A Wiener-Hopf Monte Carlo simulation technique for Lévy processes

A. E. Kyprianou, J. C. Pardo and K. van Schaik

Department of Mathematical Sciences, University of Bath

■ Lévy process. A (one dimensional) process X with stationary and independent increments and cadlag paths (e.g. Brownian motion with drift, compound Poisson processes, stable processes amongst many others).

- Lévy process. A (one dimensional) process X with stationary and independent increments and cadlag paths (e.g. Brownian motion with drift, compound Poisson processes, stable processes amongst many others).
- Goal of this talk. Present Monte Carlo simulation technique for problems that fundamentally depend on the joint distribution

$$P(X_t \in dx, \overline{X}_t \in dy)$$

where $\overline{X}_t := \sup_{s \le t} X_s$.

- Lévy process. A (one dimensional) process X with stationary and independent increments and cadlag paths (e.g. Brownian motion with drift, compound Poisson processes, stable processes amongst many others).
- Goal of this talk. Present Monte Carlo simulation technique for problems that fundamentally depend on the joint distribution

$$P(X_t \in dx, \overline{X}_t \in dy)$$

where $\overline{X}_t := \sup_{s \le t} X_s$.

lacktriangle Example: barrier options in Lévy market. Value of a European up-and-out barrier option with expiry date T and barrier b is of the form

$$e^{-rT}\mathbb{E}_s(f(S_T)\mathbf{1}_{\{\overline{S}_T\leq b\}})$$

where $S = \exp(X)$, $\overline{S}_T = \sup_{u < T} S_u$ and f is some nice function.

- Lévy process. A (one dimensional) process X with stationary and independent increments and cadlag paths (e.g. Brownian motion with drift, compound Poisson processes, stable processes amongst many others).
- Goal of this talk. Present Monte Carlo simulation technique for problems that fundamentally depend on the joint distribution

$$P(X_t \in dx, \overline{X}_t \in dy)$$

where $\overline{X}_t := \sup_{s \le t} X_s$.

 Example: barrier options in Lévy market. Value of a European up-and-out barrier option with expiry date T and barrier b is of the form

$$e^{-rT}\mathbb{E}_s(f(S_T)\mathbf{1}_{\{\overline{S}_T\leq b\}})$$

where $S = \exp(X)$, $\overline{S}_T = \sup_{u < T} S_u$ and f is some nice function.

Other motivations from queuing theory, population models etc.

lacktriangle Recall characteristic exponent of X given by

$$\Psi(\theta) := -\frac{1}{t} \log E(e^{i\theta X_t})$$

$$= ai\theta + \frac{1}{2}\sigma^2\theta^2 + \int_{\mathbb{R}} (1 - e^{i\theta x} + i\theta x \mathbf{1}_{\{|x| \le 1\}}) \Pi(dx)$$

where $a\in\mathbb{R}$, $\sigma\in\mathbb{R}$ and Π is a measure concentrated on $\mathbb{R}\setminus\{0\}$ satisfying $\int_{\mathbb{R}}(1\wedge x^2)\Pi(dx)<\infty$.

lacktriangle Recall characteristic exponent of X given by

$$\Psi(\theta) := -\frac{1}{t} \log E(e^{i\theta X_t})$$

$$= ai\theta + \frac{1}{2}\sigma^2\theta^2 + \int_{\mathbb{R}} (1 - e^{i\theta x} + i\theta x \mathbf{1}_{\{|x| \le 1\}}) \Pi(dx)$$

where $a\in\mathbb{R},\ \sigma\in\mathbb{R}$ and Π is a measure concentrated on $\mathbb{R}\setminus\{0\}$ satisfying $\int_{\mathbb{R}}(1\wedge x^2)\Pi(dx)<\infty$.

■ Wiener-Hopf factorisation: one can always decompose

$$q + \Psi(\theta) = \kappa^{+}(q, -i\theta) \times \kappa^{-}(q, i\theta)$$

such that

$$E(e^{i\theta \overline{X}_{\mathbf{e}_q}}) = \frac{\kappa^+(q,0)}{\kappa^+(q,-i\theta)} \text{ and } E(e^{i\theta \underline{X}_{\mathbf{e}_q}}) = \frac{\kappa^-(q,0)}{\kappa^-(q,i\theta)}$$

where \mathbf{e}_q is an independent and exponentially distributed random variable with rate q>0 and $\underline{X}_t:=\inf_{s\leq t}X_s$. (Recall $\overline{X}_t:=\sup_{s< t}X_s$.)

■ In particular,

$$X_{\mathbf{e}_q} \stackrel{d}{=} S_q + I_q$$

where S_q is independent of I_q and they are respectively equal in distribution to $\overline{X}_{\mathbf{e}_q}$ and $\underline{X}_{\mathbf{e}_q}$.

■ In particular,

$$X_{\mathbf{e}_q} \stackrel{d}{=} S_q + I_q$$

where S_q is independent of I_q and they are respectively equal in distribution to $\overline{X}_{\mathbf{e}_q}$ and $\underline{X}_{\mathbf{e}_q}$.

So:

$$(X_{\mathbf{e}_q}, \overline{X}_{\mathbf{e}_q}) \stackrel{d}{=} (S_q + I_q, S_q).$$

■ In particular,

$$X_{\mathbf{e}_q} \stackrel{d}{=} S_q + I_q$$

where S_q is independent of I_q and they are respectively equal in distribution to $\overline{X}_{\mathbf{e}_q}$ and $\underline{X}_{\mathbf{e}_q}$.

So:

$$(X_{\mathbf{e}_q}, \overline{X}_{\mathbf{e}_q}) \stackrel{d}{=} (S_q + I_q, S_q).$$

lacksquare Q1. For what LP's can we indeed sample from S_q and I_q ?

Recent advances: there are many new examples of Lévy processes (with two-sided jumps) emerging for which sufficient analytical structure is in place in order to sample from the two distributions $\overline{X}_{\mathbf{e}_q}$ and $\underline{X}_{\mathbf{e}_q}$. (β -Lévy processes, Lamperti-stable processes, Hypergeometric Lévy processes, \cdots).

■ In particular,

$$X_{\mathbf{e}_q} \stackrel{d}{=} S_q + I_q$$

where S_q is independent of I_q and they are respectively equal in distribution to $\overline{X}_{\mathbf{e}_q}$ and $\underline{X}_{\mathbf{e}_q}$.

So:

$$(X_{\mathbf{e}_q}, \overline{X}_{\mathbf{e}_q}) \stackrel{d}{=} (S_q + I_q, S_q).$$

- **Q1**. For what LP's can we indeed sample from S_q and I_q ?

 Recent advances: there are many new examples of Lévy processes (with two-sided jumps) emerging for which sufficient analytical structure is in place in order to sample from the two distributions $\overline{X}_{\mathbf{e}_q}$ and $\underline{X}_{\mathbf{e}_q}$. (β -Lévy
- Q2. How do we get from the random time e_q to the fixed time t we are after?

Put i.i.d. exponentials 'after each other' to construct 'stochastic time grid' and make use of stat. indep. increments of X.

processes, Lamperti-stable processes, Hypergeometric Lévy processes, ...).

¹ Peter Carr has made use of this fact in a different way in the past in a finance setting and Ron Doney in a theoretical probabilistic setting.

■ Suppose that $e^{(1)}, e^{(2)}, \cdots$ is a sequence of i.i.d exp(1) distributed r.v.'s.

¹ Peter Carr has made use of this fact in a different way in the past in a finance setting and Ron Doney in a theoretical probabilistic setting.

- Suppose that $e^{(1)}, e^{(2)}, \cdots$ is a sequence of i.i.d exp(1) distributed r.v.'s.
- Define the 'grid points' (with av. grid distance $1/\lambda$) for all $k \geq 0$:

$$\mathbf{g}(k,\lambda) := \sum_{i=1}^{k} \frac{1}{\lambda} \mathbf{e}^{(i)},$$

in particular for any t>0 by the strong law of Large numbers

$$\mathbf{g}(n,n/t) = \sum_{i=1}^{n} \frac{t}{n} \mathbf{e}^{(i)} \overset{n \to \infty}{\longrightarrow} t$$
 a.s.

¹Peter Carr has made use of this fact in a different way in the past in a finance setting and Ron Doney in a theoretical probabilistic setting.

- Suppose that $e^{(1)}, e^{(2)}, \cdots$ is a sequence of i.i.d exp(1) distributed r.v.'s.
- Define the 'grid points' (with av. grid distance $1/\lambda$) for all k > 0:

$$\mathbf{g}(k,\lambda) := \sum_{i=1}^{k} \frac{1}{\lambda} \mathbf{e}^{(i)},$$

in particular for any t>0 by the strong law of Large numbers

$$\mathbf{g}(n, n/t) = \sum_{i=1}^{n} \frac{t}{n} \mathbf{e}^{(i)} \xrightarrow{n \to \infty} t$$
 a.s.

 \blacksquare Hence for a suitably large n, we have in distribution

$$(X_{\mathbf{g}(n,n/t)}, \overline{X}_{\mathbf{g}(n,n/t)}) \simeq (X_t, \overline{X}_t).$$

Indeed since t is not a jump time with probability 1, we have that $(X_{\mathbf{g}(n,n/t)},\overline{X}_{\mathbf{g}(n,n/t)}) \to (X_t,\overline{X}_t)$ a.s. as $n \to \infty$.

¹Peter Carr has made use of this fact in a different way in the past in a finance setting and Ron Doney in a theoretical probabilistic setting.

- Suppose that $e^{(1)}, e^{(2)}, \cdots$ is a sequence of i.i.d exp(1) distributed r.v.'s.
- Define the 'grid points' (with av. grid distance $1/\lambda$) for all $k \ge 0$:

$$\mathbf{g}(k,\lambda) := \sum_{i=1}^{k} \frac{1}{\lambda} \mathbf{e}^{(i)},$$

in particular for any t>0 by the strong law of Large numbers

$$\mathbf{g}(n, n/t) = \sum_{i=1}^{n} \frac{t}{n} \mathbf{e}^{(i)} \stackrel{n \to \infty}{\longrightarrow} t$$
 a.s.

 \blacksquare Hence for a suitably large n, we have in distribution

$$(X_{\mathbf{g}(n,n/t)},\overline{X}_{\mathbf{g}(n,n/t)})\simeq (X_t,\overline{X}_t).$$

Indeed since t is not a jump time with probability 1, we have that $(X_{\mathbf{g}(n,n/t)},\overline{X}_{\mathbf{g}(n,n/t)}) \to (X_t,\overline{X}_t)$ a.s. as $n \to \infty$.

■ This + facts from W-H theory from previous slide yields main result:

¹Peter Carr has made use of this fact in a different way in the past in a finance setting and Ron Doney in a theoretical probabilistic setting.

Main result

■ Theorem. For all $n \in \{1, 2, \dots\}$ and $\lambda > 0$,

$$(X_{\mathbf{g}(n,\lambda)}, \overline{X}_{\mathbf{g}(n,\lambda)}) \stackrel{d}{=} (V(n,\lambda), J(n,\lambda))$$

where

$$V(n,\lambda) := \sum_{j=1}^n \{S_\lambda^{(j)} + I_\lambda^{(j)}\} \text{ and } J(n,\lambda) := \bigvee_{i=0}^{n-1} \left(\sum_{j=1}^i \{S_\lambda^{(j)} + I_\lambda^{(j)}\} + S_\lambda^{(i+1)}\right).$$

- $\{S_{\lambda}^{(j)}: j \geq 1\}$ is an i.i.d. sequence of r.v.'s with common distribution equal to that of $X_{\mathbf{e}_{\lambda}}$,
- $\{I_{\Sigma}^{(j)}: j \geq 1\}$ is another i.i.d. sequence of r.v.'s with common distribution equal to that of $X_{e_{\lambda}}$.

Main result

■ Theorem. For all $n \in \{1, 2, \dots\}$ and $\lambda > 0$,

$$(X_{\mathbf{g}(n,\lambda)},\overline{X}_{\mathbf{g}(n,\lambda)}) \stackrel{d}{=} (V(n,\lambda),J(n,\lambda))$$

where

$$V(n,\lambda) := \sum_{j=1}^n \{S_\lambda^{(j)} + I_\lambda^{(j)}\} \text{ and } J(n,\lambda) := \bigvee_{i=0}^{n-1} \left(\sum_{j=1}^i \{S_\lambda^{(j)} + I_\lambda^{(j)}\} + S_\lambda^{(i+1)}\right).$$

Here

- $\{S_{\lambda}^{(j)}: j \geq 1\}$ is an i.i.d. sequence of r.v.'s with common distribution equal to that of $\overline{X}_{\mathbf{e}_{\lambda}}$,
- $\{I_{\lambda}^{(j)}: j\geq 1\}$ is another i.i.d. sequence of r.v.'s with common distribution equal to that of $\underline{X}_{\mathbf{e}_{\lambda}}$.
- With a.s. convergence from previous slide: Corollary. We have as $n \uparrow \infty$

$$(V(n, n/t), J(n, n/t)) \rightarrow (X_t, \overline{X}_t)$$

where the convergence is understood in the distributional sense.

■ Setup Monte Carlo simulation:

$$\mathbb{E}(g(X_t, \overline{X}_t)) \simeq \frac{1}{m} \sum_{i=1}^m g(V^{(i)}(n, n/t), J^{(i)}(n, n/t)).$$

■ Setup Monte Carlo simulation:

$$\mathbb{E}(g(X_t, \overline{X}_t)) \simeq \frac{1}{m} \sum_{i=1}^m g(V^{(i)}(n, n/t), J^{(i)}(n, n/t)).$$

■ Requirement: being able to sample from

$$I_{n/t} \stackrel{d}{=} \underline{X}_{\mathbf{e}_{n/t}}$$
 and $S_{n/t} \stackrel{d}{=} \overline{X}_{\mathbf{e}_{n/t}}.$

As mentioned before, recently new large families of LP's have occured for which this is possible.

■ Setup Monte Carlo simulation:

$$\mathbb{E}(g(X_t, \overline{X}_t)) \simeq \frac{1}{m} \sum_{i=1}^m g(V^{(i)}(n, n/t), J^{(i)}(n, n/t)).$$

■ Requirement: being able to sample from

$$I_{n/t} \stackrel{d}{=} \underline{X}_{\mathbf{e}_{n/t}}$$
 and $S_{n/t} \stackrel{d}{=} \overline{X}_{\mathbf{e}_{n/t}}$.

As mentioned before, recently new large families of LP's have occured for which this is possible.

■ E.g. β -family of LP's by Kuznetsov (2009). Free to choose Gaussian part σ and drift part a; Lévy measure Π has density π given by

$$\pi(x) = c_1 \frac{e^{-\alpha_1 \beta_1 x}}{(1 - e^{-\beta_1 x})^{\lambda_1}} \mathbf{1}_{\{x > 0\}} + c_2 \frac{e^{\alpha_2 \beta_2 x}}{(1 - e^{\beta_2 x})^{\lambda_2}} \mathbf{1}_{\{x < 0\}}.$$

■ Setup Monte Carlo simulation:

$$\mathbb{E}(g(X_t, \overline{X}_t)) \simeq \frac{1}{m} \sum_{i=1}^m g(V^{(i)}(n, n/t), J^{(i)}(n, n/t)).$$

■ Requirement: being able to sample from

$$I_{n/t} \stackrel{d}{=} \underline{X}_{\mathbf{e}_{n/t}}$$
 and $S_{n/t} \stackrel{d}{=} \overline{X}_{\mathbf{e}_{n/t}}$.

As mentioned before, recently new large families of LP's have occured for which this is possible.

■ E.g. β -family of LP's by Kuznetsov (2009). Free to choose Gaussian part σ and drift part a; Lévy measure Π has density π given by

$$\pi(x) = c_1 \frac{e^{-\alpha_1 \beta_1 x}}{(1 - e^{-\beta_1 x})^{\lambda_1}} \mathbf{1}_{\{x > 0\}} + c_2 \frac{e^{\alpha_2 \beta_2 x}}{(1 - e^{\beta_2 x})^{\lambda_2}} \mathbf{1}_{\{x < 0\}}.$$

Note that the β -family of LP's has exponential moments (needed to work with risk neutral measures), there is asymmetry in the jump structure and locally jumps are stable-like (similarly to e.g. CGMY processes). Moreover we can have infinite or finite activity, bounded or unbounded path variation.

Kuznetsov uses that the characteristic exponent of X can be extended as a meromorphic function, together with analytical techniques, to identify the W-H factors and derive e.g.

$$P(\overline{X}_{\mathbf{e}_q} \in dx) = \left(\sum_{n \le 0} k_n \zeta_n e^{\zeta_n x}\right) dx,$$

where the ζ_n 's are (real) zeros of $z\mapsto q+\Psi(z)$ and have to be found numerically.

Kuznetsov uses that the characteristic exponent of X can be extended as a meromorphic function, together with analytical techniques, to identify the W-H factors and derive e.g.

$$P(\overline{X}_{\mathbf{e}_q} \in dx) = \left(\sum_{n \le 0} k_n \zeta_n e^{\zeta_n x}\right) dx,$$

where the ζ_n 's are (real) zeros of $z\mapsto q+\Psi(z)$ and have to be found numerically.

lacksquare A similar expression for $P(\underline{X}_{\mathbf{e}_{q}} \in dx)$

Simulated value function of European up-and-out call option with X from β -family

With Gaussian part (strike=5, barrier=10, T=1)

Simulated value function of European up-and-out call option with X from β -family

lrregular upwards (strike=5, barrier=10, T=1)

Advantages over standard random walk approach

- Standard random walk:
 - in general law of X_t not known, needs to be obtained by numerical Fourier inversion.
 - always produces an atom at 0 when simulating \overline{X}_t (W-H MC method produces atom iff it is really present, i.e. iff X is irregular upwards).
 - well known bad performance when simulating \overline{X}_t (misses excursions between grid points), W-H MC method performs significantly better in Brownian motion test case

W-H MC method vs. random walk: $P(\overline{X}_1 \le z)$ where X is BM; n = number of time steps (for r.w. 2n time steps)

		z = 0.1	z = 0.2	z = 0.3	z = 0.4	z = 0.5	z = 1	z = 1.5	z=2
	exact	0.0797	0.1585	0.2358	0.3108	0.3829	0.6827	0.8664	0.9545
n = 10	w.h.	0.0828	0.1644	0.2447	0.3219	0.3955	0.6944	0.8700	0.9523
	error	3.88%	3.74%	3.75%	3.56%	3.28%	1.71%	0.41%	-0.23%
	r.w.	0.1886	0.2593	0.3315	0.4020	0.4689	0.7389	0.8951	0.9661
	error	136.76%	63.57%	40.56%	29.36%	22.44%	8.23%	3.32%	1.21%
n = 100	w.h.	0.0803	0.1592	0.2372	0.3125	0.3843	0.6852	0.8672	0.9546
	error	0.79%	0.41%	0.58%	0.52%	0.35%	0.36%	0.09%	0.01%
	r.w.	0.1122	0.1909	0.2675	0.3411	0.4116	0.7018	0.8764	0.9586
	error	40.90%	20.40%	13.45%	9.72%	7.48%	2.80%	1.16%	0.43%
n = 1000	w.h.	0.0792	0.1581	0.2357	0.3112	0.3837	0.6839	0.8665	0.9546
	error	-0.53%	-0.27%	-0.07%	0.12%	0.20%	0.17%	0.03%	0.00%
	r.w.	0.0899	0.1684	0.2456	0.3206	0.3925	0.6896	0.8699	0.9559
	error	12.91%	6.24%	4.16%	3.12%	2.50%	1.01%	0.41%	0.15%

Table 1: Computing $\mathbb{P}(\overline{X}_1 \leq z)$ for different values of z when X is a standard Brownian motion.

W-H MC method vs. random walk: $P(X_1 \le z_1, \overline{X}_1 \ge z_2)$ where X is BM; 1000 time steps (for r.w. 2000 time steps)

		$z_2 = 0.1$	$z_2 = 0.3$	$z_2 = 0.5$	$z_2 = 1$
	exact	0.0139	0.0047	0.0014	0.00003
	w.h.	0.0138	0.0046	0.0013	0.00003
$z_1 = -2$	error	-0.93%	-1.93%	-1.33%	-5.27%
	r.w.	0.0128	0.0043	0.0012	0.00002
	error	-7.92%	-8.22%	-10.51%	-24.22%
	exact	0.1151	0.0548	0.0228	0.0014
	w.h.	0.1147	0.0544	0.0225	0.0013
$z_1 = -1$	error	-0.28%	-0.65%	-0.91%	-5.77%
	r.w.	0.1095	0.0515	0.0210	0.0012
	error	-4.87%	-6.12%	-7.54%	-14.36%
	exact	0.4207	0.2743	0.1587	0.0228
	w.h.	0.4205	0.2738	0.1576	0.0223
$z_1 = 0$	error	-0.06%	-0.18%	-0.68%	-2.02%
	r.w.	0.4101	0.2653	0.1518	0.0211
	error	-2.54%	-3.26%	-4.34%	-7.18%