practical spectral
algorithm? Our ambition is an algorithm applicable to an arbitrary (in the
first stage linear) time-dependent partial differential equations which is stable
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by design and conserves Euclidean norm whenever this norm is conserved by
the original equations. Even disregarding the entire issue of time discretisation,
practical implementation of the body of ideas in this paper requires much further
research. How can we rapidly compute expansions of L2(R) functions in the basis
Φ? How do we generate such a basis in a rapid and stable manner? We expect
further papers to address this issue.

Another issue is how to make the tridiagonal structure of D act fully to our
benefit. For example, are there effective ways of approximating the product
ecDv, where c ∈ R and v ∈ `2(R), to high precision? More problems of this
kind are likely to emerge once orthogonal systems, as described in this paper,
are used as the kernel of a competitive spectral method.
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