

Urbis Research Forum Review Vol.1, Issue 2

Science and the City

ISSN: 2042-034X

Vol 1, Issue 2

15

Urbis Research Forum Review Vol.1, Issue 2

Code/Space:
Martin Dodge

“Software is everything. In the history of
human technology, nothing has become as

essential as fast as software.”
 (Fishman 1996: 95)

Introduction

Software is all about us, animating city
functions, monitoring infrastructures,
regulating flows and enrolled in a myriad of
daily activities. As geographers Nigel Thrift
and Shaun French (2002: 309) have noted
“more and more of the spaces of everyday life
come loaded up with software, lines of code
that are installing a new kind of automatically
reproduced background and whose nature is
only now starting to become clear.” There is a
need for novel urban research that documents
and accounts for how the socio-technical
governance of cities is becoming automatic
and character based on the calculative power
and anticipatory capacities of computer
software. To begin to provide a
comprehensive account of how code makes
so much of contemporary cities work is a
challenge as many people do not comprehend
software and much computing is
‘disappearing’ into what Thrift (2004) has
called the ‘technological unconscious’. First off
research needs to account for the tremendous
scale and speed of growth in the extent of
code, as suggested by Fishman’s decade old
statement quoted above, and then also to
understand the productive and creative power
that software has to make the world differently
in terms of the materiality, economic relations
and social processes at the heart of city life.

Research into the urban landscapes of code
can usefully progress from the position of non-
representational theory in which the analytical
lens shifts focus from an ontological
description (what something is) to ontogenesis
(how something comes to be). So the city is no

longer read as a set of fixed, geometric spaces
and ‘hard’ objects but instead in the
ontogenetic reading spaces are seen to
emerge through practice and the city is made
up of all manner of provisional objects that
only take on form, function and meaning
through how they are performed. Software, I
would argue, increasingly makes a difference
to spatial practices and material performances.
Software is enrolled to bring the city into being
in particular ways.

In the rest of this article I set out ideas on how
we might productively research the ways that
software is enrolled into contemporary urban
practices, beginning by defining the nature of
code, then considering some of the significant
theoretical ideas advanced by geographical
scholars in the last decade to account for the
spatiality of software. Lastly, I seek to
exemplify some of these concepts drawing on
empirical evidence from Anglo-American cities
and focusing on the challenges of urban
mobility and car driving.

Defining code

We all work with code consciously when we
directly interact with computer devices and
more widely in the many unconscious brushes
with software when our activities come within
the orbit of coded systems (e.g., paying by
card in a store depends on layers of software
to make the monetary transaction proceed as
intended). We may be aware of its effects but
most of us have little idea about what software
is or how it works.

Software animates a variety of computing
machines, some designed as devices for
humans to directly relate to, but increasingly
the machines that host code are ‘black-boxes’
installed discretely in the background without
the need to address people to do their work.

16

Urbis Research Forum Review Vol.1, Issue 2

It can be argued that it is hard to get a solid
sense of software because so much code is
hidden from view, and even when one can see
the computer carapace it is not possible to
observe the nature of the code working.
Holding a mobile phone for example, one can
see a surface presentation generated by the
interface code on the screen, but this tells you
nothing of what is running ‘beneath’ the
display. We might use a laptop for hours on a
daily basis for work and leisure becoming
intimately familiar with its materiality, its
weight, the noise of the cooling fan, the feel of
the keyboard and so on, but how much do we
know of the software running on it? As
Annette Schindler notes “you think you know
your computer, but really all you know is a
surface on your screen.” (quoted in Mirapaul
2003).

Conceptually software is built of lines of code
– simple instructions and algorithmic rules –
that when combined together with appropriate
data produce operative programs capable of
complex functions. Software could be thought
of as a special kind of written language, with
particular grammatical rules, vocabularies and
linguistic conventions. Rather than being
printed and read by people, code runs, it is a
self-executable language. It can make
decisions and can make or effect material
change – causing a switch to close, a valve to
open or operating a servomotor. Importantly in
reaching these decisions, it can evaluate
available data and take an action automatically
without human oversight. In a sense then it
can be argued that code exhibits emergent
properties with aspects of complex behaviour
beyond conventional electro-mechanical
devices. As Thrift and French (2002: 310) note
software exists “somewhere between the
artificial and a new kind of natural, the dead
and a new kind of living”; it often has a
“presence as ‘local intelligence’”. Again
thinking about the mobile phone in your pocket
as a dense package of complex code that
works as a ‘local intelligence’ it has a sense of
a life of its own, it is doing things for you and
for itself without being instructed to do (polling
the telecommunications network, checking

signal strength, monitoring battery life,
storage, waiting for messages, updating, self-
configuring, and so on).

The reason why software matters is its ability
to do work in the world. This is most apparent
from the ways that code can distribute,
generate, monitor and control data exchanges
across a range of media (reading and
processing data to and from memory and
discs, transmitting over cables and wirelessly
through the air). Data is the lifeblood of code
and seems to accrete even without human
effort, programs generate temporary files,
systems log events, messages are received
and stored, application updates are
downloaded and media is streamed from
different sources.

Main Entry: code
Pronunciation: 'kOd
Function: noun
Etymology: Middle English, from Middle French, from
Latin caudex, codex trunk of a tree, document formed
originally from wooden tablets
Date: 14th century
1: a systematic statement of a body of law; espe-
cially : one given statutory force
2: a system of principles or rules <moral code>
3
a: a system of signals or symbols for communication
b: a system of symbols (as letters or numbers) used
to represent assigned and often secret meanings
4: genetic code, Date: 1961, the biochemical basis of
heredity consisting of codons in DNA and RNA that
determine the specific amino acid sequence in pro-
teins and appear to be uniform for all known forms of
life
5: a set of instructions for a computer

- code·less /-l&s/ adjective
Function: verb
Inflected Form(s): cod·ed; cod·ing,
Date: 1815,
transitive senses: to put in or into the form or symbols
of a code
intransitive senses: to specify the genetic code
<a gene that codes for a protein>
- cod·able /'kO-d&-b&l/ adjective,
- cod·er noun

(From Merriam-Webster Online Dictionary, 2003,
<www.merriam-webster.com>.)

17

Urbis Research Forum Review Vol.1, Issue 2

Theorising code
In the last decade or so the field of Software
Studies has emerged at the intersections of
digital art, media theory, hacker intelligentsia
and social science scholarship. It seeks to
create an expanded understanding of software
that extends significantly beyond the technical.
The focus here is on developing cultural and
theoretical critiques of how the world itself is
captured within code in terms of algorithmic
potential and formal data descriptions. A
leading theorist in the field, Lev Manovich
(2008: 6) states: “I think that Software Studies
has to investigate both the role of software in
forming contemporary culture, and cultural,
social, and economic forces that are shaping
development of software itself.” As such it calls
for transdisciplinary research methods and
Matthew Fuller (2008: 2) has argued that it
“proposes that software can be seen as an
object of study and an area of practice for
kinds of thinking and areas of work that have
not historically ‘owned’ software, or indeed
often had much of use to say about it.” There
is much, more I believe, that needs to be said
by social scientists and urban researchers who
have traditionally not had much to say about
the spatiality of software beyond more
generalised critiques of computerisation and
the inequalities in IT provision and access to
the internet.

A number of geographers have recently
advanced a range of conceptual ideas and
practical strategies to begin to understand how
the diversity of software’s agency contributes
to the production of city space. This research
is founded, in part, on a key 2002 paper by
Nigel Thrift and Shaun French that set out the
nature of software as a having the capacity to
automatically produce space and thus have
“important consequences for what we regard
as the world’s phenomenality, new landscapes
of code that are now beginning to make their
own emergent ways.” They began to
document the extent to which Euro-American
societies are “…interwoven with computer
software” (2002: 309). Working from this
premise, Rob Kitchin and myself sought to

unpack how software can automatically
beckon space into being in our 2005 paper.
We did this by firstly defining the range of
forms of software into a four-level hierarchy: (i)
individual coded objects, which can be linked
to form (ii) coded infrastructures, that are
monitored by and also transport (iii) coded
processes. Coded objects, infrastructures and
processes are in turn, combined together to
form larger (iv) coded assemblages. This
hierarchy enables the software, through its
varying degrees of technicity (power and
productive capacity for work) to transduce
space, that is it brings new spatial formations
into existence to solve a problem or perform a
task. We elaborate on the nature of these
spatial transductions through the enrolment of
software, arguing there are three distinct levels
of transductions: (i) code/space, (ii) coded
space, (iii) background coded space. In the
first level of transduction the technicity of
software is so significant that the space
brought into being depends on the operation of
the code. There is a dyadic relationship
between the space and the code – hence the
co-joint nature of our term ‘code/space’ – and
if the software fails to operate then the space
is not produced. In the second level of ‘coded
space’ the transduction is mediated by code
but the relation is not dyadic so if the software
were to fail to operate for whatever reason the
space would still be produced as intended to
solve a problem or perform a task. However,
the nature of the spatial transduction without
software is potentially a less efficient solution
to the problem or a more costly way to perform
a task (e.g., failure of computer system forces
workers to use a ‘manual’ backup procedure
that is much more labour intensive). The
lowest level is a transduction-in-waiting so to
speak, what we term ‘background coded
space’, is when code exists and has the
potential to mediate a solution if activated.
Much of ordinary living in Western cities
occurs in ‘background coded space’ where
people are surrounded by coded objects,
coded infrastructures and coded processes
that can be called upon in myriad of ways to
solve a problem or perform a task.

18

Urbis Research Forum Review Vol.1, Issue 2

The social implications of the spatial work
software has been theorised by Stephen
Graham (2005), who extended the well known
notion of ‘social sorting’ from surveillance
research to argue that code is increasingly
capable of automatically sorting spaces and
attendant individual access and social
practices. Graham developed the concept of
‘software sorting’ which is useful as it focuses
attention on the “central role of computerised
code in shaping the social and geographical
politics of inequality in advanced
societies” (2005: 562). The algorithmic
ranking, classification and decision-making of
software is increasingly being applied to drive
evermore more profitable consumption and
also in the name of urban securitization code
is “ …now being widely applied in efforts to try
to separate privileged and marginalized
groups and places” (Graham 2005: 562). It is
politically significant that the nature of software
sorting be investigated and potentially
challenged by critical urban scholars and
activists because they represent a new form of
automated discrimination that is largely “…
invisible from the point of the users, [where]
prioritizations are often not evident either to
the favoured groups or places or to the
marginalized ones” (Graham 2005: 566).

In addition to potentially discriminatory sorting
of social spaces, code has also been theorised
in terms of the ways it can simulate future
spaces and thereby regulate how they come
into being by what has been termed
‘anticipatory governance’. For example, in
Peter Adey’s work on mobilities and
surveillance practices, he shows how the
orderliness of flows through spaces often
depend on how “software simulations make
the future present and actionable-upon by
alerting the users to future possibilities” (Budd
and Adey 2009: 25). Again these algorithmic
processes operate, often, without scrutiny or
questioning of the basis of their underlying
model of reality with its artificial parameters
and missing variables, and the
unacknowledged implications when the ‘what-
if’ scenarios generated are applied in
contingent live situations; as simulation

models “move into the public domain their
inherent uncertainties and qualifications may
be forgotten and the public seduced into
accepting their ‘crystal ball’ like
assumptions” (Budd and Adey 2009: 8). The
scope for code in simulation models to work in
an anticipatory fashion, particularly in the
domain of surveillance and governmentality,
has social implications. The predictions of the
future, created algorithmically and
automatically by code, do work in the world to
prevent that future scenario from coming into
being. Such pre-emptive mechanisms have
much appeal in the risk-conscious and real-
time world of global mobility, but they clearly
raise serious issues of ethics and power. In
space-times where anticipatory governance
using software simulations is active, how can
people be sure of the social equity in the
design of the code that affects, very materially,
their life chances?

Exemplifying code

 “The modern city exists as a haze of software

instructions. Nearly every urban practice is
becoming mediated by code.”
(Amin and Thrift 2002: 125)

Code in the city can be studied empirically in a
number of distinct domains. An obvious place
to start, building in part on the work of Adey
and Graham, is to focus on processes of
securitisation and networked surveillance in
which software is enrolled to extend coverage
and try to automate analysis and enactment of
governance. Code/spaces have become
essential to the ongoing consumption
practices in the cities, for example most retail
services and logistical supply chains depend
on coded networks, databases and automated
software systems to ensure their smooth
operation. Code has also permeated many
home as it becomes crucial to solving many
domestic tasks (cf. Dodge and Kitchin 2009).
Here I want to focus attention on movement
through cities and particularly on road systems
and car driving.

19

Urbis Research Forum Review Vol.1, Issue 2

This entails thinking about the spaces of
circulation and also the places of being
stationary, the varying speeds of vehicles,
mechanical failures and illegal behaviours,
issues of congestion and the adaptability of
infrastructures over different time periods
(hours, day, weeks, years). Such complex and
dynamic issues are at the centre of the
planning, management and living in
contemporary cities. Investigation of these
themes around movement and driving also
provide linkages to novel work across the
social sciences under the rubric of the
‘mobilities’ paradigm that focuses on the
“analysis of different forms of travel, transport
and communications with the multiple ways in
which economic and social life is performed
and organized through time and across
various spaces.” (Urry 2007: 6).

A defining characteristic of the modern city is
the dominating presence of the automobile,
with the daily practices of many people
revolving around the extended and
individualised mobility they afford and myriad
urban spaces are configured to fit their bulky
physical form and speed of movement.

Here I want to consider the degree to which
these driving spaces are now being
transduced by the technicity of software into
coded space or code/spaces.

The Car and Code

To begin at the immediate scale of the car a
good case can be made that they have been
thoroughly recast in the last decade as code/
space through externalised software
processes that represent them and the internal
embedding of code to augment the electro-
mechanical working of the vehicles
themselves. All new vehicles are now
conceived within software environments, their
material forms being sculpted in 3D modelling
applications and their engineering
requirements and mechanical parameters
being virtually tested and refined within CAD
systems and other specialised software tools.

Figure 1. Cars are conceived, designed, manufactured

and distributed in software.
(Source: eSafety project flyer, 2005:2)

20

Urbis Research Forum Review Vol.1, Issue 2

Manufacturing cars is sophisticated, exacting
and highly automated, taking place in
streamlined plants with computerized and
robotic assemblage lines. These run as lean
production systems in which thousands of
individual components are drawn in from
globalised supply chains enabled by
networked information systems and electronic
data exchanges. Many cars are built on
demand to meet specific customer orders
which are held in software databases that
parallel the material vehicle. When the finished
cars are leased or sold all the owner and
vehicle details are held in a range of
databases and customer relations
management systems, including those for
registered keeper, taxation status, road
worthiness testing and mandatory insurance.
Vehicles in legal and legitimate ownership are
permanently tracked by a virtual data trail
maintained in large, anonymous databases.

Automobiles are products of code/space but
increasingly software is becoming bound into
the very materiality of the vehicles themselves.
Consequently, when they are driven they
operate as mobile code/spaces. As Thrift
(2004: 50) notes, “[a]lmost every element of
the modern automobile is either shadowed by
software or software has become …. the
pivotal component.” The calculative power of
code tunes mechanical performance,
augments conventional electrical systems,
adds new functionality and, most significantly,
it supplements the cognitive abilities of human
drivers.

In many respects the outward appearance of
cars has changed little in the last decade, but
in terms of how they operate contemporary
cars are really a collection of computers on
wheels. A host of electronic control units
(ECUs) monitor, mediate and modulate all
manner of mechanical aspects of the vehicle.
This is particularly so in luxury models where
the addition of evermore sophisticated
software systems is seen as a key element of
product innovation and differentiation from
competitors. However, even in mass-market,
basic model vehicles code is being enrolled

routinely as a core component. It can be
argued, therefore, that cars on city roads
represent one of the densest concentrations of
digital computation and embedded software
that most people encounter in the course of
their everyday activities.

Figure 2. Schematic of typical vehicle management
systems: ‘computers on wheels’. (Source: Kariatsumari
K, (2005) “Packing more electronics into cars”, Nikkei
Electronics Asia, September, page 30.)

Elements of software in the car are at least
partially apparent from the now common
presence of digital displays on the dashboard.
Another indicator is the changed operation of
some controls, such as the switch from
mechanical locks to radio based keyless entry
and remote locking systems that require
authentication from an embedded ID code. Yet
much of the coding up of the driver is not
visible from the superficial inspection of
vehicle controls because most software-
enabled systems that envelope and regulate
their actions do so surreptitiously so as not to
undermine the ‘driver experience’ and their
belief that they are in control. However, there
are a growing range of driver-assistance
systems depending on software in cars aimed
primarily at increasing the safety of the vehicle
and occupants. (Other coded systems are
focused on enhancing convenience and
vehicular performance, e.g., automated engine
optimisation for fuel economy, logging usage
to aid servicing). The technicity of code works
to transduce the car and thus the spatial

21

Urbis Research Forum Review Vol.1, Issue 2

performance of driving in at least four
domains:

(i) reduce the cognitive burden on drivers (e.g.,
turn-by-turn voice navigation instructions from
satnav making navigation easier)

(ii) reduce the level of kinaesthetic and spatio-
perceptive skills required (e.g., distance
detection within parking aids)

(iii) reduce the physical strength/endurance
needed to drive (e.g., active steering, active
cruise control)

(iv) sense environmental conditions beyond
normal human senses (e.g., black ice
detector).

The major hazard for drivers and vehicle
occupants is a crash. A raft of ‘safety through
software’ systems are now available in cars or
are under active development by the
automobile manufacturers. These augment the
well established physical and mechanical
safety measures. They have been likened to
an ‘electronic crumple zone’ (Economist 2008:
no pagination) where “if a collision seems

likely a warning is given. When the driver puts
his [sic] foot on the brake pedal the system
automatically applies the optimum pressure
required to avoid hitting the car in front. If the
driver fails to respond, the brakes come on
automatically.” Code is thus enrolled in a
significant sense to reduce the risks of a crash
event by aiding the driver’s road awareness
and potentially intervening before the driver
reacts (e.g., active breaking). If a crash does
occur other software systems can help
mitigate the immediate effects and also
automatically summon assistance to the
correct location.

The underlying assumption is that the driver is
most often the causal ‘problem’ in an accident
event and, in some senses, need to be
protected from themselves. The fallibility of
human judgement and lack of attention can be
compensated, to varying degrees, by the
technicity of code. Sometimes it may be
appropriate for software to actively overrule
driver’s intentions or to act without driver
authorisation if the algorithm detects risk
above threshold limits. This a radical change
in the way a vehicle’s controls work, with a
shift away from direct physical connections

Figure 3. eSafety system and technologies concept diagram. (Source: eSafety project
Fliyer, 2005:10).

22

Urbis Research Forum Review Vol.1, Issue 2

between the driver’s embodied actions and
mechanical response to software-mediated
‘drive-by-wire’ operations. So, physical
pressure on the break pedal does not engage
the car’s breaks but signals to the software in
the breaking ECU. This code interprets your
intentions algorithmically, and in combination
with other sensed data about the car’s speed
and stability, it then decides how much
mechanical breaking can be safely applied to
the wheels. Important aspects of driving are
superficially unchanged but actually now
depend on correct operation of software the
car has been transduced into a code/space.

Street as Software Systems

Figure 4. View of a control centre for a road network.
The primary interfaces of monitoring and control
software are evident on the numerous screens

dominating the working space. (Source: Midland
Expressway Ltd, <www.m6toll.co.uk>.)

Extensive urban road infrastructure of tarmac,
conventional signs, and traffic controls in the
form of pre-set traffic lights, fixed tolls and
solid pollards, are rapidly being complemented
with ‘smart media’ - digital, networked
infrastructures controlled by software - that
aim to more effectively monitor and regulate
the street system in real-time. Examples of
code enrolled in active traffic management
include the automatic altering of traffic light
sequences and the updating of road speed
signs, automatic logging of vehicular
congestion and variable toll charges, and
networked speed, red light and bus-lane
cameras designed to discipline driver

behaviour. These software-enabled
technologies, when used in combination, aim
to produce wide area of intelligent transport
systems that make more efficient use of roads.
As such, street systems are ‘coded space’
although in most cases the relationship
between them is not one of dyadic
dependency – if the software fails the roads
still come into being as drivable road space
but perhaps less efficiently or safely.

Traffic volumes are continuously monitored
drawing upon a range of software controlled
sensing infrastructures distributed at strategic
points across the city (induction loops, infrared
cameras at traffic lights, networked video
camera’s that can count passing vehicles from
their number plates). The data feeds into
urban traffic control centres that simulate the
traffic levels in the near future within software
models and can adapt control systems, such
as timings on traffic light phases to try to
minimise congestion and smooth flow to
provide more consistent journey times for
majority of drivers.

The telematic monitoring of individual vehicles,
enabled by software, opens up the possibility
to identify and continuously track the
movement of all cars across the city in real-
time. This capability to transduce the streets
into a continuous code/space will likely have
significant implications for the costs of driving
in terms of congestion charging, road pricing
and variable insurance rates. Conventionally
drivers pay a fixed annual tax and insurance
premium for legal opportunity to use the road
system as much or as little as they want. Code
will enable much more flexible and dynamic
pricing models, with more intensive or riskier
drivers paying more. For example, a number
of insurance companies are experimenting
with onboard tracking devices that generate
vehicle movement data for software to
dynamically calculate insurance premiums that
reflect driving patterns (kilometres driven,
routes, time of journeys) behaviour and the
different types of locations in which they park
their vehicles.

23

Urbis Research Forum Review Vol.1, Issue 2

Forms of congestion charging that charges
drivers for entering specific areas of a city or
more continuous road pricing schemes that
cover whole journeys are increasingly likely to
be deployed by governments looking to raise
revenue by what could be perceived as a
progressive ‘green tax’. London has led the
way with its charging zone in the centre, in
operation since 2003, that relies on automatic
number plate recognition software to identify
vehicles and verify if they have paid the
required fee or not. Failure to pay is flagged in
the database automatically and a fine is
generated. In 2008 a more sophisticated
congestion charging scheme was proposed in
Greater Manchester with two control rings and
variable pricing depending on the direction of
journeys and time of day. Such a complex
format of charging for tens of thousands of
daily journeys is only feasible with wholesale
automatic governance through code. The
proposal in Manchester would have put up
virtual barriers of code/space that would have
transduced every vehicle passing through the
sensors and although defeated in a popular
referendum (in December 2008), it seems
likely that an adapted scheme will return in the
near future as the planners and politicians look
for a technological fix to ‘excessive’
automobility in the city.

Some car rental companies are now using
telematic tracking systems to monitor where
rental drivers take the vehicle, with penalties
imposed if the car is taken to somewhere

outside of the rental contract (e.g., across a
border or off-road). Other systems are sold as
products to parents so as to monitor the
location of ‘at risk’ teen drivers. For example,
Omnitrack, designed as an anti-theft device,
allows parents to track in real time where a
child’s car is and how fast they are travelling.
electromechanical tachographs that regulate
drivers hours.

Figure 5. Examples of coded infrastructures enrolled to monitor and control traffic flows in Los
Angeles. Picture left: shows black swirls of induction loop under the road’s surface that can detect
stationary cars at the junction. Picture middle: a bland control box that adapts the phasing of sets of
networked traffic lights according to predict flows. Picture right: a steerable video camera with ANPR.
(Source: The Center for Landscape for Land Use Interpretation, <www.clui.org/clui_4_1/ondisplay/
loop/exhibit/>.)

Figure 6. Diagrammatic view of the proposed congestion charging
scheme for Greater Manchester. (Source: GM Future Transport

leaflet, 2008.)

24

Urbis Research Forum Review Vol.1, Issue 2

It can also be programmed so that the
company will contact the parents if any set
parameters (e.g., speed or distance) are
exceeded. A range of distanciated driver
management systems, similarly using GPS
and telematic tracking, are also becoming
more common across commercial vehicle
fleets. These monitor the behaviour of drivers
operating commercial delivery vehicles, taxis,
buses, emergency vehicles, and so on, and
supplement electromechanical tachographs
that regulate drivers hours.

Implications of a city as code/space

The work of code in contemporary cities is
significant and given current social, economic
and technical trends, seems set to expand
greatly in the coming decade. This will bring
benefits, offering opportunities, facilities and
urban services for many and also reduced
costs for institutions and companies delivering
them. However, it will also bring an expanded
range and magnified degree of risks from
greater techno-social complexity in managing
city functions that become dependent on code.
These code/spaces are a risk because they
are imperfectly understood, the software is
often poorly engineered, hard to diagnose
when it misbehaves and difficult to fix when it
fails. The ways that parts of city infrastructure
and facilities fail will not only be through
observable physical faults, there will be new
vulnerabilities resulting from incorrect data or
errors and unanticipated conflicts from new or
updated software components. As code/
spaces become common place we will all have
to get used to software errors in many more
areas of daily life and learn to cope when the

code crashes.

At the level of individual practice, the growth of
software will have significant implications as it
mediates and regulates more and more
everyday activities, like driving. Software can
be read critically as threatening to accepted
notions of personal privacy, individual
autonomy and social equity. For example, in
the scenario of dynamically priced insurance
rates automatically calculated by software on
driving patterns and mandatory road pricing
requiring real-time tracking of all journeys. In
both cases, software enabled technologies
seek to enforce differential access on the
basis of certain criteria, usually authorised
identity or ability/willingness to pay, and thus
ensure that the road system is segmented;
those who are entitled have access to the right
parts of the system and those who do not are
excluded. Of concern to some commentators
is that financially based, software-driven
‘social sorting’, works to benefit affluent drivers
while penalising the poor and those classified
as higher risk, either by denying them access
to a section of road or area, forcing them to
take more expensive routes in terms of time
and distance, or by having to pay higher
premiums (‘discrimination-by-postcode’ where
poorer areas tend to have high premiums due
to higher crime rates). Such sorting thus works
to further marginalise and exclude poorer
sections of society from essential urban
infrastructure. It is therefore essential that
urbanists and social scientists should focus
attention on describing where code is working
in cities, account for how it works and offer
explanations of whom it works for.

Figure 7. In regulating driving the ultimate form of governance is through physical barriers that can
regulate access. Examples include car parking barriers and automated bollards that will lower to

permit authorised vehicles to pass but rapidly raise to block everyone else. (Source:
<www.youtube.com/watch?v=BwnfeDtnuds>.)

25

Urbis Research Forum Review Vol.1, Issue 2

References

Amin A, Thrift N, (2002) Cities: Reimagining
the Urban (Polity Press, Cambridge).

Budd L, Adey P, (2009) “The software-
simulated airworld: anticipatory code and
affective aero mobilities”, Environment and
Planning A 41(6) pp. 1366-85.

Economist (2008) “Stopping in a hurry”, The
Economist 11 December
<www.economist.com/science/
displaystory.cfm?story_id=12758720>.

Fishman C, (1996) “They write the right stuff”,
FastCompany Magazine, December, page 95
<www.fastcompany.com/online/06/
writestuff.html>.

Fuller M, (2008) Software Studies: A Lexicon
(MIT Press, Cambridge, MA).

Graham S D N, (2005) “Software-sorted
geographies”, Progress in Human Geography
29(5) pp. 562-80.

Kitchin R, Dodge M, (2010) Code/Space:
Software and Everyday Life (MIT Press,
Cambridge, MA).

Manovich L, (2008) Software Takes
Command, 20 November version, <http://
lab.softwarestudies.com/2008/11/
softbook.html>.

Mirapaul M, (2003) “Deliberately distorting the
digital mechanism”, The New York Times, 21
April.

Thrift N, (2004) “Driving in the city”, Theory,
Culture & Society 21(4/5) pp. 41-59.

Thrift N, French S, (2002) “The automatic
production of space”, Transactions of the
Institute of British Geographers NS 27 pp. 309
-35.

Urry J, (2007) Mobilities (Polity Press,
Cambridge).

Further reading

Papers available to download from
<www.cybergeography.org/martin/>:

Dodge M, Kitchin R, (2009) “Software, objects,
and home space”, Environment and Planning
A 41(6): pp. 1344-65.

Dodge M, Kitchin, R, (2007) “The automatic
management of drivers and driving spaces”,
Geoforum 38(2): pp. 264-75.

Dodge M, Kitchin R, (2007) “‘Outlines of a
world coming in existence’: Pervasive
computing and the ethics of forgetting”,
Environment and Planning B: Planning and
Design 34(3): pp. 431-45.

Dodge M, Kitchin R, (2005) “Codes of life:
Identification codes and the machine-readable
world”, Environment and Planning D: Society
and Space 23(6): pp. 851-81.

Dodge M, Kitchin R, (2005) “Code and the
transduction of space”, Annals of the
Association of American Geographers 95(1):
pp. 162-80.

26

Urbis Research Forum Review Vol.1, Issue 2

Urbis Research Forum Review
Vol. 1, Issue 2
2009
ISSN: 2042-034X

Urbis
Cathedral Gardens
Manchester
M22 4FP

