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Motivation

m Lévy process. A (one dimensional) process X with stationary and
independent increments and cadlag paths (e.g. Brownian motion with
drift, compound Poisson processes, stable processes amongst many
others).

m Goal of this talk. Present Monte Carlo simulation technique for problems
that fundamentally depend on the joint distribution

P(Xt S dl‘, Yt S dy)

where X := sup ., X,.

m Example: barrier options in Lévy market. Value of a European up-and-out
barrier option with expiry date 7" and barrier b is of the form

e T Es(£(S7)1(z,<0y)

where S = exp(X), St = sup,, <, Su and f is some nice function.

m Other motivations from queuing theory, population models etc.
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Facts from Wiener-Hopf theory
m Recall characteristic exponent of X given by
1 .
V() = —log BE(e'%t)
1 104
= a4+ 50'292 + /(1 — ezex —+ i@xl{‘x‘gl})ﬂ(dac)
R

where a € R, o € R and II is a measure concentrated on R\{0} satisfying

Je(LA z*)I(dz) < oo.
m Wiener-Hopf factorisation: one can always decompose

g+ (0) = n+(q, —i0) X k™ (q,10)

such that

_ + -
; 0) i0X £ (¢,0)
E 10X e — K (q7 d E Ao — 2
(€7700) = g, -0y M BT = = m)
where e, is an independent and exponentially distributed random variable
with rate ¢ > 0 and X, := infs<; X,. (Recall X; :=sup,, Xs.)
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Facts from Wiener-Hopf theory
m In particular,
d
Xe, =S¢+ 1,
where S, is independent of /; and they are respectively equal in
distribution to X, and X .

m So:

< d
(Xeq’Xeq) = (Sq +IQ7SQ)'
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processes, Lamperti-stable processes, Hypergeometric Lévy processes, - - - ).



A Wiener-Hopf Monte Carlo simulation technique for Lévy processes

Facts from Wiener-Hopf theory

m In particular,
Xeoy £ 84+ 1,
where S, is independent of /; and they are respectively equal in
distribution to X, and X .
m So:
(Xeg: Xoy) £ (Sq + 15, 5y).
m Q1. For what LP's can we indeed sample from S, and 1,?

Recent advances: there are many new examples of Lévy processes (with
two-sided jumps) emerging for which sufficient analytical structure is in
place in order to sample from the two distributions X, and X . (B-Lévy
processes, Lamperti-stable processes, Hypergeometric Lévy processes, - - - ).
m Q2. How do we get from the random time e, to the fixed time ¢ we are
after?
Put i.i.d. exponentials 'after each other’ to construct 'stochastic time grid’
and make use of stat. indep. increments of X.
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’Stochastic time grid'?

m Suppose that e e® ... is a sequence of i.i.d exp(1) distributed r.v.'s.

m Define the "grid points’ (with av. grid distance 1/X) for all £ > 0:

D=

in particular for any ¢ > 0 by the strong law of Large numbers

>z\>~

g(n,n/t) = Z —e "= as.

m Hence for a suitably large n, we have in distribution
Xemn/t) Xemn/) = (X, Xo).

Indeed since ¢ is not a jump time with probability 1, we have that
(Xg(n,n/t)7Xg(n,n/t)) - (Xt,Xt) a.S. asS n — OQ.

m This + facts from W-H theory from previous slide yields main result:

LPeter Carr has made use of this fact in a different way in the past in a finance setting and
Ron Doney in a theoretical probabilistic setting.
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Main result
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- {I;j) :j > 1} is another i.i.d. sequence of r.v.’s with common
distribution equal to that of X, -
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m Theorem. For all n € {1,2,---} and A > 0,

(Xg(nny Xgmn) = (V(1, 1), J (1, 1))

where
n n—1 7

V(n,A) = > {SP+I1} and J(n,N) = \/ (Z{s@ +IPY+ Sg””) :
F=il i=0 \j=1

Here:

- {Sf\j) :j > 1}is an i.i.d. sequence of r.v.'s with common distribution
equal to that of X, ,

- {I;j) :j > 1} is another i.i.d. sequence of r.v.’s with common
distribution equal to that of X, -

m With a.s. convergence from previous slide:
Corollary. We have as n 1 co

(V(’IL n/t)a J(”a n/t)) i (Xtvyt)

where the convergence is understood in the distributional sense.
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Example of implementation

m Setup Monte Carlo simulation:

m

E(9(Xe, X)) = — 3 gV (n,n/2), 79 (n, /1),

=il
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Example of implementation

m Setup Monte Carlo simulation:
E(g(X:, X1)) Zg VO (n,n/t), JD(n,n/t)).

m Requirement: being able to sample from

d

d —
Ine = Xen/t and S, = Xe, -

As mentioned before, recently new large families of LP’s have occured for
which this is possible.

m E.g. B-family of LP’s by Kuznetsov (2009). Free to choose Gaussian part
o and drift part a; Lévy measure II has density m given by

e~ 181z e&2P2z
’/T($) =@ (1 — e*ﬂ1z))\1 1{I>O} iz (1 _ 6B29:)>\2 1{I<0}4
m Note that the S-family of LP’s has exponential moments (needed to work
with risk neutral measures), there is asymmetry in the jump structure and
locally jumps are stable-like (similarly to e.g. CGMY processes). Moreover
we can have infinite or finite activity, bounded or unbounded path
variation.
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Example of implementation

m Kuznetsov uses that the characteristic exponent of X can be extended as
a meromorphic function, together with analytical techniques, to identify
the W-H factors and derive e.g.

P(Xe, €dx) = | Y knCae™™ | da,
n<0

where the ¢,,’s are (real) zeros of z — g + ¥(2) and have to be found
numerically.
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Example of implementation

m Kuznetsov uses that the characteristic exponent of X can be extended as
a meromorphic function, together with analytical techniques, to identify
the W-H factors and derive e.g.

P(Xe, €dx) = | Y knCae™™ | da,

n<0

where the ¢,,’s are (real) zeros of z — g + ¥(2) and have to be found
numerically.

= A similar expression for P(X, € dx)
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Simulated value function of European up-and-out call option with X
from (-family
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Simulated value function of European up-and-out call option with X
from (-family

0.041
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Irregular upwards (strike=5, barrier=10, T=1)
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Advantages over standard random walk approach

m Standard random walk:
- in general law of X not known, needs to be obtained by numerical
Fourier inversion.
- always produces an atom at 0 when simulating X; (W-H MC method
produces atom iff it is really present, i.e. iff X is irregular upwards).
- well known bad performance when simulating X; (misses excursions
between grid points), W-H MC method performs significantly better in
Brownian motion test case
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W-H MC method vs. random walk: P(X; < z) where X is BM; n =
number of time steps (for r.w. 2n time steps)

z=01 |[2z=02|z=03|z=04|2=05]| z=1 |z=15| z=2
exact | 0.0797 | 0.1585 | 0.2358 | 0.3108 | 0.3829 | 0.6827 | 0.8664 [ 0.9545
n=10 w.h. 0.0828 | 0.1644 | 0.2447 [ 0.3219 | 0.3955 | 0.6944 | 0.8700 | 0.9523

error 3.88% | 3.74% | 3.75% | 3.56% | 3.28% | L.T1% | 0.41% | -0.23%
r.w. 0.1886 | 0.2593 | 0.3315 [ 0.4020 | 0.4689 | 0.7380 | 0.8051 | 0.9661
error | 136.76% | 63.57% | 40.56% | 20.36% | 22.44% | 8.23% | 3.32% | 1.21%
n = 100 w.h. 0.0803 | 0.1592 0.3125 | 0.3843 | 0.6852 | 0.8672 | 0.9546
error 0.79% | 0.41% ; 0.52% | 0.35% | 0.36% | 0.09% | 0.01%
r.W. 0.1122 | 0.1909 | 0.2675 | 0.3411 | 0.4116 | 0.7018 | 0.8764 | 0.9586
error | 40.90% | 20.40% | 13.45% | 9.72% | 7.48% | 2.80% | 1.16% | 0.43%
n=1000 | w.h. 0.0792 | 0.1581 | 0.2357 [ 0.3112 | 0.3837 | 0.6839 | 0.8665 | 0.9546
error | -0.53% | -0.27% | -0.07% | 0.12% | 0.20% | 0.17% | 0.03% | 0.00%
r.w. 0.0899 | 0.1684 | 0.2456 [ 0.3206 | 0.3925 | 0.6896 | 0.8699 | 0.9559
error | 12.919% | 6.24% | 4.16% | 3.12% | 2.50% | 1.01% | 041% | 0.15%

Table 1: Computing P(X; < z) for different values of z when X is a standard Brownian
motion.
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W-H MC method vs. random walk: P(X; < 21, X1 > 20) where X is
BM; 1000 time steps (for r.w. 2000 time steps)

Iy = 0.1 g = 0.3 Inp = 0.5 g = 1
exact | 0.0139 | 0.0047 | 0.0014 | 0.00003
who | 0.0138 | 0.0046 | 0.0013 | 0.00003
n=—2| emror | -093% | -1.93% | -1.33% | -5.27%
rw. | 00128 | 0.0043 | 0.0012 | 0.00002
error | -7.92% | -8.22% | -10.51% | -24.22%
exact | 0.1151 | 0.0548 | 0.0228 | 0.0014
who | 01147 | 0.0544 | 0.0225| 0.00

zp=—1 ] error | -0.28% | -0.65% | -0.91% | -5.77%
T.W. 0.1095 0.0515 0.021
error | -4.87% | -6.12% | -7.549
exact 0.4207 0.2743 0.1587 0.
w.h. 0.4205 0.2738 0.1576 0.0223
zy=0 | error | -0.06% | -0.18% | -0.68% | -2.02%
T.W. 0.4101 0.2653 0.1518 0.0211
error | -2.54% | -3.26% | -4.34% | -T.18%




