
Automatically Improving the
Anytime Behaviour of Multiobjective

Evolutionary Algorithms

Andreea Radulescu1, Manuel López-Ibáñez2, and Thomas Stützle2

1 LINA, UMR CNRS 6241, Université de Nantes, Nantes, France
andreea.radulescu@etu.univ-nantes.fr

2 IRIDIA, CoDE, Université Libre de Bruxelles (ULB), Brussels, Belgium
{manuel.lopez-ibanez,stuetzle}@ulb.ac.be

Abstract. An algorithm that returns as low-cost solutions as possible
at any moment of its execution is said to have a good anytime behaviour.
The problem of optimising anytime behaviour can be modelled as a bi-
objective non-dominated front, where the goal is to minimise both time
and cost. Using a unary quality measure such as the hypervolume in-
dicator, the analysis of the anytime behaviour can be converted into a
single-objective problem. In this manner, available automatic configura-
tion tools can be applied to improve the anytime behaviour of an algo-
rithm. If we want to optimise the anytime behaviour of multi-objective
algorithms, we may apply again unary quality measures to obtain a
scalar value for measuring the obtained approximation to the Pareto
front. Thus, for multi-objective algorithms, the anytime behaviour may
be described in terms of the curve of the hypervolume over time, and
the quality of this bi-objective tradeoff curve be evaluated according to
its hypervolume. Using this approach, we can automatically improve the
anytime behaviour of multi-objective evolutionary algorithms (MOEAs).
In this article, we first introduce this approach and then experimentally
study the improvements obtained considering three MOEAs, namely,
IBEA, NSGA-II and SPEA2.

1 Introduction

In many real world problems, the quality of solutions is evaluated according to
multiple objective functions. The goal of algorithmic approaches to their solution
typically is to provide an as good as possible approximation to the unknown
Pareto front of tradeoff solutions. Among the most successful such algorithmic
approaches are multi-objective evolutionary algorithms (MOEAs).

In practical settings, the user will have a limited time to run an MOEA,
and the available amount of time is not always known in advance when deciding
for the MOEA’s parameter settings. Thus, a goal in the design of MOEAs and
other multi-objective optimizers is to find algorithm parameter settings that
allow finding the best possible Pareto front approximations for any stopping
criterion. More in general, algorithms that provide as good solutions as possible



2 A. Radulescu, M. López-Ibáñez, T. Stützle

independent of a specific termination criterion are referred to as having good
anytime behaviour [18].

In this paper, our goal is to examine and, in particular, to improve the
anytime behaviour of MOEAs by automatic algorithm configuration techniques
[2,6,9,11,13]. To this aim, we need to model the anytime behaviour of MOEAs.
For single objective algorithms, the anytime behaviour may be modelled as a bi-
objective non-dominated front, where both solutions quality and computation
time must be considered [15, 16]. By using a unary quality measure of the ob-
tained non-dominated front, the analysis of the anytime behaviour is converted
into a single-objective problem [16]. Here, we follow [16] and use the hypervolume
indicator for this task [22].

In addition, we need to determine the quality of the set of solutions returned
by the MOEA. For this task, again the hypervolume indicator can be used and
each pair of (time, hypervolume) represents an improvement of the best so-
lutions found at a particular time since the algorithm start. The objective of
optimising the anytime behaviour reduces then to find MOEA configurations
that produce the best possible set of sequences of points (time, hypervolume).
Hence, by making this double usage of the hypervolume, we can apply standard
algorithm configuration techniques for the automatic configuration of MOEAs.

We analyse the impact of automatic configuration on the anytime behaviour
of MOEAs. In particular, we selected three classical MOEAs: the indicator-based
evolutionary algorithm (IBEA) [19], the nondominated sorting genetic algorithm
(NSGA-II) [4], and the strength Pareto evolutionary algorithm (SPEA2) [20].
These algorithms are among the best-known MOEAs and they have been thor-
oughly studied in the literature.

This paper is organized as follows. Section 2 introduces basic notions of multi-
objective optimization and MOEAs. In Section 3, we describe the method used
for tuning anytime behaviour of MOEAs. The experimental setup and the results
are described in Sections 4 and 5, respectively. We conclude in Section 6.

2 Multi-objective optimization

A multiobjective optimization problem (MOP) can be formulated as

minimize f(x) = (f1(x), . . . , fm(x))T subject to x ∈ Ω

where Ω is the search space, f : Ω → Rm consists of m real-valued objective
functions and Rm is called objective space. A continuous MOP is an MOP where
each of the D variables is a continuous variable with xi ∈ R ∀xi, i = 1, . . . , D
and possible constraints restrict the set of feasible solutions.

Typically, the objectives of an MOP are conflicting and there is no solution
x ∈ Ω that minimizes all objectives simultaneously. The solutions representing
the best compromise between the objectives can be defined in terms of Pareto
optimality. Let u, v be two vectors in Rm; u is said to dominate v if and only if
ui ≤ vi for every i ∈ 1, . . . ,m and uj < vj for at least one index j ∈ 1, . . . ,m.
This definition applies without loss of generality to minimization problems. A



Automatically Improving the Anytime Behaviour of MOEAs 3

point x∗ ∈ Ω is Pareto optimal if there is no point x ∈ Ω such that f(x)
dominates f(x∗). A Pareto set is the set of all Pareto optimal points and the
Pareto front is the set of the objective vectors of all Pareto optimal points.

In order to measure the quality of a Pareto front, we can use the hypervolume
indicator [22]. The unary hypervolume indicator measures the quality of a set
P of n non-dominated objective vectors produced in a run of a multiobjective
optimizer. For a minimization problem involving m objectives, this indicator
measures the region that is simultaneously dominated by P and bounded above
by a reference point r ∈ Rm such that r > (maxp p1, . . . ,maxp pm), where p =
(p1, . . . , pm) ∈ P ⊂ Rm.

3 Anytime optimization

An anytime algorithm returns as high quality solutions as possible at any mo-
ment of its execution [18]. One characteristic of anytime algorithms is that, inde-
pendently of the termination criterion, the best solution found so far is steadily
improved, eventually finding the optimal. This implies that anytime algorithms
should keep exploring the search space and avoid getting trapped in local op-
tima. Moreover, good solutions should also be discovered as early as possible.
This implies that the algorithm should converge to good solutions as fast as
possible.

Normally, there is a trade-off between the quality of the solution and the run-
time of the algorithm. There are two classical views when analyzing this trade-
off. One view defines a number of termination criteria and analyzes the quality
achieved by the algorithm at each termination criterion. In this quality-versus-
time view, the anytime behaviour is often analyzied as a plot of the (average)
solution quality over time, also called SQT curve (e.g., Fig. 1). A different view
defines a number of target quality values and analyzes the time required by the
algorithm to reach each target. In this time-versus-quality view, algorithms are
often analyzed in terms of their runtime distribution [10, Chapter 4].

We consider here a third view that does not favor time over quality or vicev-
ersa, but models the anytime behaviour as a bi-objective problem [16] where
the first objective, the solution quality, has to be maximized, while the second,
the time, has to be minimized. If we consider the points (quality, time) that
describe at which time the quality of the best solution has been improved by
the algorithm, then the set of points that describe a run of an algorithm is, by
definition, a nondominated set of solutions. Moreover, we can definitely compare
the anytime behaviour of two algorithms by comparing their respective nondom-
inated sets of (quality, time) points.3 If the nondominated set of one algorithm
dominates (in the Pareto-optimality sense) the nondominated set of another al-
gorithm, we say that the anytime behaviour of the former is better than the

3 In our approach, we do not give more importance to either time or quality, and,
hence, the order in which they are plotted is irrelevant. However, we visualize later
the results in terms of SQT curves, and, hence, the order (quality, time) is more
natural for such purpose.



4 A. Radulescu, M. López-Ibáñez, T. Stützle

Fig. 1. An example of SQT curve.

anytime behaviour of the latter. More importantly, this model allows us to ap-
ply the same unary quality measures used in multi-objective optimization to
evaluate the anytime behaviour of algorithms. In particular, we have identified
the hypervolume measure [22] as being the most suitable for this purpose [16].

In the case of single-objective optimisers, the output of an algorithm is a
single solution, and its quality is a unique scalar value. In the proposal de-
scribed above, their anytime behaviour is evaluated as a bi-objective problem
with two objectives (quality, time). In the case of multi-objective optimisers such
as MOEAs, the output of the algorithm is a nondominated set of points, and,
hence, we need an additional step that assigns a unique scalar quality value to
each nondominated set by means of a unary quality measure. Once each non-
dominated set is assigned a scalar quality value, we can proceed as described
above and evaluate the anytime behaviour of MOEAs as the hypervolume of the
nondominated set of points (quality,time) that describes a run of an algorithm.

In summary, our proposal for assessing the anytime behaviour of a run of a
MOEA consists of two main steps:

– Compute the quality of the best nondominated set found by a run of an
algorithm at each moment of its execution. This entails recording every im-
provement of the best nondominated set. Since this may turn out to be
computationally expensive for long runs, a good approximation is to record
improvements of the best nondominated set only at specific time intervals.
Then, we may compute the quality of these nondominated sets by means of
any unary quality measure. For simplicity, we have chosen here the hypervol-
ume measure. In this way, we obtain a nondominated set of (quality, time)
points that describe the anytime behaviour of the run of the algorithm.

– Compute the quality of the anytime behaviour curve. At the end of the run
of an algorithm, its anytime behaviour is evaluated by computing the hyper-
volume measure of the nondominated set of (quality, time) points obtained
in the previous step. In the case of a fixed frequency of time steps, the hyper-
volume computation in this step can be simplified as the sum of the qualities
over each time step. However, the use of the hypervolume is more general



Automatically Improving the Anytime Behaviour of MOEAs 5

and it allows the introduction of preference information [16], although we do
not examine this possibility in this paper.

Although one may use a different quality measure in the first step than the
hypervolume measure used in the second step, we have chosen to use the hyper-
volume in both steps for simplicity. In this case, the above steps are equivalent
to extending the original multi-objective problem with an additional objective
(time) and replacing the two steps above by simply computing the hypervolume
of the extended problem. We prefer the two-step approach described above be-
cause it clearly separates between the computation of the quality of a solution
(set) to the multi-objective problem at hand, and the evaluation of the anytime
behaviour of the algorithm.

A practical application of the above proposal is the automatic configura-
tion of the anytime behaviour of MOEAs. In all parametrized algorithms, such
as MOEAs, the search behaviour is heavily influenced by their parameter set-
ting. The goal of automatic algorithm configuration is to determine the settings
of both numerical and categorical parameters before the algorithm is actually
deployed in order to have an algorithm that is as high performing as possible.
Automatic algorithm configuration is crucial in the design phase of parametrized
algorithms. It is also relevant in practical applications when known algorithms
are applied to specific classes of problems, in order to find the parameter settings
that optimise performance for such problems.

Automatic algorithm configuration consists of two main phases:

– tuning phase: the algorithm is tuned on a representative set of problem
instances;

– production (or testing) phase: a chosen algorithm configuration is used to
solve unseen problem instances.

In recent years, a number of automatic configuration methods have been devel-
oped and recent overviews are available in the literature [2, 6, 8, 9]. The method
proposed above to automatically improve the anytime behaviour of MOEAs is
mostly independent of the automatic configuration method used. In this paper,
we use as automatic configuration method the implementation of I/F-Race [2]
provided by the irace software package [13]. We combine this method with a
publicly available implementation of the hypervolume measure [7] to tune the
anytime behaviour of MOEAs.

4 Experimental setup

In this section, we first present the three analysed MOEAs, explain the main
parameters, and introduce the benchmark problems used in the experiments.

NSGA-II [4] uses nondominated sorting and a density estimator to rank the
generated solutions and to construct a fixed-size elite population.

SPEA2 [20] keeps the best solutions in an fixed-size elite archive. After each
generation, the archive is either truncated with an operator based on k-th nearest
neighbour or completed with dominated solutions from the current population.



6 A. Radulescu, M. López-Ibáñez, T. Stützle

Table 1. Parameter space for tuning of IBEA, NSGA-II and SPEA2.

Parameter Role Type Range Default

pc probability of mating two solutions real (0.0,1.0) 1.0
pextm probability of mutating a solution real (0.0,1.0) 1.0
pintm probability of mutating a variable in a

solution
real (0.0,1.0) 0.0833

N number of solutions integer [10, 1000] 20
DIc distance between children and their

parents
integer [0, 100] 15

DIm distribution of the mutated values integer [0, 100] 20
l scaling factor (IBEA) real (0.0, 1.0) 0.05

N archive size (SPEA2) integer [10, 1000] 100
k k-th nearest neighbour (SPEA2) integer [1, 50] 10

IBEA [19] uses a binary quality indicator, in particular, the binary additive
ε-indicator, in order to assign a fitness value to each solution and to keep a
fixed-size elite population.

In this paper, we use the implementation of these three algorithms available
in ParadisEO [12], a software framework dedicated to the flexible design of meta-
heuristics. For the experiments in this paper, all algorithms use the simulated
binary crossover (SBX) operator [3] and polynomial mutation.

MOEAs parameters. Table 1 summarises the parameters of the three MOEAs
tested (IBEA, NSGAII and SPEA2), their default values and the range con-
sidered for tuning. The default values are the ones used in the ParadisEO
framework [12], and mostly correspond to the values suggested in the litera-
ture [4,5,19,20,21]. There are six common parameters: the population size (N);
the probability of crossover (pc); the probability of external mutation (pext

m ),
which determines whether a solution will be mutated; the probability of in-
ternal mutation (pint

m ), which determines which variables of a solution will be
mutated; the crossover distribution index (DIc), which determines the amount
of exploration outside the parents, and the mutation distribution index (DIm),
which determines the distance between the original and the mutated value of
a variable. Besides these common parameters, IBEA has a parameter l called
the fitness scaling factor, which is used for computing the fitness values and it
depends on the indicator used in the algorithm. SPEA2 has two additional pa-
rameters: the archive size N̄ , and the k-th nearest neighbour, which affects the
density estimation operator.

Benchmark problem instances. As benchmark instances, we consider real-
valued functions from two well-known benchmark sets: ZDT [21] and DTLZ [5].
The original ZDT set contains six bi-objective functions, but ZDT5 was not
included in our setup. From the DTLZ set we used the seven functions with



Automatically Improving the Anytime Behaviour of MOEAs 7

three objectives. Note that these benchmark sets are scalable to any number
of decision variables (D) and they pose different difficulties to multi-objective
algorithms such as non-convex fronts or discontinuous fronts.

Monotonicity of hypervolume in MOEAs. MOEAs store the best non-
dominated set found in an elite population that acts as an archive of solutions.
Ideally, the quality of this archive should monotonically increase over time. How-
ever, MOEAs often limit the size of this archive. Most archiving algorithms, e.g.
the one used by SPEA2 and NSGA-II, are not monotonic with respect to dom-
inance [14], and even if the archiving algorithm is monotone with respect to
dominance, such as the one of IBEA, the hypervolume of the archive does not
need to be strictly monotonic (see below).

Figure 2 shows SQT curves of the three MOEAs considered here, in terms of
hypervolume development over the number of function evaluations. In the left
column, we plot the SQT curve corresponding to the elite population, whereas
the right column corresponds to the SQT curve of an external, unbounded
archive that stores all the dominated solutions found so far within a single run.
The plots show that an unbounded archive results in a monotonic increase of
the hypervolume over time. Moreover, the quality of the unbounded archive is
significantly better than the quality of the elite population. Therefore, in the
following, we always make use of an external unbounded archive.

Tuning setup. We use Iterated F-race [2], as implemented by the irace soft-
ware [13], to tune the parameters of the MOEAs. Each tuned parameter config-
uration is obtained by running irace with a budget of 2 000 runs of the MOEA
being tuned. Each MOEA run is stopped after 100D function evaluations, where
D is the number of variables of the problem.

In order to increase the effectiveness of the tuning, each run of irace was
repeated 10 times with different random seed, and the ten resulting MOEA
configurations were compared using F-race [2] in order to select the best one.

Each MOEA is tuned separately on each set of benchmark instances, namely,
one run of irace uses DTLZ instances and another ZDT instances. Due to the
diversity of the benchmark sets, the training instances are setup in a special
way. We split each benchmark set into training instances used for tuning and
testing instances used for comparing the configurations obtained after tuning.
For tuning, the input of irace is a stream of instances that is structured in
blocks, each block containing one function of each type (5 functions for ZDT
and 7 functions for DTLZ) and random D ∈ [10, 100]. We setup irace in such
a way that configurations are run at least on two blocks of instances before
discarding any configuration, and we only discard configurations after evaluating
each surviving configuration on a whole block of instances. For testing, we select
each function with D ∈ {20, 35, 50, 65, 80, 95} (these values for D are excluded
from the training set).



8 A. Radulescu, M. López-Ibáñez, T. Stützle

(a) ZDT1 with a fixed-sized archive (b) ZDT1 with an unbounded archive

(c) DTLZ1 with a fixed-sized archive (d) DTLZ1 with an unbounded
archive

(e) DTLZ3 with a fixed-sized archive (f) DTLZ3 with an unbounded
archive

Fig. 2. Monotonicity preservation of the hypervolume through an unbounded exter-
nal archive.

5 Experimental results

Tuning for anytime behaviour. Figure 3 illustrates the difference between
the results obtained with the default values and with the best configuration
tuned for the anytime behaviour. The values plotted represent the hypervol-
ume value of the SQT curves for each test problem (that is, for each function
in each of D ∈ {20, 35, 50, 65, 80, 95}). Each point represents the mean quality
value obtained after 15 runs of a particular configuration. A larger hypervolume
value indicates a better anytime behaviour. The plots clearly show that, as ex-



Automatically Improving the Anytime Behaviour of MOEAs 9

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

0.6 0.7 0.8 0.9 1.0 1.1

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

AnytimeTuned

D
ef

au
lt

NSGAII DTLZ

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

0.7 0.8 0.9 1.0 1.1

0.
7

0.
8

0.
9

1.
0

1.
1

AnytimeTuned

D
ef

au
lt

SPEA2 DTLZ

●

●

●
●●

●

●

●

●

●●
●

●
●

●●●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

0.8 0.9 1.0 1.1

0.
8

0.
9

1.
0

1.
1

AnytimeTuned

D
ef

au
lt

IBEA DTLZ

●

●
●●

●●

●

●

●
●

● ●

●
●

●
●
●
●

●

●

●●

● ●

●

●

●

●

●
●

0.7 0.8 0.9 1.0 1.1

0.
7

0.
8

0.
9

1.
0

1.
1

AnytimeTuned

D
ef

au
lt

NSGAII ZDT

● ●

●

●

●

●

●

●

●
●

●●

●
●

●

●
●●

●

●

●● ●
●

●
●

●

●

●

●

0.6 0.7 0.8 0.9 1.0 1.1

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

AnytimeTuned

D
ef

au
lt

SPEA2 ZDT

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●
●

●●

●

●

●

●
●

●

0.7 0.8 0.9 1.0 1.1

0.
7

0.
8

0.
9

1.
0

1.
1

AnytimeTuned

D
ef

au
lt

IBEA ZDT

Fig. 3. Anytime behaviour quality for the default configuration versus configurations
tuned for anytime behaviour. Each point represents an “unseen” instance from the
ZDT set or the DTLZ set and gives the mean hypervolume of the SQT curves (mea-
sured across 15 runs) for the default configuration (y-axis) and the anytime tuned
configuration (x-axis). A point below the diagonal indicates better results by the
anytime tuned configuration.

pected, the hypervolume of the SQT curves obtained by the MOEAs improve
significantly after tuning.

In order to assess whether improving the hypervolume of the SQT curve re-
sults in a visible improvement of the anytime behaviour of the MOEAs, we plot
in Fig. 4 the mean SQT curve over 15 runs of each MOEA on individual bench-
mark instances. Moreover, we plot for each curve the 95% confidence interval
around the mean as a grey shadow to give an idea of the variation over multiple
runs. In all cases, the anytime behaviour of the MOEAs visibly improves after
tuning over default settings. The improvement is very strong for NSGA-II and
SPEA2, which shows that their default parameters are far from ideal.

Next, we examine whether the final quality of the non-dominated set ob-
tained at the maximum termination criterion (100 · D) is improved or not by
tuning for anytime behaviour. Figure 5 compares the hypervolume of this fi-
nal non-dominated set when generated by the default configuration versus the
one generated by the configuration tuned for anytime behaviour. In the case of
NSGA-II and SPEA2, the final quality is improved in most cases. In the case of
IBEA, the final quality is clearly improved in a few cases, but the differences are
often rather small.



10 A. Radulescu, M. López-Ibáñez, T. Stützle

0 500 1000 2000 30001.
00

1.
10

1.
20

1.
30

Evaluations

H
yp

er
vo

lu
m

e

ParetoOptimal
NSGAIIDefault
NSGAIIAnytime
NSGAIIFinal

0 500 1000 2000 3000

1.
05

1.
10

1.
15

1.
20

1.
25

1.
30

Evaluations

H
yp

er
vo

lu
m

e

ParetoOptimal
SPEA2Default
SPEA2Anytime
SPEA2Final

0 500 1000 2000 3000

1.
00

1.
10

1.
20

1.
30

Evaluations

H
yp

er
vo

lu
m

e

ParetoOptimal
IBEADefault
IBEAAnytime
IBEAFinal

Fig. 4. Variation of the quality of the Pareto front obtained for the three different
configurations: the default parameter set, the best parameter set tuned for the any-
time behaviour and the best parameter set tuned for the quality of the final Pareto
front. The instance DTLZ1 with 30 variables was executed 15 times for each MOEAs

●

●

●

●

●

●

●
●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

1.0 1.1 1.2 1.3

1.
0

1.
1

1.
2

1.
3

AnytimeTuned

D
ef

au
lt

NSGAII DTLZ

●
●

●

●

●

●

●

●●●●

●

●●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

0.9 1.0 1.1 1.2 1.3

0.
9

1.
0

1.
1

1.
2

1.
3

AnytimeTuned

D
ef

au
lt

SPEA2 DTLZ
●●●●●●

●

●●●●●●●●●●●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●●●

●

0.8 0.9 1.0 1.1 1.2 1.3

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

AnytimeTuned

D
ef

au
lt

IBEA DTLZ

Fig. 5. Final Pareto front quality for the default configuration versus configurations
tuned for anytime behaviour. Each point represents an “unseen” instance from the
DTLZ set and gives the mean hypervolume of the final Pareto front approximation
(measured across 15 runs) for the default configuration (y-axis) and the anytime
tuned configuration (x-axis). A point below the diagonal indicates better results by
the anytime tuned configuration.

Tuning for final quality. We also evaluate the MOEAs tuned for anytime
behaviour relative to how much improvement could be reached by tuning for
final quality, the latter being a more traditional approach. When tuning for
final quality, the tuning procedure ignores the SQT curve and only takes into
account the quality of the non-dominated set obtained after 100 · D function
evaluations. We measure the quality of this final non-dominated set according
to the hypervolume. Otherwise, we follow the same tuning setup as described
above. After tuning, we obtain a parameter configuration for each MOEA and
each benchmark set and run the configurations 15 times on each test instance.

Figure 6 compares the configurations tuned for anytime behaviour and the
configurations tuned for final quality when evaluated with respect to their any-
time behavior for the three MOEAs and the two benchmark function sets. (The
configurations tuned for anytime behaviour and final quality turned out to be



Automatically Improving the Anytime Behaviour of MOEAs 11

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

0.7 0.8 0.9 1.0 1.1

0.
7

0.
8

0.
9

1.
0

1.
1

AnytimeTuned

F
in

al
Tu

ne
d

NSGAII ZDT

●

●

●

●●●

●

●

●

●●
●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

0.7 0.8 0.9 1.0 1.1

0.
7

0.
8

0.
9

1.
0

1.
1

AnytimeTuned

F
in

al
Tu

ne
d

SPEA2 ZDT

●

●

●

●
● ●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

0.7 0.8 0.9 1.0 1.10.
7

0.
8

0.
9

1.
0

1.
1

AnytimeTuned

F
in

al
Tu

ne
d

IBEA ZDT

●

●●●
●

●

●

●

●

●
●●

●

●
●●●●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

0.8 0.9 1.0 1.1

0.
8

0.
9

1.
0

1.
1

AnytimeTuned

F
in

al
Tu

ne
d

NSGAII DTLZ

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

0.85 0.95 1.05 1.15

0.
85

0.
95

1.
05

1.
15

AnytimeTuned

F
in

al
Tu

ne
d

SPEA2 DTLZ

●

●
●●●

●

●

●

●

●●
●

●

●

●●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

0.8 0.9 1.0 1.1

0.
8

0.
9

1.
0

1.
1

AnytimeTuned

F
in

al
Tu

ne
d

IBEA DTLZ

Fig. 6. Difference for anytime behaviour quality obtained for the best parameter
set tuned for anytime behaviour and the best parameter set tuned for quality of the
final Pareto front. Each point represents an “unseen” instance from the ZDT and the
DTLZ benchmark sets.

far better than the default configurations and therefore the plots comparing to
the default configurations are omitted here.) As the plots show, the configura-
tions tuned for anytime behaviour obtain generally better results for the anytime
behaviour than those tuned for the final quality.

Figure 7 shows that, in terms of final quality, the differences between the
configurations tuned for the anytime behaviour and the configurations tuned for
the final quality are only slightly in favor of the latter with the exception of few
outliers in the cases of NSGA-II on the DTLZ set and IBEA and SPEA2 on the
ZDT sets. Thus, the improved anytime behaviour does not necessarily incur a
strong loss with respect to the final quality reached.

By comparing the three MOEAs on the same function (here as example
DTLZ1, D = 30), we can observe that IBEA is typically the best performing
algorithm for the default settings, and the configurations tuned for anytime
behaviour or final quality (Fig. 8). However, while for the default settings the
advantage of IBEA is often substantial, after tuning NSGAII and SPEA2 are
typically strongly improved and can become competitive.

The differences in the behaviour of the algorithms before and after tuning
may be explained by the different parameter settings. Table 2 shows the default
configuration, and the parameter configurations found when tuning for any-
time behaviour and when tuning for final quality. The most notable differences



12 A. Radulescu, M. López-Ibáñez, T. Stützle

●●
●

●
●

●

●

●

●●

●

●

●

●●

●
●

●

● ●
●

● ●
●

●

●

●

●

●

●

0.95 1.05 1.15

0.
95

1.
00

1.
05

1.
10

1.
15

1.
20

AnytimeTuned

F
in

al
Tu

ne
d

NSGAII ZDT

●●●

●

●
●

●

●

●

●

●●
●

●●

●

●
●

●

●
●

●●●

●

●

●●

●

●

0.6 0.7 0.8 0.9 1.0 1.1 1.2

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

AnytimeTuned

F
in

al
Tu

ne
d

SPEA2 ZDT

●●●●●●

●

●●

●

●

●

●

●●
● ●●

●
●

●
●●●

●

●

●

●
●●

0.7 0.8 0.9 1.0 1.1 1.2

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

AnytimeTuned

F
in

al
Tu

ne
d

IBEA ZDT

●● ●● ●●

●

●
●●●
●●●●●●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

1.00 1.10 1.20 1.30

1.
00

1.
10

1.
20

1.
30

AnytimeTuned

F
in

al
Tu

ne
d

NSGAII DTLZ
●●●●●●

●

●
●
●●●●●● ●●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●●

●

●●

●

●

●

1.0 1.1 1.2 1.3

1.
0

1.
1

1.
2

1.
3

AnytimeTuned

F
in

al
Tu

ne
d

SPEA2 DTLZ
●●●●●●

●

●
●●
●●●●● ●●●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●
●

●

1.15 1.20 1.25 1.301.
15

1.
20

1.
25

1.
30

AnytimeTuned

F
in

al
Tu

ne
d

IBEA DTLZ

Fig. 7. Difference for the quality of the final Pareto front obtained the best pa-
rameter set tuned for anytime behaviour and the best parameter set tuned for qual-
ity of the final Pareto front. Each point represents an “unseen” instance from the
ZDT and the DTLZ benchmark sets.

with respect to the default parameters is the larger population size for the con-
figurations optimising anytime behaviour and final quality. Interestingly, when
optimising performance for final quality, the population sizes are in all cases
larger than when optimising for anytime behaviour. This suggests to us that an
incremental population approach could probably help to improve the anytime
behaviour of these MOEAs. The effect of other parameters is more difficult to
interpret, but the lack of a clear trend suggests that simple time-varying param-
eter adaptation strategies may not be successful. A more profound analysis, for
example, by tuning the parameters for various termination criteria, could help to
reveal some exploration versus exploitation trade-offs. A more direct approach
would be to implement a large number of parameter variation strategies and find
the best strategy by means of the technique demonstrated in this paper, that is,
by automatic configuration with respect to anytime behaviour.

6 Conclusions

In this article, we have shown that the quality of the anytime behaviour of
MOEAs can be improved significantly by using the combination of Iterated F-
race [2,13] and the hypervolume quality measure. For this task, the hypervolume



Automatically Improving the Anytime Behaviour of MOEAs 13

0 500 1000 2000 3000

1.
00

1.
10

1.
20

1.
30

Evaluations

H
yp

er
vo

lu
m

e

ParetoOptimal
IBEA
NSGAII
SPEA2

0 500 1000 2000 30001.
00

1.
10

1.
20

1.
30

Evaluations

H
yp

er
vo

lu
m

e

ParetoOptimal
IBEA
NSGAII
SPEA2

0 500 1000 2000 3000

1.
15

1.
20

1.
25

1.
30

Evaluations

H
yp

er
vo

lu
m

e

ParetoOptimal
IBEA
NSGAII
SPEA2

Fig. 8. Variation of the quality of the Pareto front approximation obtained by the
three MOEAs with default parameter sets (left plot), parameter sets tuned for anytime
behaviour (middle plot) and parameter sets tuned for final quality (right plot).

Table 2. Best values of the tuned parameters for IBEA, NSGAII and SPEA2. Fo each
algorithm and benchmark set the tuned values for optimising the anytime behavior
(any) or the final quality (final) are given together with the default values.

IBEA NSGAII SPEA2
Para- default DTLZ ZDT DTLZ ZDT DTLZ ZDT
meter values any final any final any final any final any final any final
pc 1.0 0.824 0.844 0.935 0.915 0.928 0.755 0.398 0.843 0.172 0.190 0.823 0.790
pext
m 1.0 0.468 0.371 0.799 0.796 0.131 0.066 0.290 0.921 0.027 0.099 0.823 0.743

pint
m 0.083 0.848 0.756 0.915 0.779 0.578 0.894 0.807 0.966 0.099 0.130 0.876 0.857
N 20 23 60 32 60 39 72 46 79 101 123 49 71
DIc 15 81 71 96 69 94 99 65 31 30 87 69 37
DIm 20 18 69 0 1 15 11 1 0 20 36 0 0
l 0.05 0.136 0.065 0.317 0.148 - - - - - - - -

N 100 - - - - - - - - 184 482 209 340
k 10 - - - - - - - - 11 16 20 41

measure is used in two places. First, to measure the quality of the Pareto-front
approximations generated by the MOEAs; second, to measure the quality of the
anytime behaviour as defined by the trade-off curve of the solution quality over
time. We have applied the resulting methodology to three different MOEAs:
IBEA, NSGA-II and SPEA2.

We have combined the above approach with an automatic configuration
method (irace) in order to automatically improve the anytime behaviour of
the MOEAs. However, the proposed method is not restricted to irace, and
other automatic configuration methods could be used for this purpose. Future
work should investigate whether some configuration methods are more suited for
this task than others.

The experimental results presented in this paper showed that a considerable
improvement of the anytime behaviour could be obtained for all three algorithms.
Additionally, tuning for the anytime behaviour improves also (with respect to
anytime behaviour) over a version of the three algorithms that is tuned for
optimising the quality of the final Pareto front approximation. This can be seen
as a confirmation that the optimisation goal of improving anytime behaviour



14 A. Radulescu, M. López-Ibáñez, T. Stützle

actually leads to algorithms configurations that are more robust to different
termination criteria without sacrificing much of the solution quality that may be
obtained by the algorithm. Most importantly, these improvements are obtained
by an automatic method, which is saving substantial human effort.

In initial research efforts, we have considered the automatic tuning and
configuration of the anytime behaviour of single objective optimisation algo-
rithms [15, 16]. This here is the first attempt to apply the automatic configura-
tion of the anytime behaviour to multi-objective algorithms, especially MOEAs.
There are several directions that can be taken to extend this work. A first one is
to extend the analysis of the impact of automatic tuning to others MOEAs, such
as SMS-EMOA [1] or MOEA/D [17]. The quality of the anytime behaviour can
be tested also with others benchmark problems, with more complicated objec-
tive functions. A second direction is to consider more parameters, including also
categorical parameters such as the choice of the cross-over and the mutation op-
erators. In this paper, we only consider static parameters as done in the original
MOEAs. A promising approach when dealing with anytime optimization is to
consider parameter variation strategies, and automatically configure the param-
eters of such strategies w.r.t. anytime behaviour [16]. Moreover, we have limited
ourselves to parameters independent of problem instance features. Nevertheless,
it would be straightforward to define parameters as functions of instance fea-
tures and tune the parameters that define such functions. A more challenging
question is how to detect automatically which features should influence which
parameters. We are convinced that further work in the directions indicated here,
will lead to the design of multi-objective algorithms that are more robust with
respect to the choice of specific termination criteria and, thus, will improve the
practice of multi-objective evolutionary algorithms.

Acknowledgements. This work was supported by the META-X project, an Action

de Recherche Concertée funded by the Scientific Research Directorate of the French

Community of Belgium. Manuel López-Ibáñez and Thomas Stützle acknowledge sup-

port from the Belgian F.R.S.-FNRS, of which they are a postdoctoral researcher and

a research associate, respectively. Andreea Radulescu acknowledges support through

the Laboratoire d’Informatique de Nantes-Atlantique (LINA) and Nantes university.

The authors also acknowledge support from the FRFC project “Méthodes de recherche

hybrides pour la résolution de problèmes complexes”.

References

1. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selection
based on dominated hypervolume. European Journal of Operational Research
181(3), 1653–1669 (2007)

2. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-race and iterated F-race: An
overview. In: Bartz-Beielstein, T., et al. (eds.) Experimental Methods for the Anal-
ysis of Optimization Algorithms, pp. 311–336. Springer, Berlin, Germany (2010)

3. Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search spaces.
Complex Systems 9(2), 115–148 (1995)



Automatically Improving the Anytime Behaviour of MOEAs 15

4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 181–197 (2002)

5. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolution-
ary multi-objective optimization. TR 112, Computer Engineering and Networks
Laboratory, Swiss Federal Institute of Technology, Zürich, Switzerland (2001)

6. Eiben, A.E., Smit, S.K.: Parameter tuning for configuring and analyzing evolu-
tionary algorithms. Swarm and Evolutionary Computation 1(1), 19–31 (2011)

7. Fonseca, C.M., Paquete, L., López-Ibáñez, M.: An improved dimension-sweep al-
gorithm for the hypervolume indicator. In: Congress on Evolutionary Computation
(CEC 2006), pp. 1157–1163. IEEE Press, Piscataway, NJ (2006)

8. Hoos, H.H.: Automated algorithm configuration and parameter tuning. In:
Hamadi, Y., Monfroy, E., Saubion, F. (eds.) Autonomous Search, pp. 37–71.
Springer, Berlin, Germany (2012)

9. Hoos, H.H.: Programming by optimization. Communications of the ACM 55(2),
70–80 (Feb 2012)

10. Hoos, H.H., Stützle, T.: Stochastic Local Search—Foundations and Applications.
Morgan Kaufmann Publishers, San Francisco, CA (2005)

11. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic
algorithm configuration framework. Journal of Artificial Intelligence Research 36,
267–306 (2009)

12. Liefooghe, A., Jourdan, L., Talbi, E.G.: A software framework based on a con-
ceptual unified model for evolutionary multiobjective optimization: ParadisEO-
MOEO. European Journal of Operational Research 209(2), 104–112 (2011)

13. López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace package,
iterated race for automatic algorithm configuration. Tech. Rep. TR/IRIDIA/2011-
004, IRIDIA, Université Libre de Bruxelles, Belgium (2011),

14. López-Ibáñez, M., Knowles, J.D., Laumanns, M.: On sequential online archiving
of objective vectors. In: Takahashi, R.H.C., et al. (eds.) EMO 2011, LNCS, vol.
6576, pp. 46–60. Springer, Heidelberg, Germany (2011)

15. López-Ibáñez, M., Liao, T., Stützle, T.: On the anytime behavior of IPOP-CMA-
ES. In: Coello Coello, C.A., et al. (eds.) PPSN 2012, Part I, LNCS, vol. 7491, pp.
357–366. Springer, Heidelberg, Germany (2012)

16. López-Ibáñez, M., Stützle, T.: Automatically improving the anytime behaviour
of optimisation algorithms. Tech. Rep. TR/IRIDIA/2012-012, IRIDIA, Université
Libre de Bruxelles, Belgium (2012)

17. Zhang, Q., Li, H.: MOEA/D: A multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

18. Zilberstein, S.: Using anytime algorithms in intelligent systems. AI Magazine 17(3),
73–83 (1996)

19. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao,
X., et al. (eds.) PPSN VIII, LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg,
Germany (2004)

20. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evo-
lutionary algorithm for multiobjective optimization. In: Giannakoglou, K., et al.
(eds.) Evolutionary Methods for Design, Optimisation and Control. pp. 95–100.
CIMNE, Barcelona, Spain (2002)

21. Zitzler, E., Thiele, L., Deb, K.: Comparison of multiobjective evolutionary algo-
rithms: Empirical results. Evolutionary Computation 8(2), 173–195 (2000)

22. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.:
Performance assessment of multiobjective optimizers: an analysis and review. IEEE
Trans. Evol. Comput. 7(2), 117–132 (2003)


	Automatically Improving the Anytime Behaviour of Multiobjective Evolutionary Algorithms

