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Setting

Framework of a Dynkin game

o Filtered probability space (2, 7, F = (Ft)icjo, 1, P), F
satisfying the usual conditions. Let 7 and o denote
F-stopping times

@ Two processes L ('lower payoff’) and U (‘'upper payoff’)
with L; < U;, Yt € [0,T) and Lt = Ur

@ A maximizer choosing o (max. expected lower payoff),
a minimizer choosing = (min. expected upper payoff).
Resulting payoff to the maximizer is:

RO',‘F = 1{U§T}LO' + 1{T<O’} U-

(i.e. whoever exercises first determines the payoff)



Perpetual McKean game

Specifics McKean game driven by spectr. neg. Lévy

process

The McKean game:

@ Let S = exp(X) for a spectr. neg. LP X and let Ps be such
that Ps(Sp =) = 1

@ Lower payoff given by Ly = e (K — S;)*

@ Upper payoff given by Uy = e~ " (K — S)* +§),t € [0, T)
and Ly = Ur,where K, r,§ >0

@ Assume 0 < (1) < r (where ¢ Laplacian of X)
@ Value function:
v(s) = supinfEs 1o<rilo + 1<y Ur]

= iNfSUPEs [1(5<r) Lo + 1(r<0y U]



Perpetual McKean game

@ vp value function of the American put, i.e.
VP(S) = SUpEs [La]

@ If § > vp(K) then game degenerates to Am. put (easy to
see) = assume § < vp(K)

Theorem (Baurdoux & Kyprianou (2008))
@ A saddle point (o*, T*) exists, where

o* =inf{t > 0| S; < sp} for some s, € (0, K)
™ =inf{t > 0| S; € [K, sw]} forsome sy, € [K,>0)

@ Expressions for sy, for v on (0, K] & smooth pasting
results.




Perpetual McKean game

@ Question: when s, = K and when s, > K?
@ Answer: depends on the structure of X

@ Idea of proof: look at optimal response to the minimizer
choosing Tk :=inf{t > 0| S; = K}, i.e.:

Vmax(8) := SUPEs [Ry. 7] = Es [Ro+ 7]

Then:
@ ifVS: Vmax(S) < (K —8)" +dthen s, = K (since v < Vimax)
and V = Vpax
@ otherwise V # Vpax = Sy > K



Perpetual McKean game

@ Question: when s, = K and when s, > K?
@ Answer: depends on the structure of X

@ Idea of proof: look at optimal response to the minimizer
choosing Tk :=inf{t > 0| S; = K}, i.e.:

Vmax(8) := SUPEs [Ry. 7] = Es Ry, 7]

Then:
@ ifVS: Vmax(S) < (K —8)" +dthen s, = K (since v < Vimax)
and V = Vpax
@ otherwise V # Vpax = Sy > K

@ Next up: graphs to illustrate 4 different cases.
Red curve = Vpax, =vwhens, > K



Perpetual McKean game

Brownian motion case (Kyprianou (2004))
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Brownian motion case (Kyprianou (2004))




Perpetual McKean game

Bounded variation case (Baurd. & Kyp. (2008))
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Bounded variation case (Baurd. & Kyp. (2008))




Perpetual McKean game

Bounded variation case (Baurd. & Kyp. (2008))

d < vp(K), actual value function:




Perpetual McKean game

Unb. var. case without Gaussian part (B. & K. (2008))




Perpetual McKean game

Unb. var. case without Gaussian part (B. & K. (2008))




Perpetual McKean game

Unb. var. case without Gaussian part (B. & K. (2008))

d < vp(K), actual value function:




Perpetual McKean game

With Gaussian part (Baurdoux & KvS)




Perpetual McKean game

With Gaussian part (Baurdoux & KvS)




Perpetual McKean game

With Gaussian part (Baurdoux & KvS)




Perpetual McKean game

With Gaussian part (Baurdoux & KvS)

d < vp(K), actual value function:




Perpetual McKean game

Theorem (Baurdoux & KvS (in progress))

If X has a positive Gaussian component and Lévy measure
M # 0, a threshold ¢y € (0, vp(K)) exists s.t.

@ ifd € (0,9p) thensy > K
@ ifo € [0g, vp(K)] then sy, = K.

Some additional results:
@ § — sy(9) is cts. and decreasing
@ limsys, Sw(d) = K, lims;o sw(6) = K — log(infsupp(I))

@ expressions for s, and v (more explicit in jump-diffusion
case)



Finite expiry case

Finite expiry case (T < oco), some examples

Numerical method: Canadization (Carr (1998)).
@ discretise time stochastically, i.e. take grid points with

distance iid exponentials (5,(”)),-21 with param. n, indep. of
S
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Finite expiry case

Finite expiry case (T < oco), some examples

Numerical method: Canadization (Carr (1998)).
@ discretise time stochastically, i.e. take grid points with
distance iid exponentials (5,(”)),-21 with param. n, indep. of
S
o define: v\"”) = value of game with expiry date 3% , ¢(”
@ convergence: if (k(n)) s.t. k(n)/n— T as n — oo, then
K

—

n

=

éj,l(n) a.s. T — V(n)

k(n)(s) — v(T,s)

Iy
o

@ algorithm for computing (vk ))k>0 set v( )( s):=(K—-s)".
Fork > 1, v,E )isa game with payoff:

1{0/\T<§n} RU,T + 1{0/\7’25,7}6 én ( ) (Sﬁn) .

&n indep. exp. = perpetual game with terminal payoff, can
be solved.



Finite expiry case

Brownian motion:




Finite expiry case

Jump-diffusion without Gaussian part:




Finite expiry case

Jump-diffusion with Gaussian part:
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