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A Wiener-Hopf Monte Carlo simulation technique for Lévy processes

Motivation

Lévy process. A (one dimensional) process X with stationary and
independent increments and cadlag paths (e.g. Brownian motion with
drift, compound Poisson processes, stable processes amongst many
others).

Goal of this talk. Present Monte Carlo simulation technique for problems
that fundamentally depend on the joint distribution

P (Xt ∈ dx, Xt ∈ dy)

where Xt := sups≤tXs.

Example: barrier options in Lévy market. Value of a European up-and-out
barrier option with expiry date T and barrier b is of the form

e−rTEs(f(ST )1{ST≤b})

where S = exp(X), ST = supu≤T Su and f is some nice function.

Other motivations from queuing theory, population models etc.
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Facts from Wiener-Hopf theory

Recall characteristic exponent of X given by

Ψ(θ) := −1

t
logE(eiθXt)

= aiθ +
1

2
σ2θ2 +

Z
R
(1− eiθx + iθx1{|x|≤1})Π(dx)

where a ∈ R, σ ∈ R and Π is a measure concentrated on R\{0} satisfyingR
R(1 ∧ x2)Π(dx) <∞.

Wiener-Hopf factorisation: one can always decompose

q + Ψ(θ) = κ+(q,−iθ)× κ−(q, iθ)

such that

E(eiθXeq ) =
κ+(q, 0)

κ+(q,−iθ) and E(e
iθXeq ) =

κ−(q, 0)

κ−(q, iθ)

where eq is an independent and exponentially distributed random variable
with rate q > 0 and Xt := infs≤tXs. (Recall Xt := sups≤tXs.)
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Facts from Wiener-Hopf theory

In particular,

Xeq
d
= Sq + Iq

where Sq is independent of Iq and they are respectively equal in
distribution to Xeq and Xeq

.

So:
(Xeq , Xeq )

d
= (Sq + Iq, Sq).

Q1. For what LP's can we indeed sample from Sq and Iq?

Recent advances: there are many new examples of Lévy processes (with
two-sided jumps) emerging for which su�cient analytical structure is in
place in order to sample from the two distributions Xeq and Xeq

. (β-Lévy

processes, Lamperti-stable processes, Hypergeometric Lévy processes, · · · ).
Q2. How do we get from the random time eq to the �xed time t we are
after?

Put i.i.d. exponentials 'after each other' to construct 'stochastic time grid'
and make use of stat. indep. increments of X.
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'Stochastic time grid'1

Suppose that e(1), e(2), · · · is a sequence of i.i.d exp(1) distributed r.v.'s.

De�ne the 'grid points' (with av. grid distance 1/λ) for all k ≥ 0:

g(k, λ) :=

kX
i=1

1

λ
e(i),

in particular for any t > 0 by the strong law of Large numbers

g(n, n/t) =

nX
i=1

t

n
e(i) n→∞−→ t a.s.

Hence for a suitably large n, we have in distribution

(Xg(n,n/t), Xg(n,n/t)) ' (Xt, Xt).

Indeed since t is not a jump time with probability 1, we have that
(Xg(n,n/t), Xg(n,n/t))→ (Xt, Xt) a.s. as n→∞.

This + facts from W-H theory from previous slide yields main result:

1Peter Carr has made use of this fact in a di�erent way in the past in a �nance setting and
Ron Doney in a theoretical probabilistic setting.
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Main result

Theorem. For all n ∈ {1, 2, · · · } and λ > 0,

(Xg(n,λ), Xg(n,λ))
d
= (V (n, λ), J(n, λ))

where

V (n, λ) :=

nX
j=1

{S(j)
λ +I

(j)
λ } and J(n, λ) :=

n−1_
i=0

 
iX

j=1

{S(j)
λ + I

(j)
λ }+ S

(i+1)
λ

!
.

Here:
- {S(j)

λ : j ≥ 1} is an i.i.d. sequence of r.v.'s with common distribution
equal to that of Xeλ ,

- {I(j)
λ : j ≥ 1} is another i.i.d. sequence of r.v.'s with common

distribution equal to that of Xeλ
.

With a.s. convergence from previous slide:
Corollary. We have as n ↑ ∞

(V (n, n/t), J(n, n/t))→ (Xt, Xt)

where the convergence is understood in the distributional sense.
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Example of implementation

Setup Monte Carlo simulation:

E(g(Xt, Xt)) '
1

m

mX
i=1

g(V (i)(n, n/t), J(i)(n, n/t)).

Requirement: being able to sample from

In/t
d
= Xen/t

and Sn/t
d
= Xen/t .

As mentioned before, recently new large families of LP's have occured for
which this is possible.

E.g. β-family of LP's by Kuznetsov (2009). Free to choose Gaussian part
σ and drift part a; Lévy measure Π has density π given by

π(x) = c1
e−α1β1x

(1− e−β1x)λ1
1{x>0} + c2

eα2β2x

(1− eβ2x)λ2
1{x<0}.

Note that the β-family of LP's has exponential moments (needed to work
with risk neutral measures), there is asymmetry in the jump structure and
locally jumps are stable-like (similarly to e.g. CGMY processes). Moreover
we can have in�nite or �nite activity, bounded or unbounded path
variation.
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Example of implementation

Kuznetsov uses that the characteristic exponent of X can be extended as
a meromorphic function, together with analytical techniques, to identify
the W-H factors and derive e.g.

P (Xeq ∈ dx) =

0@X
n≤0

knζne
ζnx

1A dx,

where the ζn's are (real) zeros of z 7→ q + Ψ(z) and have to be found
numerically.

A similar expression for P (Xeq
∈ dx)
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Simulated value function of European up-and-out call option with X
from β-family

2 4 6 8 10

0.005

0.01

0.015

0.02

0.025

0.03

0.035

With Gaussian part (strike=5, barrier=10, T=1)
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Simulated value function of European up-and-out call option with X
from β-family

2 4 6 8 10

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Irregular upwards (strike=5, barrier=10, T=1)
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Advantages over standard random walk approach

Standard random walk:
- in general law of Xt not known, needs to be obtained by numerical
Fourier inversion.
- always produces an atom at 0 when simulating Xt (W-H MC method
produces atom i� it is really present, i.e. i� X is irregular upwards).
- well known bad performance when simulating Xt (misses excursions
between grid points), W-H MC method performs signi�cantly better in
Brownian motion test case
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W-H MC method vs. random walk: P (X1 ≤ z) where X is BM; n =
number of time steps (for r.w. 2n time steps)
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W-H MC method vs. random walk: P (X1 ≤ z1, X1 ≥ z2) where X is
BM; 1000 time steps (for r.w. 2000 time steps)


