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Abstract

The numerical solution of a linear Schrödinger equation in the semiclassical
regime is very well understood in a torus Td. A raft of modern computational
methods are precise and affordable, while conserving energy and resolving high
oscillations very well. This, however, is far from the case with regard to its
solution in Rd, a setting more suitable for many applications. In this paper we
extend the theory of splitting methods to this end. The main idea is to derive
the solution using a spectral method from a combination of solutions of the free
Schrödinger equation and of linear scalar ordinary differential equations, in a
symmetric Zassenhaus splitting method. This necessitates detailed analysis of
certain orthonormal spectral bases on the real line and their evolution under the
free Schrödinger operator.
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1 Introduction

1.1 Why the real line?

This paper is concerned with the numerical solution of the linear Schrödinger equation
in the semiclassical regime, describing the motion of an electron in a quantum system,

iε
∂u

∂t
= −ε2∆u+ V (x)u, t ≥ 0, x ∈ Rd, (1.1)

where the initial condition u(x, 0) = u0(x) ∈ L2(Rd) for all x ∈ Rd is given. The
semiclassical parameter ε > 0 is a small number which describes the square root
of the ratio between the mass of an electron and the total mass of the system, and
V : Rd → R is the interaction potential which is assumed to be smooth for the purposes
of this paper. Since |u(x, t)|2 gives the probability density of the electron residing at
x at time t, the system is required to satisfy,∫

Rd

|u(x, t)|2 dx ≡ 1, (1.2)

and any physically relevant numerical solution must be consistent with this conserva-
tion law. To read more, (Lasser & Lubich 2020) is an excellent, up to date review of
both the equation (1.1) and its numerical solution.

Respecting the unitarity property (1.2) underlies the importance of geometric nu-
merical integration methodologies in this context and has been central to modern
treatment of the linear Schrödinger equation in the semiclassical, 0 < ε � 1, and
the atomistic, ε = 1, regimes alike (Bader, Iserles, Kropielnicka & Singh 2014, Blanes,
Casas & Thalhammer 2017, Iserles, Kropielnicka & Singh 2018, Iserles, Kropielnicka &
Singh 2019, Jin, Markowich & Sparber 2011). However, all these publications are fo-
cussed on a subtly different problem: instead of being defined in Rd, the equation (1.1)
is set on a torus, typically Td, with periodic boundary conditions. This is of crucial
importance to splitting techniques, a common denominator to all these methodologies,
because the free Schrödinger equation

i
∂u

∂t
= −ε∆u, (1.3)

given with periodic boundary conditions, can be approximated very rapidly, affordably
and precisely by means of the Fast Fourier Transform (FFT).

Our contention is that the periodic setting imposes unwelcome limitations on the
solution, which might lead to altogether false outcomes, and this becomes problem-
atic once a solution over a long time interval is sought (e.g. in quantum control). The
underlying reason is the tension arising from the nature of the differential equation
and of the initial condition, both predicated by quantum-mechanical considerations.
The differential equation itself is dispersive: different waves travel at different speeds,
dependent on their wavelengths, which can span a very wide range, all the way from
O(1) to O

(
ε−1
)
. The initial condition is typically a linear combination of highly lo-

calised (and rapidly oscillating) wave packets. Recall that |u(x, t)|2 represents the
probability of a particle residing at x in time t: while it is a central tenet of quantum
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mechanics that a particle cannot be completely localised, typically |u(x, t)|2 is a linear
combination of narrowly-concentrated Gaussian-like structures. These Gaussian-like
structures travel at different speeds and, provided the equation is solved for sufficiently
long time, some of them eventually reach the boundary. At this very moment period-
icity becomes a foe because the wave packet reaches the boundary and ‘pops out’ at
the other end — this is not physical!

An alternative to periodic boundary conditions is to impose zero Dirichlet or zero
Neumann boundary conditions. However, the following argument shows that this
approach is also problematic. Consider an initial condition u0 ∈ H1

0(0, 1) and potential
V ∈ H1(0, 1). Now consider the following two initial boundary value problems, the
first of which has zero Dirichlet boundary conditions, the second of which has periodic
boundary conditions:

iε
∂v

∂t
= −ε2 ∂

2v

∂x2
+ V (x)v, x ∈ [0, 1], (1.4)

v(0, t) = 0, v(1, t) = 0, t > 0,

v(x, 0) = u0(x), x ∈ [0, 1],

and,

iε
∂w

∂t
= −ε2 ∂

2w

∂x2
+ V (|x|)w, x ∈ [−1, 1], (1.5)

w(−1, t) = w(1, t), ∂xw(−1, t) = ∂xw(1, t), t > 0,

w(x, 0) = sign(x)u0(|x|), x ∈ [−1, 1].

The relationship between v(x, t) and w(x, t) for x ∈ [0, 1] and t > 0 is rather simple.
Clearly the oddness of w(x, 0) is preserved since the second derivative and multipli-
cation by V (|x|) preserve oddness. Combining oddness with periodicity implies that
w(0, t) = 0 = w(1, t) for all time. It therefore follows from uniqueness of solution to
(1.4) that w(x, t) = v(x, t) for x ∈ [0, 1] and t > 0. So now let us return to the notion of
a wave packet moving towards the boundary, but this time with zero Dirichlet bound-
ary conditions imposed. The solution to the odd extension implies that this wave
packet will be reflected back and its sign reversed — while this physically happens in
the case of an infinite potential barrier, it is not the correct behaviour when posed in
free space! A similar construction can be made for Neumann boundary conditions.

We hope this has convinced the reader: no matter what we do, and no matter
how rapidly and accurately we can solve Schrödinger’s equation posed on a bounded
set, the result of truncating the domain from Rd to such a set destroys the physics
of the problem over a large enough time interval. This is the raison d’être for this
paper: solve (1.1) without compromising its setting in Rd. Throughout the remainder
of the paper we assume that (1.1) is presented in a single space dimension, d = 1.
A generalisation to a modest number of space dimensions can be accomplished with
tensor products along the lines of (Bader et al. 2014), while generalisation to a large
number of dimensions would require a raft of additional techniques and is beyond the
scope of the current paper.

To achieve this aim, we will extend the framework of symmetric Zassenhaus split-
tings, which has been developed for (1.1) on the torus T (Bader et al. 2014, Singh
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Figure 1.1: Top: We plot the evolution of (1.4) with u0(x) an approximate wave
packet (so that zero boundary conditions are satisfied) and V (x) = 0. The wave
packet moves rightwards towards the right boundary until time t = 10, after which it
moves leftwards, returning unscathed by the encounter. Such “reflections” contradict
the behaviour of a wave packet in free space. Bottom: We plot the evolution of the
corresponding extension in (1.5). We see that the reflection behaviour for the Dirichlet
initial boundary value problem can be explained by the periodic behaviour of this one.

2016), to (1.1) posed on the whole real line. This is not a straightforward exercise,
because we cannot use special properties of the Fourier basis. In Section 2 we derive
these Zassenhaus splittings under more general assumptions, allowing for bases other
than the Fourier basis to be used. In Section 3, we discuss the solution of the free
Schrödinger equation (1.3), focusing on two bases which are orthonormal on the real
line: Hermite functions and Malmquist–Takenaka functions. In Section 5 we demon-
strate how these pieces can be put together to construct practical numerical solvers
on the real line.

2 Splitting techniques

For the clarity of exposition we write ∂2
x instead of ∆ as in (1.1). The simplest splitting

methodology is to separate the potential and kinetic parts in (1.1), iε∂2
xu− iε−1V (x)u,

building upon the fact that separate solutions of

∂u

∂t
= −iε−1V (x)u and

∂u

∂t
= iε∂2

xu

are (at least in a torus or a parallelepiped) much less expensive to compute than those
of the full problem. We abuse notation for the exponential and write

u(x, t) = e−itε−1V (x)u(x, 0) and u(x, t) = eitε∂2
xu(x, 0)

for their respective solutions. Splitting methods produce a sequence of functions u0(x),
u1(x), u2(x),. . ., intended to satisfy uk(x) ≈ u(x, kh) where h is the time-step parame-
ter. These functions of x can be discretised by any approach, for example by a spectral
method.
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The two simplest splitting methods are the Lie–Trotter formula

uk+1(x) = eiεh∂2
xe−ihε−1V (x)uk(x), (2.6)

and
uk+1(x) = e−ihε−1V (x)/2eiεh∂2

xe−ihε−1V (x)/2uk(x). (2.7)

Of course, the role of ε−1V (x) and ε∂2
x can be reversed. The latter approach, ad-

vocated in (Jin et al. 2011) in tandem with spectral methods, is the famous Strang
splitting (known also as Strang–Marchuk splitting in Russian literature).

Formally, the Strang splitting is known to produce time-stepping methods bearing
an error of O

(
h3
)
. However, this is misleading because the error constant is of size

O
(
ε−1
)
, as we show below using Theorem 3. A more effective measure of error should

incorporate the small parameter ε, which may be even smaller in magnitude than
the time-step h. To calculate the effective error of the splitting (2.7), where the
error constant does not depend on the small semiclassical parameter ε, let us have
a closer look at symmetric Baker–Campbell–Hausdorff formula (Hairer, Lubich &
Wanner 2006, Sec. III.4.2),

e
1
2 τAeτBe

1
2 τA = esBCH(τA,τB) (2.8)

where A = −ε−1V , B = ε∂2
x and τ = ih with

sBCH(τA, τB) = τA+ τB − τ3 1

24
[[B,A], A]− τ3 1

12
[[B,A], B]

+ τ5 7

5760
[[[[B,A], A], A], A] + τ5 7

1440
[[[[B,A], A], A], B]

+ τ5 1

180
[[[[B,A], A], B], B] + τ5 1

720
[[[[B,A], B], B], B]

+ τ5 1

480
[[[B,A], A], [B,A]]− τ5 1

360
[[[B,A], B], [B,A]] + h.o.t.

Given that A and B are unbounded operators and also contain powers of ε, we now
proceed to clarify the meaning of “h.o.t.” (higher order terms).

2.1 A new analysis of the sBCH formula for the semiclassical
Schrödinger equation

As it was shown in (Jin et al. 2011) Schrödinger equations in semiclassical regime
produce oscillations in space of frequency O

(
ε−1
)
, which places restrictions on the

discretisation in space depending on which basis is used, because we must employ
sufficiently fine discretisation to resolve these oscillations. If the spatial variable is
discretised using the Fourier basis then this necessitates O(ε−1) basis elements, which
in turn, leads to the conclusion that after discretisation, operators of type ∂nx have a
spectral radius which scales like O(ε−n). As we discuss in Section 3, for other bases it
is not necessarily the case that O(ε−1) basis elements can resolve spatial oscillations of
frequency O

(
ε−1
)

(indeed the Fourier basis is the optimal basis for resolving periodic
oscillations). As such, we will not make assumptions about the number of basis
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elements, but rather, make assumptions directly on the spectral radius of the partial
derivative operator (an assumption which holds in both of our examples discussed in
Section 3)

Assumption 1 Throughout this paper we will assume that after spatial discretisation,
the operator ∂x has spectral radius O(ε−1).

Since the potential V (x) can in principle be an unbounded function on the real
line, we must be careful that our expansions be treated locally in x.

Assumption 2 The potential V : R → R is infinitely differentiable, which we write
V ∈ C∞loc(R). As a result, all derivatives are locally bounded in R.

We can now make sense of “h.o.t.” in the sBCH formula by bounding the magni-
tude element of the Hall basis for the free Lie algebra generated by A = −ε−1V and
B = ε∂2

x (i.e. A, B, [A,B], [[B,A], A], [[B,A], B] . . . (Hall 1950, Reutenauer 1993)).

Theorem 3 Let A = −ε−1V and B = ε∂2
x assume they have been discretised follow-

ing Assumption 1, and stipulate Assumption 2. Then all terms C of the Hall basis
constructed of letters A and B either vanish (i.e. C ≡ 0) or are O(ε−1).

Before we proceed with the proof of the theorem, note that all elements of Hall
basis (Reutenauer 1993) of commutators constructed of letters A and B live in the set

G =

{
K∑
k=0

yk(x)∂kx : K ∈ Z+, y0, . . . , yK ∈ C∞loc(R)

}
,

by applying the product rule (for differentiation). For example,

[B,A] = −[∂2
x, V ] = −

(
V (2) + 2V (1)∂x + V ∂2

x − V ∂2
x

)
= −V (2) − 2V (1)∂x

[[B,A], A] = ε−1[[∂2
x, V ], V ] = ε−12(V (1))2

[[B,A], B] = −ε[[∂2
x, V ], ∂2

x] = ε
(
V (4) + 4V (3)∂x + 4V (2)∂2

x

)
,

[[[B,A], A], A] = 0,

where V (k) = δkxV . We define the height of the commutator C as the largest index of
non-zero coefficient yK(x):

ht(C) = ht

(
K∑
k=0

yk(x)∂kx

)
= K, where yK(x) 6≡ 0,

One can observe, that ht(A) = 0, ht(B) = 2, ht([B,A]) = 1, ht([[B,A], A]) = 0 and
ht([[B,A], B]) = 2.

In the proof we will also refer to the formula elaborated in (Bader et al. 2014) n∑
i=0

fi(x)∂ix,

m∑
j=0

gj(x)∂jx

 =

n∑
i=0

m∑
j=0

i∑
`=0

(
i

`

)
fi(x)

[
∂i−`x gj(x)

]
∂`+jx
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−
m∑
j=0

n∑
i=0

j∑
`=0

(
j

`

)
gj(x)

[
∂j−`x fi(x)

]
∂`+ix . (2.9)

Proof (of Theorem 3) Let us assume, that a certain non-zero commutator C
in Hall basis is built of NA letters A and NB letters B. We show by induction on
NA +NB , that

ht(C) ≤ NB −NA + 1. (2.10)

The cases in which NA +NB = 1 are obtained explicitly as ht(A) = 0 and ht(B) = 2,
thus (2.10) is satisfied for the generators of the free Lie algebra. Now let us assume
that a given non-zero commutator C satisfies (2.10), so can be written as

C =

K∑
k=0

yk(x)∂kx ,

where 0 ≤ K ≤ NB −NA + 1 and yK 6≡ 0. Then by (2.9),

[A,C] = ε−1
K−1∑
k=0

 K∑
j=k

(
j

k

)
yj(x)V (j−k)(x)

 ∂kx ,

[B,C] = ε

K∑
k=0

y′′k (x)∂kx + 2y′k(x)∂k+1
x ,

Therefore, ignoring the cases where these commutators vanish identically, we see that
(2.10) is satisfied for [A,C] and [B,C] by the inductive hypothesis. This, in fact,
completes the induction step for the entire Hall basis, because any commutator in the
Hall basis can be written as a linear combination of words of the form

[a1, [a2, [. . . , [an−1, an] . . . ]]],

where ak ∈ {A,B} for all k, by the Jacobi identity (this is known as the Dynkin basis).
Next we show that every non-zero commutator C in the Hall basis scales like

O
(
ε−1
)
. Indeed, when C is made up of NA letters A = −ε−1V and NB letters

B = ε∂2
x, the linearity of commutators implies the equality of commutators C and

εNB−NAC̄, where C̄ has the same structure as C, but with Ā = −V and B̄ = ∂2
x

instead of A and B. Obviously ht(C) = ht(C̄). Now by Assumption 1, ∂x scales like
ε−1 after discretisation and by Assumption 2 we have that all variable coefficients
yk lie in C∞loc(R) (so all derivatives are locally bounded). Therefore C̄ = O(ε−ht(C)).
Since for non-zero C, we have ht(C) ≤ NB −NA + 1, we conclude that,

C = εNB−NAC̄ = O(εNB−AN−ht(C̄)) = O(εNB−NA−(NB−NA+1)) = O(ε−1),

which concludes the proof of the theorem. 2

An immediate consequence of Theorem 3 and (2.8) is that

e
1
2 τAeτBe

1
2 τA = eτ(A+B)+O(h3ε−1) = eτ(A+B) +O

(
h3ε−1

)
.
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This means that taking the time step size h = O(ε) in the Strang splitting (2.7) yields
a local truncation error ofO(h2) or equivalently, O(ε2). However, a time step h = O(ε)
is overly expensive. If instead, one took a more reasonable h = O

(
ε1/2

)
, then the local

truncation error is effectively O(h) or equivalently, O(ε1/2). In summary, unless the
time step is unacceptably reduced, the effective error of the Strang splitting is larger
than that suggested by an analysis which ignores the smallness of ε.

2.2 Symmetric Zassenhaus splittings

This order reduction for the Strang splitting in the case of Hamiltonians in a semi-
classical setting motivates the quest for higher order splittings. A systematic approach
is to calculate higher order symmetric Zassenhaus splittings, first proposed in (Bader
et al. 2014). Using this methodology we will derive two splittings for the solution
operator exp(τ(A + B)) where A = −ε−1V , B = ε∂2

x and τ = ih, of order O
(
h3ε−1

)
and O

(
h5ε−1

)
respectively, in the family of symmetric Zassenhaus splittings.

1. To derive the first symmetric Zassenhaus splitting, we apply the sBCH formula
in the following way.

e−
1
2 τAeτA+τBe−

1
2 τA = esBCH(−τA,τA+τB) (2.11)

where

sBCH(−τA, τA+ τB) = (2.12)

= τB + τ3 1

24
[[B,A]A] + τ3 1

12
[[B,A], B]

− τ5 1

720
[[[[B,A], A], B], B]− τ5 1

720
[[[[B,A], B], B], B]

− τ5 1

480
[[[B,A], A], [B,A]]− τ5 1

240
[[[B,A], B], [B,A]] +O

(
h7ε−1

)
.

Substituting (2.12) into (2.11) results in the first symmetric Zassenhauss split-
ting, which coincides with Strang splitting,

eτ(A+B) = e
1
2 τAesBCH(−τA,τA+τB)e

1
2 τA (2.13)

= e
1
2 τAeτBe

1
2 τA +O

(
h3ε−1

)
.

2. To derive the second symmetric Zassenhaus splitting, we split the inner term of
(2.13) by the same approach as above, that is

e−
1
2 τBesBCH(−τA,τA+τB)e−

1
2 τB = esBCH(−τB,sBCH(−τA,τA+τB))

which leads to,

eτA+τB = e
1
2 τAe

1
2 τBesBCH(−τB,sBCH(−τA,τA+τB))e

1
2 τBe

1
2 τA, (2.14)

where

sBCH(−τB, sBCH(−τA, τB + τA))
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=
1

24
τ3[[B,A], A] +

1

12
τ3[[B,A], B]

− 19

2880
τ5[[[[B,A], A], B], B]− 17

1440
τ5[[[[B,A], B], B], B]

− τ5 1

480
[[[B,A], A], [B,A]]− τ5 1

240
[[[B,A], B], [B,A]] +O

(
h7ε−1

)
.

Observe that by Theorem 3, the first two commutators (which involve three
letters) scale like O

(
h3ε−1

)
and the remainder scales like O

(
h5ε−1

)
. Therefore,

these first two terms are what will appear in this Zassenhaus splitting. However,
the commutator,

[[B,A], B] = [[ε∂2
x,−ε−1V ], ε∂2

x] = ε
(
V (4) + 4V (3)∂x + 4V (2)∂2

x

)
,

will not be skew-Hermitian after discretisation (which would result in loss of
unitarity of the method), and therefore cannot be substituted into (2.14). For
this reason, as proposed in (Bader et al. 2014), we use a substitution rule of the
following kind:

y(x)∂x = −1

2

[∫ x

x0

y(s)ds

]
∂2
x −

1

2
∂xy(x) +

1

2
∂2
x

[∫ x

x0

y(s)ds ·
]
,

and obtain terms that remain skew-Hermitian after discretisation:

sBCH(−τB, sBCH(−τA, τB + τA))

= τ3ε−1 1

12
(V (1))2 + τ3ε

1

12
V (4) + τ3ε

1

3
V (3)∂x + τ3ε

1

3
V (2)∂2

x +O
(
h5ε−1

)
=τ3ε−1 1

12
(V (1))2 +

1

6
τ3ε

{
V (2)∂2

x + ∂2
x

[
V (2)·

]}
︸ ︷︷ ︸

O(ε−2)

− 1

12
τ3εV (4) +O

(
h5ε−1

)
.

In the final form of the splitting (2.14) the small O
(
h3ε
)

term involving V (4)

can be discarded.

Summing up these two derivations, we have the splittings,

uk+1(x) = eR0e2R1eR0uk(x) +O
(
h3ε−1

)
(2.15)

and
uk+1(x) = eR0eR1e2R2eR1eR0uk(x) +O

(
h5ε−1

)
, (2.16)

where, letting τ = ih,

R0 = −1

2
τε−1V,

R1 =
1

2
τε∂2

x,

R2 =
1

12
τ3ε

{
∂2
x[V (2) · ] + V (2)∂2

x

}
+

1

24
τ3ε−1(V (1))2.
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Note that R0 = O
(
hε−1

)
, R1 = O

(
hε−1

)
, R2 = O

(
h3ε−1

)
.

It is also possible to derive even higher order methods, such as

un+1(x) = eR0eR1eR2e2R3eR2eR1eR0un(x) +O
(
h7ε−1

)
, (2.17)

where

R3 = − 1

120
τ5ε−1V (2)(V (1))2 +

1

24
τ3εV (4)

+
1

120
τ5ε

{
∂2
x

[(
7(V (2))2 + V (3)V (1)

)
·
]

+
(

7(V (2))2 + V (3)V (1)
)
∂2
x

}
+

1

60
τ5ε−3

{
∂4
x

[
V (4) ·

]
+ V (4)∂4

x

}
.

Note that R3 = O
(
h5ε−1

)
. We refer the reader to (Singh 2016) for discussion of deriv-

ing such higher order methods via a sequence of skew-Hermitian operators R0,R1, . . ..
Our new analysis encapsulated in Theorem 3 shows that each term R` is actually of
size O

(
h2`−1ε−1

)
for ` = 1, 2, . . .. In Section 5, we will discuss how to go about

computing eR` for each `.

3 Orthonormal systems and free Schrödinger evolu-
tions

3.1 Orthogonal systems with tridiagonal differentiation matri-
ces

Solving (1.1) by spectral methods based upon symmetric Zassenhaus splittings (2.15)
or (2.16) involves three ingredients: the splitting itself into R0,R1,R2, . . ., the choice
of spectral basis, and the means to compute the exponentials eR` . The generalisation
of each to the new setting requires new ideas and substantial effort. In this subsection
we are concerned with the choice of the spectral basis.

We seek a set Φ = {ϕn}∞n=0 which forms an orthonormal basis of L2(R) – this
means that any f ∈ L2(R) can be expanded in the form

f(x) =

∞∑
n=0

f̂nϕn(x), where f̂n =

∫ ∞
−∞

f(x)ϕn(x) dx, n ∈ Z+.

For the time being we require the ϕns to be real, although this will be lifted as
necessary (with suitable changes). In addition we require that Φ has a tridiagonal
differentiation matrix (which, it is easy to prove, must be skew-symmetric),

ϕ′n = −bn−1ϕn−1 + bnϕn+1, n ∈ Z+, (3.1)

where b−1 = 0 and bn > 0, n ∈ Z+. This makes both computation and analysis
considerably easier.

A comprehensive theory of such orthogonal systems has been developed in (Iserles
& Webb 2019, Iserles & Webb 2020a). The main issue, making (3.1) compatible

10



with orthonormality, can be explicated by considering Fourier transforms of the ϕns.
Specifically, let w(ξ) dξ be a Borel measure over R and its Radon–Nikodym derivative
w ≥ 0 be absolutely continuous and even. Furthermore assume that all the moments of
this measure are finite. Such measure generates a system of orthonormal polynomials
{pn}∞n=0, ∫ ∞

−∞
pn(ξ)pm(ξ)w(ξ) dξ = 0, m 6= n,

∫ ∞
−∞

p2
n(ξ)w(ξ) dξ = 1.

Then the scaled inverse Fourier transform,

ϕn(x) =
(−i)n√

2π

∫ ∞
−∞

pn(ξ)g(ξ)eixξ dξ, n ∈ Z+, (3.2)

where g is any function satisfying |g(ξ)|2 = w(ξ), forms an orthonormal system on the
real line which satisfies (3.1). Note that this system is real-valued if and only if g has
even real part and odd imaginary part, for example g(ξ) =

√
w(ξ). The constants bn

in (3.1) are inherited from the recurrence relation for orthonormal polynomials,

bnpn+1(ξ) = ξpn(ξ)− bn−1pn−1(ξ), n ∈ Z+.

The orthonormal system given by (3.2) need not be dense in R – as a matter
of fact, it is dense in the Paley–Wiener space PWsupp(w)(R) ⊆ L2(R) which is the
space of L2(R) functions whose Fourier transforms vanish outside of the support of
w. Therefore, the system is a basis of L2(R) if and only if the weight function w is
positive on the whole real line.

Complete orthonormal bases can be formed also from polynomials P = {pn}∞n=0 or-
thogonal on the half-line [0,∞) (Iserles & Webb 2020b), e.g. the Laguerre polynomials
whose orthogonality measure is e−ξ dξ, ξ ≥ 0: The representation (3.2) survives intact
but, to render the system dense in L2(R), we need to complement P with orthogonal
polynomials with respect to the mirror image of w in the left half-line, w(−ξ) dξ for
ξ ≤ 0. The new system Φ is enumerated by n ∈ Z and in place of (3.1) we have

ϕ′n = −bn−1ϕn−1 + icnϕn + bnϕn+1, n ∈ Z,

with bn > 0, n 6= 0, b0 = 0 and real cn – note that the new differentiation matrix is
skew-Hermitian.

3.2 Free Schrödinger evolutions

Given an orthonormal system Φ on the real line, we denote by ψn, n ∈ Z+, the solution
of the free Schrödinger equation (1.3) with the initial condition ϕn – in other words,

∂ψn
∂t

= −iε
∂2ψn
∂x2

, ψn(x, 0) = ϕn(x), x ∈ R. (3.3)

We call Ψ(t) = {ψn(·, t)}∞n=0 the free Schrödinger evolution (FSE) of Φ.
The exact solution of (3.3) via the Fourier transform is well known and can be

easily verified by direct differentiation:

ψn(x, t) =
1√
2π

∫ ∞
−∞

ϕ̂n(η)eiη2εt+iηx dη, (3.4)

11



where

ϕ̂n(η) =
1√
2π

∫ ∞
−∞

ϕn(ξ)e−iηξ dξ

is the familiar Fourier transform of ϕn.
On the face of it, our job is done: any mention of the phrase “Fourier transform”

elicits from a numerical analyst the instinctive response “Fast Fourier Transform!”.
This, however, is somewhat rash. An FFT computes rapidly the discrete Fourier
transform which, in turn, is a very precise (at any rate, for very smooth functions)
approximation of the Fourier transform of a periodic function in a compact interval,
while our setting is the entire real line. One possibility is to clip the real line, ap-
proximating it by a sufficiently large interval and disregarding the Gibbs effect at the
endpoints. This immediately begs the question “how large” which, while not beyond
the ken of numerical reasoning, presents its own challenges. In this paper we adopt
an alternative – and arguably more effective – point of view, seeking the exact so-
lution of (3.4) for specific orthonormal systems Φ. While this approach cannot be
expected to apply to each and every Φ consistent with the setting of Subsection 2.1,
it does so with the two most interesting orthonormal systems: Hermite functions and
Malmquist–Takenaka functions.

Once FSEs Ψ(t) are known, the solution of the free Schrödinger equation (1.3) with
the initial condition u(x, kh) proceeds as follows: The function u(x, kh) is expanded
in the orthonormal basis Φ,

u(x, kh) ≈
N∑
n=0

ûnϕn(x) (3.5)

for a sufficiently large truncation parameter N . Having done so, linearity of (1.3)
implies that

u(x, (k + 1)h) ≈
N∑
n=0

ûnψn(x, h). (3.6)

We get the coefficients for free because they do not change — it is the basis which
changes. The choice ofN is governed by approximation properties of the spectral basis,
and its ability to approximate spatial oscillations of frequency O

(
ε−1
)

as discussed in
the introduction.

Indeed, orthonormal systems are not all of equal value: more specifically, they
can approximate functions at different speeds. While standard spectral methods on a
torus are known to converge (for analytic functions) at an exponential speed, equiva-
lent theory does not exist yet on the real line. Recalling from Section 1 that solutions
of (1.1) are typically composed of wave packets, it is instructive to enquire how well
different orthonormal systems approximate wave packets. This is investigated in (Iser-
les, Luong & Webb 2021) for the two families Φ described in the sequel: in both cases
we can prove exponential convergence to any set error tolerance.

We note for further reference that the computation of (3.6) (once N and h have
been appropriately chosen) requires both the knowledge of Ψ(h) and the means to
evaluate an expansion as in (3.5).
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Theorem 4 Let Φ be as in (3.2). Then the functions,

ψn(x, t) =
(−i)n√

2π

∫ ∞
−∞

pn(ξ)g(ξ)eixξ+iεtξ2 dξ, n ∈ Z+, (3.7)

where {pn}∞n=0 is the system of orthonormal polynomials with respect to the measure
|g(ξ)|2 dξ, satisfies (3.3) (in particular ψn(x, 0) = ϕn(x)) and for all t is itself an
orthonormal basis of L2(R) satisfying,

∂ψn(x, t)

∂x
= −bn−1ψn−1(x, t) + bnψn+1(x, t), n ∈ Z+, (3.8)

where {bn}n∈Z+
are the same constants as in (3.1).

Proof Differentiating under the integral sign with respect to x twice and t once
demonstrates that ψn(x, t) satisfies the free Schrödinger equation (3.3), and it is clear
that setting t = 0 in this formula yields ϕn(x).

To show that ψn is an orthonormal system satisfying (3.8), note that∣∣∣g(ξ)eiεtξ2
∣∣∣2 = |g(ξ)|2 = w(ξ), (3.9)

so these functions still come under the framework of (3.2), with exactly the same

polynomials {pn}n∈Z+ , but with the function g(ξ)eiεtξ2 in place of g(ξ).
2

4 Examples of orthonormal systems

In this section we describe two systems Φ and their free Schrödinger evolutions Ψ(t).

4.1 Hermite functions

Hermite functions

ϕn(x) =
1

(2nn!π1/2)
1/2

Hn(x)e−x
2/2, n ∈ Z+, (4.1)

where Hn is the nth Hermite polynomial, are eigenfunctions of the Fourier transform,

1√
2π

∫ ∞
−∞

ϕn(ξ)eixξ dξ = inϕn(x), x ∈ R, n ∈ Z+. (4.2)

Their orthonormality in L2(R) follows from that of the familiar Hermite polynomials

(Olver, Lozier, Boisvert & Clark 2010, 18.3) in L2(R; e−ξ
2

), they obey the differential
recurrence relation (3.2) with bn =

√
n/2 and the Cramér inequality |ϕn(x)| ≤ π−1/4,

x ∈ R.1

1They should not be confused with Hermite functions from (Ismail 2020, p. 84).
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To derive the FSE ψ = {ψn}∞n=0 we assume the atomistic setting ε = 1: to translate
to semiclassical setting, we will replace t by εt in the final formula. Our starting point
is the standard generating function for Hermite polynomials,

∞∑
n=0

Hn(x)

n!
zn = e2xz−z2

(Olver et al. 2010, 18.12.15). It now follows from (4.1) that

π1/4ex
2/2

∞∑
n=0

ϕn(x)√
n!

(21/2z)n = e2xz−z2

or, replacing z → 2−1/2z,

∞∑
n=0

ϕn(x)√
n!

zn = π−1/4 exp

(
−x

2

2
+ 21/2xz − z2

2

)
.

It now follows from (3.4) and (4.2) that

∞∑
n=0

ψn(x, t)√
n!

(iz)n =
1√
2π

∞∑
n=0

zn√
n!

∫ ∞
−∞

ϕn(ξ)ei(ξ2t+ξx) dξ

=
1√
2π

∫ ∞
−∞

[ ∞∑
n=0

ϕn(ξ)√
n!

zn

]
ei(ξ2t+ξx) dξ

=
1

21/2π3/4

∫ ∞
−∞

exp

(
−1

2
η2 + 21/2ξz − 1

2
z2 + iξ2t+ iξx

)
dξ

=
1

π1/4(1− 2it)1/2
exp

(
−z

2 + 23/2ixz − x2 + 2itz2

2(2it− 1)

)
.

We conclude that

∞∑
n=0

ψn(x, t)√
n!

(iz)n =
1

π1/4(1− 2it)1/2
exp

(
x2

2(2it− 1)

)
exp

(
−21/2ixz

2it− 1
− 1

2

2it+ 1

2it− 1
z2

)
.

Set

X = − x

(1 + 4t2)1/2
, Z =

1

21/2

(
2it+ 1

2it− 1

)1/2

z,

which satisfy,

2XZ − Z2 = −21/2ixz

2it− 1
− 1

2

2it+ 1

2it− 1
z2,

and we deduce, using again the generating function for Hermite polynomials, that

exp

(
−21/2ixz

2it− 1
− 1

2

2it+ 1

2it− 1
z2

)
=

∞∑
n=0

Hn(X)

n!
Zn.
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All we thus need is to compare the powers of z in

∞∑
n=0

ψn(x, t)√
n!

(iz)n

=
1

π1/4(1− 2it)1/2
exp

(
x2

2(2it− 1)

) ∞∑
n=0

Hn(X)

n!
Zn

=
1

π1/4(1− 2it)1/2
exp

(
x2

2(2it− 1)

) ∞∑
n=0

1

n!
Hn

(
− x

(1 + 4t2)1/2

)(
1

21/2

(
2it+1

2it−1

)1/2

z

)n
.

The outcome is

ψn(x, t) =
in

(2nn!π1/2)1/2(1− 2it)1/2
exp

(
x2

2(2it− 1)

)(
2it+ 1

2it− 1

)n/2
Hn

(
x

(1 + 4t2)1/2

)
.

Finally, since

Hn

(
x

(1 + 4t2)1/2

)
= (2nn!)1/2π1/4 exp

(
x2

2(1 + 4t2)

)
ϕn

(
x

(1 + 4t2)1/2

)
,

we deduce, restoring the semiclassical setting, that

Lemma 5 The explicit form of the Hermite FSE is

ψn(x, t) =
(1 + 2iεt)n/2

(1− 2iεt)(n+1)/2
exp

(
− itεx2

1 + 4ε2t2

)
ϕn

(
x

(1 + 4ε2t2)1/2

)
. (4.3)

Moreover, the functions ψn are subject to the bound

|ψn(x, t)| ≤ 1

[π(1 + 4ε2t2)]1/4
, t ≥ 0, x ∈ R. (4.4)

Proof The expression (4.3) follows from the preceding analysis, while (4.4) is an
immediate consequence of the Cramér inequality. 2

Fig. 4.1 displays the magnitude of the first six ψns. It is evident that they are
consistent with the inequality (4.4). There are two facts to bear in mind. Firstly,
examining the modulus hides the oscillations in (4.3): in reality, the ψns are consider-
ably more violent. Secondly, while the functions ψn appear to spread energy and |ψn|
seems to approach a steady steady, in reality we are interested only is small values of
t, a single time step, so that t = h = O

(
ε1/2

)
.

An implementation of FSEs based on Hermite functions necessitates in each time
step the expansion of the initial value in Hermite functions. There exist powerful
algorithms to this end, many based upon the fast multipole algorithm and generalisable
to higher spatial dimensions (Dutt, Gu & Rokhlin 1996).

Lemma 6 The Hermite FSE in Lemma 5 satisfy the three term recurrence,

xψn(x, t) =

√
n

2

(
1 + 2iεt

1− 2iε

) 1
2
ψn−1(x, t) +

√
n+ 1

2

(
1− 2iεt

1 + 2iε

) 1
2
ψn+1(x, t). (4.5)

This three term recurrence allows us to evaluate finite expansions in this basis in
a stable manner using Clenshaw’s algorithm (Clenshaw 1955).
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Figure 4.1: The Hermite FSE: the functions |ψn(x, t)| for n = 0, . . . , 3, x ∈ [−12, 12]
and t ∈ [0, 4].
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4.2 Malmquist–Takenaka functions

The Malmquist–Takenaka system is a complex-valued rational basis of L2(R), intro-
duced independently by Malmquist and Takenaka and repeatedly rediscovered: we
refer to (Iserles & Webb 2020b) for its brief history. It is instructive to introduce
them within the narrative of Subsection 2.1, while extending it to complex-valued
bases. The starting point is the Laguerre measure e−ξ dξ, ξ ≥ 0. We can use (3.2)
to generate an orthonormal system on the real line but this system is not dense in
L2(R). It is a basis of PW [0,∞)(R), of f ∈ L2(R) whose Fourier transform is supported
inside [0,∞). To recover the orthogonal complement of PW [0,∞)(R) in L2(R), namely
PW(−∞,0](R), thereby ensuring that the system is dense in L2(R), we need to com-

plement it by the orthonormal system generated by the measure eξ dξ for ξ ∈ (−∞, 0]
which, conveniently, we label by ϕn, n ≤ −1. The outcome, the MT system, is

ϕn(x) =

√
2

π
in

(1 + 2ix)n

(1− 2ix)n+1
, n ∈ Z, (4.6)

(Iserles & Webb 2020b). The MT system has a number of elegant features:

ϕ′n = −nϕn−1 + i(2n+ 1)ϕn + (n+ 1)ϕn+1, n ∈ Z,

|ϕn(x)| ≤
√

2

π

1

(1 + 4x2)1/2
, x ∈ R,

ϕmϕn =
1√
2π

(ϕm+n − iϕm+n+1), m, n ∈ Z,

2xϕ′n = −inϕn−1 − ϕn − i(n+ 1)ϕn+1,

ϕn+1(x) = i

(
1 + 2ix

1− 2ix

)
ϕn(x),

ϕ−1−n(x) = i2n−1ϕn(−x).

– which make its implementation as a spectral basis considerably easier. However, the
most valuable feature of the MT system is that, subject to the change of variables
x = 1

2 tan(θ/2), we have

f̂n =

∫ ∞
−∞

f(x)ϕn(x) dx =
(−i)n√

2π

∫ π

−π

(
1− i tan

θ

2

)
f

(
1

2
tan

θ

2

)
e−inθ dθ, n ∈ Z.

(4.7)
In other words, the computation of expansion coefficients is equivalent to the eval-
uation of standard Fourier coefficients of a modified function, a task that can be
accomplished (for sufficiently smooth functions) to very high accuracy using the Fast
Fourier Transform.

We note in passing that this feature – the computation of the first N expansion
coefficients in O(N logN) operations – is highly unusual in the setting of Section
3.1: it can be accomplished only for the MT basis (or its minor generalisation) using
FFT and for four other ‘tanh-Chebyshev’ bases using Fast Cosine (or Sine) Transform
(Iserles & Webb 2021).

Let us now investigate the FSEs Ψ(t). For simplicity we consider this only for
n ∈ Z+, noting that an extension to n ≤ −1 is straightforward by the symmetry:
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ψ−1−n(x, t) = i2n−1ψn(−x, t). As before, we assume for the time being that ε = 1.
Using (3.2) we have

ψn(x, t) =
(−i)n√

2π

∫ ∞
0

Ln(ξ) exp
(
− ξ2 + itξ2 + ixξ

)
dξ, n ∈ Z+, (4.8)

where Ln is the nth Laguerre polynomial. This can be evaluated easily – albeit
laboriously – for any specific value of n, e.g.

ψ0(x, t) =

√
i

8t
exp

(
(2x+ i)2

16it

)
erfc

(
(2x+ i)√

16it

)
,

ψ1(x, t) = −iψ0(x, t) + (1− 2ix)
ψ0(x, t)− ψ0(x, 0)

4t
.

There is no need to fear the power of t in the denominator, which cancels as t → 0.
We discuss handling this removable singularity in the next subsection.

Fig. 4.2 displays |ψn|, n = 0, . . . , 5, for the MT functions in a setting identical
to Fig. 4.1. Note that the magnitude for small t > 0 varies much more violently for
x > 0 – obviously, this is reversed for n ≤ −1 – and that, like for the Hermite FSE,
the magnitude tends to an increasingly regular profile once t grows.

While a closed form expression of the ψns is complicated and not clearly even
possible, we can derive a useful recurrence formula. Begin from the following differen-
tial difference equation for the Laguerre polynomials (which follows by differentiating
(Olver et al. 2010, 18.17.1)),

Ln(ξ) = L′n(ξ)− L′n+1(ξ). (4.9)

From this it follows immediately that,

ψn(x, t) =
(−i)n√

2π

∫ ∞
0

(
L′n(ξ)− L′n+1(ξ)

)
exp
(
− ξ2 + itξ2 + ixξ

)
dξ. (4.10)

Integrating by parts, noting that Ln(0) = 1 = Ln+1(0) so the boundary terms vanish,

ψn(x, t) =
(−i)n√

2π

∫ ∞
0

(Ln+1(ξ)− Ln(ξ)) (2itξ + ix− 1
2 ) exp

(
− ξ2 + itξ2 + ixξ

)
dξ.

(4.11)
We can then use the three-term recurrence,

(n+ 1)Ln+1(ξ) = (2n+ 1− ξ)Ln(ξ)− nLn−1(ξ), (4.12)

to obtain,

ψn(x, t) =
(−i)n√

2π

∫ ∞
0

[
2it ((2n+ 3)Ln+1 − (n+ 1)Ln − (n+ 2)Ln+2)

−2it ((2n+ 1)Ln − nLn−1 − (n+ 1)Ln+1)

+(ix− 1
2 )(Ln+1 − Ln)

]
exp
(
− ξ2 + itξ2 + ixξ

)
dξ
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=
(−i)n√

2π

∫ ∞
0

[
− 2it(n+ 2)Ln+2 + (2it(3n+ 4) + ix− 1

2 )Ln+1

−(2it(3n+ 2) + ix− 1
2 )Ln + 2itnLn−1)

]
exp
(
− ξ2 + itξ2 + ixξ

)
dξ

=
(−i)n√

2π

∫ ∞
0

[
(−i)22it(n+ 2)Ln+2 − (−i)(2t(3n+ 4) + x+ 1

2 i)Ln+1

−(2it(3n+ 2) + ix− 1
2 )Ln + (−i)−12tnLn−1)

]
exp
(
− ξ2 + itξ2 + ixξ

)
dξ

= 2it(n+ 2)ψn+2(x, t)− (2t(3n+ 4) + x+ 1
2 i)ψn+1(x, t)

−(2it(3n+ 2) + ix− 1
2 )ψn(x, t) + 2tnψn−1(x, t).

Collecting terms yields,

2it(n+ 2)ψn+2 = (2t(3n+ 4) + x+ 1
2 i)ψn+1 + (2it(3n+ 2) + ix+ 1

2 )ψn − 2tnψn−1.

We now undo the assignment ε = 1 to obtain the following lemma.

Lemma 7 The FSE corresponding to the MT system obeys the recurrence for n ≥ 1,

ψ0(x, t) =

√
i

8εt
exp

(
(2x+ i)2

16iεt

)
erfc

(
(2x+ i)√

16iεt

)
,

ψ1(x, t) = −iψ0 + (1− 2ix)
ψ0(x, t)− ψ0(x, 0)

4εt

i(n+ 1)ψn+1 =

(
3n+ 1 +

2x+ i

4εt

)
ψn + i

(
3n− 1 +

2x− i

4εt

)
ψn−1 − (n− 1)ψn−2.

4.3 Evaluating expansions in the Malmquist–Takenaka FSE
basis

Lemma 7 indicates the possibility of computing an expansion in the Malmquist–
Takenaka FSE basis using the (generalized) Clenshaw algorithm (Clenshaw 1955).
The functions ψn for n ≤ −1 can be addressed using the symmetry ψ−1−n(x, t) =
i2n−1ψn(−x, t), which we omit. Clenshaw’s algorithm is best known to apply to bases
satisfying three-term recurrences, and in the case of a two-term recurrence reduces
to Horner’s algorithm. The following lemma spells out the Clenshaw algorithm for a
basis with a four-term recurrence (such as the Malmquist–Takenaka FSE).

Lemma 8 Let Φ = {ϕn}∞n=0 be a basis which satisfies the four-term recurrence,

ϕn+1(x) = An(x)ϕn(x) +Bn(x)ϕn−1(x) + Cn(x)ϕn−2(x), (4.13)

for n ≥ 1, where C1(x) = 0, then the finite expansion,

f(x) =

N∑
n=0

anϕn(x),
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Figure 4.2: The Malmquist–Takenaka FSE: the functions |ψn(x, t)| for n = 0, . . . , 3,
x ∈ [−20, 20] and t ∈ [0, 4]
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is equal to v0(x)ϕ0(x) + v1(x)ϕ1(x), where v(x) = (v0(x), v1(x), . . . , vN (x))> satisfies
the backwards recurrence,

vN (x) = aN

vN−1(x) = aN−1 +AN−1(x)vN (x)

vN−2(x) = aN−2 +AN−2(x)vN−1(x) +BN−1(x)vN (x)

vn(x) = an +An(x)vn+1(x) +Bn+1(x)vn+2(x) + Cn+2(x)vn+3(x),

v0(x) = a0 +B1(x)v2(x) + C2(x)v3(x),

for n = N − 3, N − 4, . . . 1.

Proof Follow any standard derivation of Clenshaw’s algorithm (e.g. in (Gautschi
2004)) but with an extra band below the diagonal in the associated linear system.

2

In order to evaluate ψ0 without trouble from the removable singularity, we rewrite
equation (4.9) in the form

ψ0(x, t) = ϕ0(x)G0

(
2ix− 1√

16iεt

)
, (4.14)

where G0(z) = −i
√
πze−z

2

erfc(−iz). This function is related to w(z) = e−z
2

erfc(−iz),
known as the Faddeeva function or plasma dispersion function (Gautschi 1970, Poppe
& Wijers 1990). Note that x, t ∈ R corresponds to evaluating G0 in the complex plane
in the sector {z ∈ C : arg(z) ∈ (π/4, 5π/4)} and we are particularly interested in small
positive t, which corresponds to large z in this sector. The fact that G0(z) → 1 as
|z| → ∞ within this sector shows the recovery of ϕ0(x) as t→ 0.

Following (Gautschi 1970, Poppe & Wijers 1990), the following continued fraction
for G0 at z =∞ is convergent in the upper half-plane (Olver et al. 2010, 7.9.3),

G0(z) =
1

1−
1
2z
−2

1−
z−2

1−
3
2z
−2

1−
2z−2

1− · · ·

. (4.15)

Truncating this continued fraction yields an extremely good approximation for large
z in the upper half-plane, and for the lower half-plane we can use the relation (Olver
et al. 2010, 7.4.3)

G0(z) = G0(−z)− 2i
√
πze−z

2

, (4.16)

but note that accuracy can be lost near the complex roots of erfc(−iz) since it relies
on heavy cancellation (Gautschi 1970, Poppe & Wijers 1990).

In order to evaluate ψ1 without trouble from the removable singularity, we rewrite
the formula in Lemma 7 in the form

ψ1(x, t) = −iψ0(x, t) +

√
2

π

2i

(1− 2ix)2
G1

(
2ix− 1√

16iεt

)
, (4.17)
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where G1(z) = 2z2(G0(z)−1). While this covers the evaluation of ψ0(x, t) and ψ1(x, t)
for small t, the full implementation of Clenshaw’s algorithm may still experience loss
of numerical accuracy due to the 1/t terms in the recurrence relation. However,
numerical issues like this are beyond the scope of this paper.

5 Bringing the elements together

We bring together the different results of the paper into a cohesive whole. In Section 2,
we reduced the problem of solving the semiclassical Schrödinger equation to combining
time-steps of the form,

uk+1(x) = eR`uk(x),

where

R0 = −1

2
τε−1V,

R1 =
1

2
τε∂2

x,

R2 =
1

12
τ3ε

{
∂2
x[V (2) · ] + V (2)∂2

x

}
+

1

24
τ3ε−1(V (1))2, . . .

where τ = ih and R` = O
(
h2`−1ε−1

)
for ` = 1, 2, . . .. We propose that the numerical

solution be represented implicitly by

uk(x) =

N∑
n=0

ûnϕn(x),

where ϕn is either the Hermite function basis or the Malmquist–Takenaka basis (in
the latter case the indices should extend from n = −N − 1 to n = N). However,
explicitly, we propose that the numerical solution be represented by its values on a
grid appropriate to the basis. When this basis is Hermite functions, those points are
Hermite quadrature points, and for Malmquist–Takenaka functions, those points are
mapped equi-spaced points (Weideman 1994),

x
[N ]
j = 1

2 tan
(
θ

[N ]
j /2

)
, j = −N − 1, . . . N, (5.18)

θ
[N ]
j =

jπ

N + 1
, j = −N − 1, . . . N. (5.19)

We call these Malmquist–Takenaka points or MT points.
The reason for these choices of grid points are three-fold. First, the mapping from

the values of a finite expansion in the basis at these specific grid points, weighted
appropriately, to the coefficients in the finite expansion is unitary, so is invertible and
perfectly stable. Second, there are known algorithms to compute this mapping and its
inverse, which in the case of Malmquist–Takenaka, can be performed rapidly by the
Fast Fourier Transform (FFT) and its inverse. Thirdly, at the end of a full time step,
we have the solution given by its values on this grid. The computation of the values of
the solution at arbitrary points on the real line can be performed stably by barycentric
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interpolation formula. The barycentric weights for Hermite quadrature points and for
equispaced points on the unit circle (which map to MT points) are known explicitly
(Berrut & Trefethen 2004, Wang, Huybrechs & Vandewalle 2014).

When our solution is represented by values at the grid points, the case ` = 0

is straightforward — we simply multiply the function value at gridpoint x
[N ]
k by

exp(− 1
2τε
−1V (x

[N ]
k )).

The case ` = 1 is more subtle, and we propose using the free Schrödinger evolutions
developed in Section 3. We first compute the coefficients in the Φ basis, and then
evaluate linear combination of those coefficients with the free Schrödinger evolution
Ψ( 1

2hε) at the grid points. This is a two-step process, as follows.

• Compute the coefficients, a0, a1, . . . , aN (in the Φ basis, indexed from −N − 1
to N in the case of the MT basis) from the values on the grid (using the FFT
in the case of the MT basis)

• Evaluate the sum
∑N
k=0 akψk(x, 1

2hε) at the grid points using Clenshaw’s algo-
rithm (in the case of the MT basis, using the 4 term version in Lemma 8).

In the case ` ≥ 2 we propose the use of Krylov subspace methods. This was first
proposed in (Bader et al. 2014), later generalised to time-dependent potentials (Iserles
et al. 2019, Iserles et al. 2018) as well as the method of quasi-Magnus exponential
integrators of (Blanes et al. 2017). There are two facts which make this approach
work well. First, R` = O

(
h2`−1ε−1

)
for ` > 1, so we are computing the exponential

of a matrix which is small in spectral norm. As a result, a Krylov subspace with
a miniscule dimension can be used (Hochbruck & Lubich 1997). Second, the sparse
differentiation matrix (see (3.1)) implies that the matrices which must be applied to a
vector in the Krylov subspace method are a sum of compositions of: diagonal matrices
coming from derivatives of the potential function V , pentadiagonal matrices coming
from the discretisation of ∂2

x in coefficient space, and transforms between function
values on the grid and coefficients (which can be performed using the FFT in the case
of the MT basis).

Acknowledgments

The authors thank the Isaac Newton Institute for Mathematical Sciences for sup-
port and hospitality during the programme “Geometry, compatibility and structure
preservation in computational differential equations”, supported by EPSRC grant
EP/R014604/1, where this work has been initiated.

Katharina Schratz has received funding from the European Research Council (ERC)
under the European Unions Horizon 2020 research and innovation programme (grant
agreement No. 850941)

The work of Karolina Kropielnicka in this project was financed by The National
Center for Science (NCN), based on Grant No. 2019/34/E/ST1/00390

23



References

Bader, P., Iserles, A., Kropielnicka, K. & Singh, P. (2014), ‘Effective approximation for
the semiclassical Schrödinger equation’, Found. Comput. Math. 14(4), 689–720.

Berrut, J.-P. & Trefethen, L. N. (2004), ‘Barycentric lagrange interpolation’, SIAM
review 46(3), 501–517.

Blanes, S., Casas, F. & Thalhammer, M. (2017), ‘High-order commutator-free quasi-
Magnus exponential integrators for non-autonomous linear evolution equations’,
Comput. Phys. Commun. 220, 243–262.

Clenshaw, C. W. (1955), ‘A note on the summation of Chebyshev series’, Math. Tables
Aids Comput. 9, 118–120.

Dutt, A., Gu, M. & Rokhlin, V. (1996), ‘Fast algorithms for polynomial interpolation,
integration, and differentiation’, SIAM J. Numer. Anal. 33(5), 1689–1711.

Gautschi, W. (1970), ‘Efficient computation of the complex error function’, SIAM
Journal on Numerical Analysis 7(1), 187–198.

Gautschi, W. (2004), Orthogonal polynomials: computation and approximation, Ox-
ford University Press.

Hairer, E., Lubich, C. & Wanner, G. (2006), Geometric numerical integration:
structure-preserving algorithms for ordinary differential equations, Vol. 31,
Springer Science & Business Media.

Hall, M. (1950), ‘A basis for free lie rings and higher commutators in free groups’,
Proceedings of the American Mathematical Society 1(5), 575–581.

Hochbruck, M. & Lubich, C. (1997), ‘On krylov subspace approximations to the matrix
exponential operator’, SIAM Journal on Numerical Analysis 34(5), 1911–1925.

Iserles, A. & Webb, M. (2019), ‘Orthogonal systems with a skew-symmetric differen-
tiation matrix’, Found. Comput. Math. 19(6), 1191–1221.

Iserles, A. & Webb, M. (2020a), ‘A differential analogue of Favard’s theorem’, arXiv
preprint arXiv:2012.07400.

Iserles, A. & Webb, M. (2020b), ‘A family of orthogonal rational functions and other or-
thogonal systems with a skew-Hermitian differentiation matrix’, J. Fourier Anal.
Appl. 26(1), Paper No. 19.

Iserles, A. & Webb, M. (2021), ‘Fast computation of orthogonal systems with a skew-
symmetric differentiation matrix’, Communications on Pure and Applied Mathe-
matics 74(3), 478–506.

Iserles, A., Kropielnicka, K. & Singh, P. (2018), ‘Magnus-Lanczos methods with simpli-
fied commutators for the Schrödinger equation with a time-dependent potential’,
SIAM J. Numer. Anal. 56(3), 1547–1569.

24



Iserles, A., Kropielnicka, K. & Singh, P. (2019), ‘Solving Schrödinger equation in
semiclassical regime with highly oscillatory time-dependent potentials’, J. Com-
put. Phys. 376, 564–584.

Iserles, A., Luong, K. & Webb, M. (2021), ‘Approximation of wave packets on the real
line’, arXiv preprint arXiv:2101.02566.

Ismail, M. E. H., ed. (2020), Univariate Orthogonal Polynomials, Encyclopedia of
Special Functions: The Askey–Bateman Project, Cambridge University Press,
Cambridge.

Jin, S., Markowich, P. & Sparber, C. (2011), ‘Mathematical and computational meth-
ods for semiclassical Schrödinger equations’, Acta Numer. 20, 121–209.

Lasser, C. & Lubich, C. (2020), ‘Computing quantum dynamics in the semiclassical
regime’, Acta Numerica 29, 229–401.

Olver, F. W. J., Lozier, D. W., Boisvert, R. F. & Clark, C. W., eds (2010), NIST
Handbook of Mathematical Functions, U.S. Department of Commerce, National
Institute of Standards and Technology, Washington, DC; Cambridge University
Press, Cambridge. With 1 CD-ROM (Windows, Macintosh and UNIX).

Poppe, G. P. & Wijers, C. M. (1990), ‘More efficient computation of the complex error
function’, ACM Transactions on Mathematical Software (TOMS) 16(1), 38–46.

Reutenauer, C. (1993), Free Lie Algebras, London Maths Soc. Monographs 7, Oxford
University Press, Oxford.

Singh, P. (2016), ‘High accuracy computational methods for the semiclassical
Schrödinger equation’.

Wang, H., Huybrechs, D. & Vandewalle, S. (2014), ‘Explicit barycentric weights for
polynomial interpolation in the roots or extrema of classical orthogonal polyno-
mials’, Mathematics of Computation 83(290), 2893–2914.

Weideman, J. A. C. (1994), ‘Computation of the complex error function’, SIAM Jour-
nal on Numerical Analysis 31(5), 1497–1518.

25


